Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Biochemical Assays
2.3. Statistical Analyses
3. Results
3.1. Compositions of Organic and Mineral Constituents of O. monoceros and R. phoenicis
3.2. Heavy Metal Composition of O. monoceros and R. phoenicis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radu, C.; Nedeff, V.; Chitimus, A.D. Theoretical studies concerning residual soil pollution by heavy metals. J. Eng. Stud. Res. 2013, 19, 89–96. [Google Scholar] [CrossRef]
- Chiţimuş, A.D.; Nedeff, V.; Lazăr, G. Actual stage in the soil remediation. J. Eng. Stud. Res. 2011, 17, 24–31. [Google Scholar]
- Chitimus, A.D.; Radu, C.; Nedeff, V.; Mosnegutu, E.; Bârsan, N. Studies and researches on Typha Latifolia’s (bulrush) absorption capacity of heavy metals from the soil. Sci. Study Res.-Chem. Chem. Eng. Biotechnol. Food Ind. 2016, 17, 381–393. [Google Scholar]
- Drăghici, O.; Marcu, G.-D. The physicochemical properties of a commercial cricket (Acheta domesticus) protein powder as a basis for its use in food products. Sci. Study Res.-Chem. Chem. Eng. Biotechnol. Food Ind. 2023, 24, 279–289. [Google Scholar]
- Vlahova-Vangelova, D.B.; Balev, D.K.; Kolev, N.D.; Gradinarska, D.N.; Dragoev, S.G. Cricket powder (Acheta domestica) as food additive for processing of dry-fermented poultry bars. Sci. Study Res.-Chem. Chem. Eng. Biotechnol. Food Ind. 2021, 22, 453–461. [Google Scholar]
- Howard, F.W.; Moore, D.; Giblin-Davis, R.M.; Abad, R.G. Insects on Palms; CABI Publishing: Boston, MA, USA, 2001. [Google Scholar]
- Dounias, E. The little-known exploitation of a well-known resource: The collection of edible weevil larvae from raphia palms in southern Cameroon. In Insects in Oral Tradition, Motte-Florac, E., Thomas, J.M.C., Eds.; Peeters-SELAF: Paris, France, 2003; pp. 205–226. (In French) [Google Scholar]
- Monzenga, J.C.; Bolondo, G.; Boyombe, L.L.; Le Goff, G.; Hance, T. Palm weevils, Rhynchophorus sp. (Coleoptera: Dryophthoridae): Species inventory and population dynamics in the Kisangani region of DR Congo. Afr. J. Trop. Entomol. Res. 2022, 1, 28–33. [Google Scholar]
- Le Gall, P. Coleoptera in the human diet. In Tasty Insects: From Traditional Food to Gastronome Innovation; Motte-Florac, E., Le Gall, P., Eds.; Presses Universitaires François-Rabelais: Tours, France, 2016; pp. 2108–9566. (In French) [Google Scholar]
- Bourrelier, P.H.; Berthelin, J. Soil Contamination by Trace Elements: Risks and Management; Tec et Doc; Lavoisier: Paris, France, 1998. (In French) [Google Scholar]
- Amevoin, K.; Ayieko, A.M.; Bassan, S.; van Broekhoven, S.; Dzerefos, C.; Kinyuru, N.J.; Kokoete, E.; Makhado, R.; Maluleke-Nyathela, H.; Mawela, K.; et al. Edible Insects in Africa an Introduction to Finding, Using and Eating Insects, 1st ed.; Agromisa Foundation and CTA: Veenendaal, The Netherlands, 2015; pp. 19–26. Available online: https://www.agromisa.org/wp-content/uploads/Agrodok-54-Edible-insects-in-Africa-web.pdf (accessed on 15 September 2024).
- Séré, A.; Bougma, A.; Ouilly, J.T.; Traoré, M.; Sangaré, H.; Lykke, A.M.; Ouédraogo, A.; Gnankiné, O.; Bassolé, I.H.N. Traditional knowledge regarding edible insects in Burkina Faso. J. Ethnobiol. Ethnomed. 2018, 2, 59. [Google Scholar] [CrossRef]
- Okeke, T.E.; Ewuim, S.C.; Akunne, C.E.; Ononye, B.U. Survey of edible insects in relation to their habitat and abundance in awka and environ. Int. J. Entomol. Res. 2019, 4, 9–12. [Google Scholar]
- Ehounou, G.P.; Ouali-N’goranm, S.W.M.; Soro, D.; Bedikou, M.E. Nutrient contributions of Rhynchophorus phoenicis Fabricius, 1801 (Coleoptera: Curculionidae), very appreciated larvae in Côte d’Ivoire compared with beef (N’Dama breed) and thon (Thunnus thynnus). Int. J. Biol. Chem. Sci. 2019, 13, 2092–2103. [Google Scholar] [CrossRef]
- Ishara, J.; Ayagirwe, R.; Karume, K.; Mushagalusa, G.N.; Bugeme, D.; Niassy, S.; Udomkun, P.; Kinyuru, J. Inventory reveals wide biodiversity of edible insects in the Eastern Democratic Republic of Congo. Sci. Rep. 2022, 12, 1576. [Google Scholar] [CrossRef]
- Okaraonye, C.C.; Ikewuchi, J.C. Rhynchophorus phenicis (F) Larva Meal: Nutritional Value and Heath Implication. Biol. Sci. 2008, 8, 1221–1225. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Hernández-León, K.P.; Aguilar-Toalá, J.E.; Díaz-Ramírez, M.; Cruz-Monterrosa, R.G. Presence of Pesticides in Edible Insects: Risk to Human Health. The Case of Mexico. Agro Product. 2022, 15, 45–50. [Google Scholar] [CrossRef]
- Vantomme, P.; Giihler, D.; N’deckere-Ziangba, F. Contribution of Forest Insects to Food Security and Forest Conservation: The Example of Caterpillars in Central Africa. 2004. Available online: https://odi.org/documents/2260/3306.pdf (accessed on 20 October 2024).
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Insectes Comestibles: Perspectives pour la Sécurité Alimentaire et L’alimentation Animale; Organisation des Nations Unies pour l’Alimentation et l’Agriculture: Rome, Italy, 2014; coll. « Etudes FAO Forêts » (no 171). [Google Scholar]
- Badanaro, F.; Bilabina, I.; Awaga, K.L.; Sanbena Banibea, B.; Amevoin, K.; Amouzou, K. Identification and nutritional composition of some Orthoptera species consumed in Togo. Revue Cam. 2015, 3, 10–16. [Google Scholar]
- AFNOR. Aliments des Animaux. Méthodes D’analyse Françaises et Communautaires: Recueil de Normes Françaises, 2nd ed.; Association Francaise de Normalisation: La Plaine Saint-Denis, France, 1985. [Google Scholar]
- AOAC. Official methods of Analysis of AOAC International, 16th ed.; AOAC Publications: Rockville, MD, USA, 1995. [Google Scholar]
- Pauwels, J.M.; Van Ranst, E.; Verloo, M.; Mvondo, Z.A. Manuel de Laboratoire de Pédologie, Méthodes D’analyses de sols et de Plantes, Equipement, Gestion de Stocks de Verrerie et de Produits Chimiques; Publications Agricoles: Bruxelles, Belgium, 1992. [Google Scholar]
- ISO 17294-2; Water Quality. Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). ISO: Geneva, Switzerland, 2003.
- Vincent, A.; Grande, F.; Compaoré, E.; Amponsah Annor, G.; Addy, P.A.; Aburime, L.C.; Ahmed, D.; Bih Loh, A.M.; Dahdouh Cabia, S.; Deflache, N.; et al. User Guide & Condensed Food Composition Table; FAO: Roma, Italy, 2019. (In French) [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemist’s Society, 5th ed.; American Oil Chemists’ Society, Ste C&D Champaign: Champaign, IL, USA, 1998. [Google Scholar]
- ISO 5508; Animal and Vegetable Fats—Gas Chromatographic Analysis of Fatty Acid Methyl esters, 2nd ed. ISO: Geneva, Switzerland, 1990. (In French)
- AOAC. In Official Methods of Analysis of the Association of Analytical Chemists, 15th ed.; Association of Official Analytical Chemist: Washington DC, USA, 1990.
- Dietary Guidelines Advisory Committee. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2010. [Google Scholar]
- Edijala, J.k.; Egbogbo, O.; Anigboro, A.A. Proximate composition and cholesterol of Rhynchophorus phenicis and oryctes monoceros larvae subjected to different heat treatments. Afr. J. Biotechnol. 2009, 8, 2346–2348. [Google Scholar]
- Badanaro, F.; Tété-Bénissan, A.; Melila, M.; Awaga, K.L.; Bilabina, I.; Amevoin, K.; Amouzou, K.S. Nutritional potentials of Pachnoda marginata (Kolbe, 1906) and Rhabdotis sobrina (Gory and Percheron, 1833), two insect species consumed in Togo. Pak. J. Nutr. 2019, 18, 873–881. [Google Scholar] [CrossRef]
- Badanaro, F.; Tété-Bénissan, A.; Amouzou, K.S. Nutritional Potential of Two Insect Species Consumed in Togo: Gnathocera trivittata (Swederus, 1787) and Gnathocera impressa (Olivier, 1789). Eur. J. Nutr. Food Saf. 2021, 13, 24–32. [Google Scholar] [CrossRef]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N. Nutrient and Antinutrient Compositions of Some Edible Insect Species in Northern Nigeria. Fountain J. Nat. Appl. Sc. 2017, 6, 9–24. [Google Scholar] [CrossRef]
- Okweche, S.I.; Ugwu, O.Q.; Nwaogu, C. Nutritional composition of cricket, Brachytrupes membranaceus (Drury, 1770), and selected animal source foods in Cross River State, Nigeria. Int. J. Trop. Insect Sci. 2024, 44, 1271–1278. [Google Scholar] [CrossRef]
- Faiveley, M. Water and Food Preservation. 2018. Available online: https://www.techniques-ingenieur.fr/ressources-documentaires/demande-d-informations/extract (accessed on 8 June 2024).
- Dobermann, D.; Swiftn, J.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia. Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Chakravorty, J.; Sampat Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia. Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Finke, M.D. Gut loading to enhance the nutrient content of insects as food for reptiles: A mathematical approach. Zoo Biol. 2003, 22, 147–162. [Google Scholar] [CrossRef]
- Chaney, S.G. Principles of nutrition of nutrition II. Micronutrients. In Texbook of Biochemistry with Clinical Correlations, 6th ed.; Devlin, T.M., Ed.; Wiley-liss: Hoboken, NJ, USA, 2006; pp. 1091–1120. [Google Scholar]
- Gahukar, R. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition; Food and nutrition paper 92; FAO: Rome, Italy, 2013. [Google Scholar]
- Malik, C.P.; Srivastava, A.K. Text Book of Plant Physiology; Kalyani Publishers: Delhi, India, 2015. [Google Scholar]
- Idowu, A.B.; Oliyide, E.; Ademolu, K.; Bamidele, J. Nutritional and anti-nutritional evaluation of three edible insects consumed by the Abeokuta community in Nigeria. Int. J. Trop. Insect Sci. 2019, 39, 157–163. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- He, F.J.; Macgregor, G.A. Beneficial effects of potassium on human health. Physiol. Plant 2008, 133, 725–735. [Google Scholar] [CrossRef]
- Soudy, I.D. Traditional practices, food value and toxicity of taro (Colocasia esculenta L. Scott) produced in Chad. Ph.D. Thesis, Blaise Pascal Clermond Fernand II University, Aubière, France, 2011. (In French). [Google Scholar]
- Kemi, V.E.; Kärkkäinen, M.U.M.; Lamberg Allard, C.J.E. High phosphorus intake acutely and negative affect calcium and bone metabolism in a dosedependent manner. In Practical Pharmacognocy, 19th ed.; Khandewal, K.R., Ed.; Nirali Prakashan: Pune, India, 2006. [Google Scholar]
- Gayet, B.; Cazel, A.R. The Keys to Nutritherapy: Précis of Orthomolecular Nutrition; Quintescence: Beychac et Caillau, France, 2002. [Google Scholar]
- Sani, I.; Haruna, M.; Abdulhamid, A.; Warra, A.A.; Bello, F. Fakai Assessment of nutritional quality and mineral composition of dried edible Zonocerus variegatus (grasshopper). Res. Rev. J. Food Dairy Technol. 2014, 2, 1–6. [Google Scholar]
- Delarue, J.; Guriec, N. Fatty acids, insulin resistance, metabolic syndrome and type 2 diabetes. Médecine Mal. Métaboliques 2011, 5, 253–256. [Google Scholar] [CrossRef]
- Womeni, H.M.; Linder, M.; Tiencheu, B.; Mbiapo, F.T.; Villeneuve, P.; Fanni, J.; Parmentier, M. Oils of insects and larvae consumed in Africa: Potential sources of polyunsaturated fatty acids. Oléagineux Corps Gras Lipides 2009, 16, 230–235. [Google Scholar] [CrossRef]
- Kritchevsky, D.; Tepper, S.A.; Chen, S.C.; Meijer, G. Cholesterol vehicle in experimental atherosclerosis Effects of specific synthetic triglycerides. Lipids 2000, 35, 621–625. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.C.; Elsom, R.L.; Calder, P.C.; Griffin, B.A.; Harris, W.S.; Jebb, S.A.; Lovegrove, J.A.; Moore, C.S.; Riemersma, R.A.; Sanders, T.A. UK Food Standards Agency Workshop Report: The effects of the dietary n-6: N-3 fatty acid ratio on cardiovascular health. Br. J. Nutr. 2007, 98, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Tanga, C.M.; Ekesi, S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. Annu. Rev. Entomol. 2024, 69, 303–331. [Google Scholar] [CrossRef] [PubMed]
- Martin, A. The apports nutritionnels conseillés (ANC) for the French population. Reprod. Nutr. Develop. 2001, 41, 119–128. [Google Scholar] [CrossRef]
- Bortey-Sam, N.; Nakayama, S.M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Yohannes, Y.B.; Mizukawa, H.; Ishizuka, M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol. Environ. Saf. 2015, 111, 160–167. [Google Scholar] [CrossRef] [PubMed]
- EFSA (Scientific Committee). Scientific Opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef]
- Poma, G.; Fujii, Y.; Lievens, S.; Bombeke, J.; Gao, B.; Jeong, Y.; McGrath, T.J.; Covaci, A. Occurrence, patterns, and sources of hazardous organic chemicals in edible insects and insect-based food from the Japanese market. Food Chem. Toxicol. 2021, 154, 112311. [Google Scholar] [CrossRef] [PubMed]
- Poma, G.; Yin, S.; Folarin, B.T.; Macan, S.A.; Bombeke, J.; Altamiraro, J.C.; Ssepuuva, G.; Nakimbugwe, D.; Oluseyi, T.; Covaci, A. First insights into the occurrence of pesticide residues in edible insects from sub-Saharan African countries. J. Environ. Expo. Assess. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Kolakowski, B.M.; Johaniuk, K.; Zhang, H.; Yamamoto, E. Analysis of Microbiological and Chemical Hazards in Edible Insects Available to Canadian Consumers. J. Food Prot. 2021, 9, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Kosečková, P.; Zvěřina, O.; Pěchová, M.; Krulíková, M.; Duborská, E.; Borkovcová, M. Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. J. Food Compos. Anal. 2022, 107, 104340. [Google Scholar] [CrossRef]
Parameters Analyzed | Average Content (±SD) * | |
---|---|---|
O. monoceros | R. phoenicis | |
Moisture (%) | 9.36 ± 1.4 a | 8.68 ± 0.31 b |
Ash (%) | 11.09 ± 1.37 a | 10.45 ± 0.37 a |
Protein (%) | 44.32 ± 0.83 a | 45.89 ± 0.28 b |
Lipid (%) | 15.06 ± 0.28 a | 14.64 ± 0.54 a |
Fiber (%) | 10.04 ± 1.15 a | 13.72 ± 0.46 b |
Carbohydrate (%) | 10.11 ± 0.80 a | 6.59 ± 1.2 b |
Energy (KJ/100g) | 1563.11 ± 8.77 a | 1543.99 ± 8.58 a |
Minerals | Average Mineral Content (±SD) * | Recommended Dietary Intake (RDI) [30] | |
---|---|---|---|
O. monoceros | R. phoenicis | ||
Calcium | 53.54 ±1.53 a | 66.51 ± 0.10 b | 700–1300 |
Magnesium | 25.38 ± 0.55 a | 40.73 ± 0.38 b | 80–420 |
Phosphorus | 47.82 ±1.31 a | 73.90 ± 2.51 b | 500–1250 |
Potassium | 108.38 ±1.03 a | 644.12 ± 0.98 b | 3000–4700 |
Sodium | 77.64 ±1.69 a | 113.57 ± 1.63 b | 1500–2300 |
Iron | 8.08 ± 0.88 a | 11.51 ± 0.06 b | 7–18 |
Manganese | 0.96 ± 0.34 a | 1.26 ± 0.03 a | 1.2–2.3 |
Copper | 9.96 ± 0.72 b | 1.33 ± 0.01 a | 0.34–09 |
Zinc | 0.85 ± 0.02 a | 15.65 ± 0.04 b | 3–11 |
Sodium/Potassium | 0.71 | 0.17 | <1 |
Calcium/Phosphorus | 1.12 | 0.90 | 1–1.3 |
Calcium/Magnesium | 2.1 | 1.63 | 2 |
Degree of Fatty Acid Saturation | Percentage of Fatty Acids (±SD) | |
---|---|---|
O. monoceros | R. phoenicis | |
Total saturated fatty acids | 50.35 ± 0.01 | 41.05 ± 0.03 |
Total monounsaturated fatty acids | 40.84 ± 0.00 | 47.06 ± 0.03 |
Total polyunsaturated fatty acids | 6.67 ± 0.01 | 11.42 ± 0.03 |
Total unsaturated fatty acids | 47.51 ± 0.01 | 58.48 ± 0.06 |
Omega-6/Omega-3 | 2.06 | 0.80 |
Fatty Acids | Percentage of Fatty Acids (±SD) | |
---|---|---|
O. monoceros | R. phoenicis | |
Lauric acid (C12: 0) | 0.64 ± 0.00 | 0.58 ± 0.01 |
Myristic acid (C14:0) | Not detected | 0.96 ± 0.00 |
Palmitic acid (C16:0) | 39.95 ± 0.07 | 30.35 ± 0.03 |
Stearic acid (C18:0) | 10.21 ± 0.06 | 9.16 ± 0.09 |
Oleic acid (Cl8:1 c(n-9) | 40.84 ± 0.11 | 47.06 ± 0.08 |
Linoleic acid (C18:2 c(n-6)) | 4.49 ± 0.00 | 5.07 ± 0.02 |
α-Linolenic acid (C18:2 c(n-3)) | 5.07 ± 0.02 | 6.35 ± 0.01 |
Vitamins | Average Vitamin Content (±SD) * | |
---|---|---|
O. monoceros | R. phoenicis | |
Retinol (A) | 0.04 ± 0.00 a | 0.01 ± 0.00 b |
Thiamine (B1) | 1.35 ± 0.20 a | 0.96 ± 0.11 a |
Riboflavin (B2) | 2.25 ± 0.19 a | 2.33 ± 0.33 a |
Niacin (B3) | 8.18 ± 0.23 a | 7.44 ± 0.3 b |
Tocopherol (E) | 3.43 ± 0.04 a | 4.77 ± 0.01 b |
Heavy Metals | Average Heavy Metals Content (±SD) * | |
---|---|---|
O. monoceros | R. phoenicis | |
Cadmium | <0.0005 | <0.0005 |
Mercury | <0.0005 | <0.0005 |
Lead | <0.01 | <0.01 |
Arsenic | 0.0364 ± 0.00 a | 0.0073 ± 0.00 a |
Nickel | 0.0209 ± 0.00 a | 0.0767 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badanaro, F.; Barsan, N.; Mélila, M.; Ouro-Sama, K.; Améyran, K.; Nedeff, F.-M.; Irimia, O.; Nedeff, V. Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo. Appl. Sci. 2025, 15, 1317. https://doi.org/10.3390/app15031317
Badanaro F, Barsan N, Mélila M, Ouro-Sama K, Améyran K, Nedeff F-M, Irimia O, Nedeff V. Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo. Applied Sciences. 2025; 15(3):1317. https://doi.org/10.3390/app15031317
Chicago/Turabian StyleBadanaro, Fègbawè, Narcis Barsan, Mamatchi Mélila, Kamilou Ouro-Sama, Koami Améyran, Florin-Marian Nedeff, Oana Irimia, and Valentin Nedeff. 2025. "Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo" Applied Sciences 15, no. 3: 1317. https://doi.org/10.3390/app15031317
APA StyleBadanaro, F., Barsan, N., Mélila, M., Ouro-Sama, K., Améyran, K., Nedeff, F.-M., Irimia, O., & Nedeff, V. (2025). Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo. Applied Sciences, 15(3), 1317. https://doi.org/10.3390/app15031317