Diversity of Potential (Bio)Technological Applications of Amino Acid-Based Ionic Liquids
Abstract
:1. Introduction
1.1. General Structures, Synthesis, and Key Properties
1.2. General Information on Selected Physicochemical Characteristics of the Main Studied Groups of AA ILs
- Viscosity:
- Solubility:
- Thermal properties and thermal stability:
- Ionic conductivity
- Chirality
1.3. Toxicity and Biodegradability
2. Bioapplications of AA ILs: An Overview
2.1. Drug Formulations and Delivery
2.2. Biomass Production and Potency in Crop Protection
2.3. Antimicrobial Activity, Antibacterial Coatings, and Antibiofilm Formation
2.4. Application in Agriculture
2.5. Stability and Activity of Enzymes and Proteins
2.5.1. AA-ILs as Media for Biocatalytic Reactions
2.5.2. Effect of AA-ILs on the Stability and Structure of Proteins and Enzymes
2.6. AA-ILs with Application in the Processing of Biomaterials
2.6.1. Cellulose Treatment and Processing
2.6.2. Biodiesel Production
2.7. AA ILs as Media for Extraction
2.7.1. AA ILs as Media for Extraction of Plant Secondary Metabolites
2.7.2. AA ILs as Media for Extraction of Amino Acids and Proteins
2.8. AA IL Application in Wastewater Treatment and Separation Processes
2.9. AA ILs as Catalysts
2.10. Other Applications
2.10.1. Utilization and Capture of Toxic Gases
2.10.2. Electrochemistry
2.10.3. Polymeric Materials for Electronic Devices and Materials for Nonlinear Optics
2.10.4. AA ILs as Heat Transfer Fluids
2.10.5. AA ILs as Surfactants
2.10.6. AA ILs as Lubricants
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkes, J.S. A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Shiflett, M.B.; Magee, J.W.; Tuma, D. Important Developments in the History of Ionic Liquids from Academic Curiosity to Commercial Processes and Products. In Commercial Applications of Ionic Liquids; Shiflett, M.B., Ed.; Springer: Cham, Switzerland, 2020; pp. 3–29. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 3, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Hijo, T.A.A.C.; Maximo, G.J.; Costa, M.C.; Batista, E.A.C.; Meirelles, A.J.A. Applications of ionic liquids in the food and bioproducts industries. ACS Sustain. Chem. Eng. 2016, 4, 5347–5369. [Google Scholar] [CrossRef]
- Egorova, K.S.; Posvyatenko, A.V.; Larin, S.S.; Ananikov, V.P. Ionic liquids: Prospects for nucleic acid handling and delivery. Nucleic Acids Res. 2021, 49, 1201–1234. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.R.; Rufino, A.F.C.S.; Belchior, D.C.V.; Carvalho, P.J.; Freire, M.G. Characterization of cholinium-carboxylate-based aqueous biphasic systems. Fluid. Phase Equilibria 2022, 558, 113458. [Google Scholar] [CrossRef]
- Moshikur, R.M.; Carrier, R.L.; Moniruzzaman, M.; Goto, M. Recent advances in biocompatible ionic liquids in drug formulation and delivery. Pharmaceutics 2023, 15, 1179. [Google Scholar] [CrossRef]
- Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z. Ionic liquids as active pharmaceutical ingredients. ChemMedChem. 2011, 6, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Shamshina, J.L.; Rogers, R.D. Ionic liquids: New forms of active pharmaceutical ingredients with unique, tunable properties. Chem. Rev. 2023, 123, 11894–11953. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Fukumoto, K. Amino acid ionic liquids. ACC Chem. Res. 2007, 40, 1122–1129. [Google Scholar] [CrossRef]
- Ossowicz, P.; Klebeko, J.; Roman, B.; Janus, E.; Rozwadowski, Z. The Relationship between the structure and properties of amino acid ionic liquids. Molecules 2019, 24, 3252. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. 2005, 2005, 3562–3564. [Google Scholar] [CrossRef] [PubMed]
- Klebeko, J.; Ossowicz-Rupniewska, P.; Nowak, A.; Kucharska, E.; Kucharski, Ł.; Duchnik, W.; Struk, L.; Klimowicz, A.; Janus, E. Cations of amino acid alkyl esters conjugated with an anion from the group of NSAIDs—As tunable pharmaceutical active ionic liquids. J. Mol. Liq. 2023, 384, 122200. [Google Scholar] [CrossRef]
- Tao, G.H.; He, L.; Liu, W.S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem. 2006, 8, 639–646. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wang, G.N.; Zhou, Z.; Wu, Y.T.; Genga, J.; Zhang, Z.B. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chem. Commun. 2008, 4, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Fukumoto, K.; Kagimoto, J. Chapter 24: New Class of Ionic Liquids Synthesized from Amino Acid and Other Bioderived Materials. In Ionic Liquids IV: Not Just Solvents Anymore; Brennecke, J., Rogers, R., Seddon, K., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2007; Volume 975, pp. 351–361, ISBN13 9780841274457; eISBN: 9780841221000. [Google Scholar] [CrossRef]
- Kagimoto, J.; Fukumoto, K.; Ohno, H. Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids. Chem. Commun. 2006, 2006, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Kagimoto, J.; Noguchi, K.; Murata, K.; Fukumoto, K.; Nakamura, N.; Ohno, H. Polar and Low Viscosity Ionic Liquid Mixtures from Amino Acids. Chem. Lett. 2008, 37, 1026–1027. [Google Scholar] [CrossRef]
- Rahman, M.B.A.; Jumbri, K.; Basri, M.; Abdulmalek, E.; Sirat, K.; Salleh, A.B. Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids. Molecules 2010, 15, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Atkin, R.; Warr, G. Design and applications of biocompatible choline amino acid ionic liquids. Green Chem. 2022, 24, 7281–7304. [Google Scholar] [CrossRef]
- Liu, Q.P.; Hou, X.D.; Li, N.; Zong, M.H. Ionic liquids from renewable biomaterials: Synthesis, characterization and application in the pretreatment of biomass. Green Chem. 2012, 14, 304–307. [Google Scholar] [CrossRef]
- He, L.; Tao, G.H.; Parrish, D.A.; Shreeve, J. Slightly viscous amino acid ionic liquids: Synthesis, properties, and calculations. J. Phys. Chem. B 2009, 113, 15162–15169. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.H.; Charęza, M.; Janus, E.; Drozd, R. Evaluation of new L-amino acids triethanolammonium salts usability for controlling protease activity. Inter. J. Biol. Macromol. 2023, 231, 123218. [Google Scholar] [CrossRef]
- Moshikur, R.M.D.; Chowdhury, M.R.; Wakabayashi, R.; Tahara, Y.; Moniruzzaman, M.; Goto, M. Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids. Int. J. Pharm. 2018, 546, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Guncheva, M.; Ossowicz, P.; Janus, E.; Todinova, S.; Yancheva, D. Elucidation of the effect of some cholinium amino acid ionic liquids on the thermal and the conformational stability of insulin. J. Mol. Liq. 2019, 283, 257–262. [Google Scholar] [CrossRef]
- Egorova, K.S.; Seitkalieva, M.M.; Posvyatenko, A.V.; Ananikov, V.P. An unexpected increase of toxicity of amino acid-containing ionic liquids. Toxicol. Res. 2015, 4, 152–159. [Google Scholar] [CrossRef]
- Ventura, S.; Silva, F.A.; Gonçalves, A.M.M.; Pereira, J.L.; Gonçalves, F.; Coutinho, J.A.P. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotox. Envir. Saf. 2014, 102, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, L.; Wen, P.; Ye, X.; Dong, R.; Sun, W.; Fan, M.; Yang, D.; Zhou, F.; Liu, W. The ecotoxicity and tribological properties of choline amino acid ionic liquid lubricants. Trib. Inter. 2018, 12, 435–441. [Google Scholar] [CrossRef]
- Passino, D.R.M.; Smith, S.B. Acute bioassays and hazard evaluation of representative contaminants detected in great lakes fish. Environ. Toxicol. Chem. 1987, 6, 901–907. [Google Scholar] [CrossRef]
- Baharuddin, S.H.; Mustahil, N.A.; Abdullah, A.A.; Sivapragasam, M.; Moniruzzaman, M. Ecotoxicity study of amino acid ionic liquids towards Danio rerio fish: Effect of cations. Process Eng. 2016, 148, 401–408. [Google Scholar] [CrossRef]
- Ghanem, O.B.; Papaiconomou, N.; Mutalib, A.M.I.; Viboud, S.; El-Harbawi, M.; Uemura, Y.; Gonfa, G.; Bustam, A.M.; Lévêque, J.M. Thermophysical properties and acute toxicity towards green algae and Vibrio fischeri of amino acid-based ionic liquids. J. Mol. Liq. 2015, 212, 352–359. [Google Scholar] [CrossRef]
- Parameswaran, J.; Ghani, N.A.; Yunus, N.B.M.; Hasanudin, N.B. Evaluating acute toxicity of amino acid ionic liquids towards Poecilia reticulata fish for designing sustainable chemical processes. Toxicol. Rep. 2024, 12, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.D.; Liu, Q.P.; Smith, T.J.; Li, N.; Zong, M.H. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS ONE 2013, 8, e59145. [Google Scholar] [CrossRef]
- Wu, S.; Li, F.; Zeng, L.; Wang, C.; Yanga, Y.; Tan, Z. Assessment of the toxicity and biodegradation of amino acid-based ionic liquids. RSC Adv. 2019, 9, 10100–10108. [Google Scholar] [CrossRef] [PubMed]
- Balk, A.; Holzgrabe, U.; Meinel, L. ‘Pro et contra’ ionic liquid drugs—Challenges and opportunities for pharmaceutical translation. Eur. J. Pharm. Biopharm. 2015, 94, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Domingos, S.; André, V.; Quaresma, S.; Martins, I.C.; Minas da Piedade, M.F.; Duarte, M.T. New forms of old drugs: Improving without changing. J. Pharm. Pharmacol. 2015, 67, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Pedro, S.N.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. Ionic Liquids in Drug Delivery. Encyclopedia 2021, 1, 324–339. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Ionic liquids in drug delivery. Expert. Opin. Drug Deliv. 2013, 10, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) [Updated 2023 May 1]; StatPearls [Internet]: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742 (accessed on 27 January 2025).
- Furukawa, S.; Hattori, G.; Sakai, S.; Kamiya, N. Highly efficient and low toxic skin penetrants composed of amino acid ionic liquids. RSC Adv. 2016, 6, 87753–87755. [Google Scholar] [CrossRef]
- Ossowicz-Rupniewska, P.; Klebeko, J.; Swiatek, E.; Bilska, K.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Struk, Ł.; Wenelska, K.; Klimowicz, A.; et al. Influence of the type of amino acid on the permeability and properties of ibuprofenates of isopropyl amino acid esters. Int. J. Mol. Sci. 2022, 23, 4158. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, K.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Struk, Ł.; Ossowicz-Rupniewska, P. Exploring alkyl ester salts of L-amino Acid derivatives of ibuprofen: Physicochemical characterization and transdermal potential. Molecules 2023, 28, 7523. [Google Scholar] [CrossRef] [PubMed]
- Świątek, E.; Ossowicz-Rupniewska, P.; Janus, E.; Nowak, A.; Sobolewski, P.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. Novel naproxen salts with increased skin permeability. Pharmaceutics 2021, 13, 2110. [Google Scholar] [CrossRef] [PubMed]
- Moshikur, R.M.; Chowdhury, M.R.; Fujisawa, H.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Design and characterization of fatty acid-based amino acid ester as a new “green” hydrophobic ionic liquid for drug delivery. ACS Sustain. Chem. Eng. 2020, 8, 13660–13671. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, Z.; Yang, Y.; Li, Y.; Wang, C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int. J. Pharm. 2020, 576, 119031. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Koselowske, G.; Töberich, H.; Kerkmann, T.; Mangold, B.; Augustin, J. Pharmacokinetics and absolute bioavailability of ibuprofen after oral administration of ibuprofen lysine in man. Biopharm. Drug Dispos. 1990, 11, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Kuczyńska, J.; Nieradko-Iwanicka, B. Future Prospects of Ketoprofen in improving the safety of the gastric mucosa. Biomed. Pharmacother. 2021, 139, 111608. [Google Scholar] [CrossRef]
- Lai, A.; Leong, N.; Zheng, D.; Ford, L.; Nguyen, T.-H.; Williams, H.D.; Benameur, H.; Scammells, P.J.; Porter, C.J.H. Biocompatible cationic lipoamino acids as counterions for oral administration of API-ionic liquids. Pharm. Res. 2022, 39, 2405–2419. [Google Scholar] [CrossRef] [PubMed]
- Moshikur, R.M.; Chowdhury, R.M.; Wakabayashi, R.; Tahara, Y.; Moniruzzaman, M.; Goto, M. Ionic liquids with methotrexate moieties as a potential anticancer prodrug: Synthesis, characterization and solubility evaluation. J. Mol. Liq. 2019, 278, 226–233. [Google Scholar] [CrossRef]
- Caparica, R.; Júlio, A.; Baby, A.R.; Araújo, M.E.M.; Fernandes, A.S.; Costa, J.G.; Santos de Almeida, T. Choline-amino acid ionic liquids as green functional excipients to enhance drug solubility. Pharmaceutics 2018, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos de Almeida, T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhou, N.; Wu, J.; Yin, T.; Jia, Y. Ionic liquids as effective additives to enhance the solubility and permeation for puerarin and ferulic acid. RSC Adv. 2022, 12, 3416–3422. [Google Scholar] [CrossRef] [PubMed]
- Júlio, A.; Lima, S.A.C.; Reis, S.; de Almeida, T.S.; Fonte, P. Development of ionic liquid-polymer nanoparticle hybrid systems for delivery of poorly soluble drugs. J. Drug Deliv. Sci. Technol. 2020, 56 Pt B, 100915. [Google Scholar] [CrossRef]
- de Almeida, T.S.; Julio, A.; Saraiva, N.; Fernandes, A.S.; Araujo, M.E.M.; Baby, A.R.; Rosado, C.; Mota, J.P. Choline- versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: Cytotoxicity, solubility, and skin permeation studies. Drug Dev. Ind. Pharm. 2017, 43, 1858–1865. [Google Scholar] [CrossRef] [PubMed]
- Behboudi, M.R.; Golmohammadi, B.; Shekaari, H.; Mokhtarpour, M. Thermodynamic and spectroscopic studies of biotin supplement in aqueous solution of biocompatible choline amino acid ionic liquids. J. Iran. Chem. Soc. 2023, 20, 1559–1567. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, J.Y.; Yin, T.X. Solubility and permeation enhancement of poor soluble drug by cholinium-amino acid based ionic liquids. J. Drug Deliv. Sci. Technol. 2020, 60, 5. [Google Scholar] [CrossRef]
- Alawi, M.A.; Hamdan, I.I.; Sallam, A.A.; Heshmeh, N.A. Solubility enhancement of glibenclamide in choline–tryptophan ionic liquid: Preparation, characterization and mechanism of solubilization. J. Mol. Liq. 2015, 212, 629–634. [Google Scholar] [CrossRef]
- Klebeko, J.; Krüger, O.; Dubicki, M.; Ossowicz-Rupniewska, P.; Janus, E. Isopropyl amino acid esters ionic liquids as vehicles for non-steroidal anti-inflammatory drugs in potential topical drug delivery systems with antimicrobial activity. Int. J. Mol. Sci. 2022, 23, 13863. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.R.; Moshikur, R.M.; Wakabayashi, R.; Tahara, Y.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Ionic-liquid-based paclitaxel preparation: A new potential formulation for cancer treatment. Mol. Pharmaceutics 2018, 15, 2484–2488. [Google Scholar] [CrossRef] [PubMed]
- Oslan, S.N.H.; Tan, J.S.; Oslan, S.N.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Haematococcus pluvialis as a potential source of astaxanthin with diverse applications in industrial sectors: Current research and future directions. Molecules 2021, 26, 6470. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Han, B.; Li, L.; Gao, H.; Zhang, Y.; Yu, X.; Zhao, Y. Role of [N2222][Arg] amino acid ionic liquids in the enhancement of biomass in Haematococcus pluvialis via the regulation of reactive oxygen species signals. Aquaculture 2024, 589, 740964. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, H.; Siqi, W.; Wang, J.; Jia, J.; Qin, X. Effects of amino acid ionic liquids with different cations ([N2Py], [N2222], [P2222], and [C2mim]) on wheat seedlings. RSC Adv. 2021, 11, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Habibul, N.; Ilmurat, M.; Habibul, Z.; Hu, Y.; Ma, X. Uptake and accumulation of imidazolium ionic liquids in rice seedlings: Impacts of alkyl chain length. Chemosphere 2020, 242, 125228. [Google Scholar] [CrossRef] [PubMed]
- Szymaniak, D.; Kleiber, T.; Wojcieszak, M.; Materna, K.; Pernak, J. Conversion of l-tryptophan derivatives into biologically active amino acid ionic liquids. Chem. Select. 2021, 6, 5614–5621. [Google Scholar] [CrossRef]
- Kaczmarek, D.K.; Gwiazdowska, D.; Marchwińska, K.; Klejdysz, T.; Wojcieszak, M.; Materna, K.; Pernak, J. Amino acid-based dicationic ionic liquids as complex crop protection agents. J. Mol. Liq. 2022, 360, 119357. [Google Scholar] [CrossRef]
- Chen, X.; Hao, R.; Chen, W.; Jia, H.; Qin, S.; Wang, Q.; Zhang, D.; Han, Z.; Li, Y. Effect of choline amino acid ionic liquids on maize seed germination and endogenous plant hormone levels. RSC Adv. 2024, 14, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Qiao, C.; Liu, F.; Peng, Q. Amino acid ionic liquids as a potential adjuvant for fungicide formulations: COSMO-RS prediction and dissolution mechanism elucidation. ACS Sustain. Chem. Eng. 2022, 10, 3295–3310. [Google Scholar] [CrossRef]
- Guncheva, M.; Idakieva, K.; Todinova, S.; Yancheva, D.; Paunova-Krasteva, T.; Ossowicz, P.; Janus, E. Structural, thermal, and storage stability of Rapana thomasiana hemocyanin in the presence of cholinium-amino acid-based ionic liquids. Molecules 2021, 26, 1714. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Dongsheng, W. Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. ACS Appl. Mater. Interfaces 2020, 12, 14784–14796. [Google Scholar] [CrossRef]
- Fan, J.; He, X.; Zhou, X.; Li, S.; Yang, Y. Effect of Amino Acid Types on the Mechanical and antimicrobial properties of amino acid-based polyionic liquid hydrogels. Macromol. Rapid Commun. 2024, 45, 2300689. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; He, Q.; Zhou, G.; Ali, A.; Yu, C.; Yao, S. Choline and amino acids-based ionic liquids (CABILs) for the preparation of new antibacterial coating with loofah and epoxy resin. Ind. Crops Prod. 2024, 210, 118093. [Google Scholar] [CrossRef]
- Ghanem, O.B.; Shahrom, M.S.R.; Shah, S.N.; Mutalib, M.I.A.; Leveque, J.M.; Ullah, Z.; El-Harbawi, M.; Alnarabiji, M.S. Greener approach for the separation of naphthenic acid from model oil using pyrrolidinium-based amino acid ionic liquids. Fuel 2023, 337, 127141. [Google Scholar] [CrossRef]
- Guncheva, M. Ionic Liquids with Herbicidal Activities. In Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer: Singapore, 2019; ISBN 978-981-10-6739-6. [Google Scholar] [CrossRef]
- Pernak, J.; Łożyński, M.; Kaczmarek, D.K.; Qu, F.; Bolla, G.; Rogers, R.D. Bioinspired herbicides–ionic liquids or liquid cocrystals? J. Agric. Food Chem. 2024, 72, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.; Durán, R.; Fajardo, D.; Justo, L.; Faro, L.R.F. Mechanisms of action of paraoxon, an organophosphorus pesticide, on in vivo dopamine release in conscious and freely moving rats. Neurochem. Inter. 2019, 124, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Pavez, P.; Millán, D.; Morales, J.I.; Castro, E.A.; López, C.A.; Santos, J.G. Mechanisms of degradation of paraoxon in different ionic liquids. J. Org. Chem. 2013, 78, 9670–9676. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.I.; Figueroa, R.; Rojas, M.; Millán, D.; Tapiaa, R.A.; Pavez, P. Dual function of amino acid ionic liquids (Bmim[AA]) on the degradation of the organophosphorus pesticide, Paraoxon®. Org. Biomol. Chem. 2018, 16, 7446–7453. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Chen, D.; Li, F. Rational integration of biomineralization, microbial surface display, and carbon nanocomposites: Ultrasensitive and selective biosensor for traces of pesticides. Adv. Mater. Interfaces 2018, 5, 1801332. [Google Scholar] [CrossRef]
- Xiao, X.; He, J.K.; Guan, Y.X.; Yao, S.J. Effect of cholinium amino acids ionic liquids as cosolvents on the bioconversion of phytosterols by Mycobacterium sp. resting cells. ACS Sustain. Chem. Eng. 2020, 8, 17124–17132. [Google Scholar] [CrossRef]
- Bisht, M.; Jha, I.; Venkatesu, P. Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure? Proc. Biochem. 2018, 74, 77–85. [Google Scholar] [CrossRef]
- Bisht, M.; Jha, I.; Venkatesu, P. Comprehensive evaluation of biomolecular interactions between protein and amino acid based-ionic Liquids: A comparable study between [Bmim][Br] and [Bmim][Gly] ionic liquids. Chem. Sel. 2016, 1, 3510–3519. [Google Scholar] [CrossRef]
- Kumar, S.; Sindhu, A.; Vasantha, T.; Khoiroh, I.; Devunuri, N.; Venkatesu, P. Preferential and competitive role of hydrophilic/hydrophobic interactions quantifying amino acid-based ILs for papain stabilization. J. Mol. Liq. 2022, 363, 119920. [Google Scholar] [CrossRef]
- Kumar, S.; Venkatesu, P. The biocompatible validity of amino acid ionic liquid mediated gold nanoparticles for enhanced activity and structural stability of papain. Dalton Trans. 2021, 50, 10455–10470. [Google Scholar] [CrossRef] [PubMed]
- Guncheva, M.; Yancheva, D.; Ossowicz, P.; Janus, E. Structural basis for the inactivation of Candida rugosa lipase in the presence of amino acid ionic liquids. Bulg. Chem. Commun. 2017, 49 Pt B, 132–136. [Google Scholar]
- Rahman, M.B.A.; Jumbri, K.; Hanafiah, N.A.M.A.; Abdulmalek, E.; Tejo, B.A.; Basri, M.; Salleh, A.B. Enzymatic esterification of fatty acid esters by tetraethylammonium amino acid ionic liquids-coated Candida rugosa lipase. J. Mol. Cat. B Enzym. 2012, 79, 61–65. [Google Scholar] [CrossRef]
- Xu, C.; Suo, H.; Xue, Y.; Qin, J.; Chen, H.; Hu, Y. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids. Mol. Cat. 2021, 50, 111355. [Google Scholar] [CrossRef]
- Tarannum, A.; Rao, J.R.; Fathima, N.N. Choline-based amino acid ILs–collagen interaction: Enunciating its role in stabilization/destabilization phenomena. J. Phys. Chem. B 2018, 122, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Guncheva, M.; Paunova, K.; Ossowicz, P.; Rozwadowski, Z.; Janus, E.; Idakieva, K.; Todinova, S.; Raynova, Y.; Uzunova, V.; Apostolova, S.; et al. Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity. Int. J. Biolog. Macromol. 2016, 82, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Chevrot, G.; Fileti, E.E.; Chaban, V.V. Enhanced stability of the model mini-protein in amino acid ionic liquids and their aqueous solutions. J. Comput. Chem. 2015, 36, 2044–2051. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, K.; Sathyaraj, G.; Nair, B.U.; Dhathathreyan, A. Reversible and irreversible conformational transitions in Myoglobin: Role of hydrated amino acid ionic liquid. J. Phys. Chem. B 2012, 116, 4175–4180. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, I.; DeStefano, G.; Paradis, N.J.; Patel, R.; Clark, A.; Gogoj, H.; Singh, G.; Jonnalagadda, K.S.; Patel, A.Y.; Wu, C.; et al. Thermodynamic destabilization of azurin by four different tetramethylguanidinium amino acid ionic liquid. Int. J. Biolog. Macromol. 2021, 180, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Borrell, K.L.; Cancglin, C.; Stinger, B.L.; DeFrate, K.G.; Caput, G.A.; Wu, C.; Vade, T.D. An experimental and molecular dynamics study of red fluorescent protein mCherry in novel aqueous amino acid ionic liquids. J. Phys. Chem. B 2017, 121, 4823–4832. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Jena, S.; Dutta, J.; Chakrabarty, S.; Biswal, H.S. Critical assessment of the interaction between DNA and choline amino acid ionic liquids: Evidences of multimodal binding and stability enhancement. ACS Cent. Sci. 2018, 4, 1642–1651. [Google Scholar] [CrossRef]
- Khavani, M.; Mehranfar, A.; Vahid, H. Application of amino acid ionic liquids for increasing the stability of DNA in long term storage. J. Biomol. Struct. Dyn. 2022, 41, 4383–4397. [Google Scholar] [CrossRef] [PubMed]
- Silva-Fernandes, T.; Duarte, L.C.; Carvalheiro, F.; Marques, S.; Loureiro-Dias, M.C.; Fonseca, C.; Gírio, F. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: Eucalyptus residues, wheat straw and olive tree pruning Bioresour. Technol. 2015, 183, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Keshwani, R.D. Chapter 2: Biomass chemistry. In Biomass To Renewable Energy; Cheng, J., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2017; pp. 7–36. ISBN 9781315152868. [Google Scholar]
- Zhao, Z.; Yang, Y.; Abdeltawab, A.A.; Yakout, S.M.; Chen, X.; Yu, G. Cholinium amino acids-glycerol mixtures: New class of solvents for pretreating wheat straw to facilitate enzymatic hydrolysis. Bioresour. Technol. 2017, 245, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.D.; Li, N.; Zong, M.H. Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: Visualization of changes in composition and cell wall structure. Biotechnol. Bioeng. 2013, 110, 1895–1902. [Google Scholar] [CrossRef]
- Hou, X.D.; Li, N.; Zong, M.H. Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids−water mixture. ACS Sustain. Chem. Eng. 2013, 1, 519–526. [Google Scholar] [CrossRef]
- Hou, X.D.; Li, N.; Zong, M.H. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid–water mixtures. Bioresour. Technol. 2013, 136, 469–474. [Google Scholar] [CrossRef] [PubMed]
- An, Y.X.; Zong, M.H.; Wu, H.; Li, N. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour. Technol. 2015, 92, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.D.; Smith, T.J.; Li, N.; Zong, M.H. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol. Bioeng. 2012, 109, 2484–2493. [Google Scholar] [CrossRef] [PubMed]
- Pakdeedachakiat, W.; Phruksaphithak, N.; Boontawan, A. Pretreatment of mulberry stem by cholinium-based amino acid ionic liquids for succinic acid fermentation and its application in poly(butylene) succinate production. Bioresour. Technol. 2019, 291, 121873. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, E.; Ortolani, M.; Nucara, A.; Baldassarre, L.; Missori, M.; Fastampa, R.; Caminiti, R. Stabilization of the Tensile Strength of Aged Cellulose Paper by Cholinium-Amino Acid Ionic Liquid Treatment. J. Phys. Chem. C 2016, 120, 24088–24097. [Google Scholar] [CrossRef]
- Brunner, M.; Li, H.; Zhang, Z.; Zhang, D.; Atkin, R. Pinewood pyrolysis occurs at lower temperatures following treatment with choline-amino acid ionic liquids. Fuel 2019, 236, 306–312. [Google Scholar] [CrossRef]
- Muhammad, N.; Man, Z.; Bustam, M.A.; Mutalib, M.I.A.; Wilfred, C.D.; Rafiq, S. Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Appl. Biochem. Biotechnol. 2011, 165, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Ohira, K.; Abe, Y.; Kawatsura, M.; Suzuki, K.; Mizuno, M.; Amano, Y.; Itoh, T. Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 2012, 5, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Ohira, K.; Yoshida, K.; Hayase, S.; Itoh, T. Amino acid ionic liquid as an efficient cosolvent of dimethyl sulfoxide to realize cellulose dissolution at room temperature. Chem. Lett. 2012, 41, 987–989. [Google Scholar] [CrossRef]
- Hamada, Y.; Yoshida, K.; Asai, R.; Hayase, S.; Nokami, T.; Izumi, S.; Itoh, T. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green. Chem. 2013, 15, 1863–1868. [Google Scholar] [CrossRef]
- Dong, Y.; Takeshita, T.; Miyafuji, H.; Nokami, T.; Itoh, T. Direct extraction of polysaccharides from Moso Bamboo (Phylostachys heterocycla) chips using a mixed solvent system of an amino acid ionic liquid with polar aprotic solvent. Bull. Chem. Soc. Jpn. 2018, 91, 398–404. [Google Scholar] [CrossRef]
- Jia, Y.; Nian, S.; Zhao, W.; Fu, L.; Zhang, X.; Beadham, I.; Zhao, S.; Zhang, C.; Deng, Y. Pretreatment of wastepaper with an aqueous solution of amino acid-derived ionic liquid for biochar production as adsorbent. J. Environ. Manag. 2024, 360, 121195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ge, W.; Shuai, J.; Gao, X.; Zhang, F.; Wang, X. Efficient cellulose dissolution and film formation enabled by superbase amino acid ionic liquids. Macromol. Rapid Commun. 2023, 44, 2300175. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Kishimoto, T.; Hamada, M.; Nakajima, N. Enzymatic synthesis of methyl β-d-glucoside directly from cellulose pretreated with biocompatible amino acid ionic liquid/cosolvent. Holzforschung 2016, 71, 21–26. [Google Scholar] [CrossRef]
- Outeiriño, D.; Costa-Trigo, I.; de Souza Oliveira, R.P.; Guerra, N.P.; Domínguez, J.M. A novel approach to the biorefinery of brewery spent grain. Process Biochem. 2019, 85, 135–142. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, X.; Chen, L. Regulation nature of water-choline amino acid ionic liquid mixtures on the disaggregation behavior of starch. Carbohydr. Polym. 2021, 272, 118474. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.D.; Sorichetti, P.A. Chapter 2: Introduction to Biodiesel Production in Dielectric Spectroscopy. In Biodiesel Production and Characterization, Green Energy and Technology; Springer: London, UK, 2011; pp. 7–27. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Torrestiana-Sánchez, B.; Magro, L.D.; Virgen-Ortíz, J.J.; Suárez-Ruíz, F.J.; Rodrigues, R.C.; Fernandez-Lafuente, R. Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renew. Energy 2019, 135, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z. Structure evolution of synthetic amino acids-derived basic ionic liquids for catalytic production of biodiesel. ACS Sustain. Chem. Eng. 2017, 5, 1237–1247. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Cai, R.; Yang, Y.C.; Huang, Z.; Han, B. Optimization and kinetics of biodiesel production from soybean oil using new tetraethylammonium ionic liquids with amino acid-based anions as catalysts. Fuel 2022, 324 Pt A, 124510. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, Y.C.; Wang, X.; Cai, R.; Han, B. Biodiesel synthesis through soybean oil transesterification using choline-based amino acid ionic liquids as catalysts. Ind. Crops Prod. 2024, 208, 117869. [Google Scholar] [CrossRef]
- Sun, S.; Lv, Y.; Wang, G.; Chen, X. Soybean oil-based monoacylglycerol synthesis using bio-compatible amino acid ionic liquid as a catalyst at low temperature. J. Mol. Liq. 2021, 340, 117231. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, S.; Chen, X. Enhanced environment friendly surfactant production by the glycerolysis of castor oil using amino acid ionic liquid as a catalyst. Ind. Crops Prod. 2021, 170, 113680. [Google Scholar] [CrossRef]
- Fang, D.; Li, M.; Ge, R.; Zang, S.; Yang, J.; Gao, Y. Density estimated physicochemical properties of alanine-based ionic liquid [C7mim][Ala] and its application in selective transesterification of soybean oil. Sci. China Chem. 2012, 55, 1677–1682. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef] [PubMed]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Feng, C.; Li, Z.; Yang, X.; Zhao, R.; Gu, H.; Yang, L.; Liu, T. Development and validation of an efficient approach for extracting essential oil, scutellarin, and rosmarinic acid from Perilla frutescens leaves using vacuum microwave-mediated rotary hydrodistillation and extraction in situ and a choline amino acid ionic liquid. Microchem. J. 2024, 200, 110485. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Tan, Z.; Li, F. Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels. Sep. Sci. Technol. 2016, 51, 1093–1102. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X. Hydrophobic ionic liquid-based ultrasound-assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. J. Sep. Sci. 2010, 33, 2035–2038. [Google Scholar] [CrossRef] [PubMed]
- Zu, G.; Zhang, R.; Yang, L.; Ma, C.; Zu, Y.; Wang, W.; Zao, C. Ultrasound-assisted extraction of carnosic acid and rosmarinic acid using ionic liquid solution from Rosmarinus officinalis. Int. J. Mol. Sci. 2012, 13, 11027–11043. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Zu, Y.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011, 172, 705–712. [Google Scholar] [CrossRef]
- Roman, B.; Muzykiewicz-Szymanska, A.; Ossowicz-Rupniewska, P.; Klimowicz, A.; Janus, E. The application of amino acid ionic liquids as additives in the ultrasound-assisted extraction of plant material. RSC Adv. 2021, 11, 25983–25994. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, X.; Yao, S.; Peng, L.; Li, F.; Song, H. Synthesis of a new imidazole amino acid ionic liquid polymer and selective adsorption performance for tea polyphenols. Polymers 2020, 12, 2171. [Google Scholar] [CrossRef]
- Ni, X.; Xing, H.; Yang, Q.; Wang, J.; Su, B.; Bao, Z.; Yang, Y.; Ren, Q. Selective liquid−liquid extraction of natural phenolic compounds using amino acid ionic liquids: A case of α-tocopherol and methyl linoleate separation. Ind. Eng. Chem. Res. 2012, 51, 6480–6488. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, Q.; Dandan, R.; Zhou, N.; Qian, L.; Shouzhuo, Y. Functional amino acid ionic liquids as solvent and selector in chiral extraction. J. Chromatogr. A 2010, 1217, 4669–4674. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, K.; Tang, F.; Yao, L.; Yang, F.; Nie, Z.; Yao, S. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations. Chem. Eur. J. 2009, 15, 9889–9896. [Google Scholar] [CrossRef] [PubMed]
- Qing, H.; Jiang, X.; Yu, J. Separation of tryptophan enantiomers by ligand-exchange chromatography with novel chiral ionic liquids ligand. Chirality 2014, 26, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Korchak, P.A.; Safonova, E.A.; Victorov, A.I. Amino acid ionic liquids as components of aqueous biphasic systems for L-tryptophan extraction: Experiment and thermodynamic modeling with ePC-SAFT equation of state. J. Mol. Liq. 2022, 366, 120185. [Google Scholar] [CrossRef]
- Wang, R.; Cang, Y.; Tan, Z.; Li, F. Phase behavior of aqueous biphasic systems composed of novel choline amino acid ionic liquids and salts. J. Mol. Liq. 2016, 222, 836–844. [Google Scholar] [CrossRef]
- Song, C.; Ramanan, R.N.; Vijayaraghavan, R.; Macfarlane, D.R.; Chan, E.S.; Ooi, C. Green, aqueous two-phase systems based on cholinium aminoate ionic liquids with tunable hydrophobicity and charge density. ACS Sustain. Chem. Eng. 2015, 3, 3291–3298. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Jafari, P. Design of novel biocompatible and green aqueous two-phase systems containing cholinium L-alaninate ionic liquid and polyethylene glycol di-methyl ether 250 or polypropylene glycol 400 for separation of bovine serum albumin (BSA). J. Mol. Liq. 2018, 254, 322–332. [Google Scholar] [CrossRef]
- Liu, L.; Sun, D.; Li, F.; Ma, S.; Tan, Z. Enantioselective liquid-liquid extraction of valine enantiomers in the aqueous two-phase system formed by the cholinium amino acid ionic liquid copper complexes and salt. J. Mol. Liq. 2019, 294, 111599. [Google Scholar] [CrossRef]
- Sun, D.; Wang, R.; Li, F.; Liu, L.; Tan, Z. Enantioselective extraction of phenylalanine enantiomers using environmentally friendly aqueous two-phase systems. Processes 2018, 6, 212. [Google Scholar] [CrossRef]
- Requejo, P.F.; Gomez, E.; Macedo, E.A. Partitioning of DNP-amino acids in new biodegradable choline amino acid/ionic liquid-nased Aqueous two-phase systems. J. Chem. Eng. Data 2019, 64, 4733–4740. [Google Scholar] [CrossRef]
- Kohno, Y.; Saita, S.; Murata, K.; Nakamura, N.; Ohno, H. Extraction of proteins with temperature sensitive and reversible phase change of ionic liquid/water mixture. Polym. Chem. 2011, 2, 862–867. [Google Scholar] [CrossRef]
- Mu, X.; Qiao, J.; Qi, L.; Liu, Y.; Ma, H. Construction of D-amino acid oxidase reactor based on magnetic nanoparticles modified by reactive polymer and its application in screening enzyme inhibitors. ACS Appl. Mater. Interfaces 2014, 6, 12979–12987. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Jafari, P. Structural effects of choline amino acid ionic liquids on the extraction of bovine serum albumin by green and biocompatible aqueous biphasic systems composed of polypropylene glycol400 and choline amino acid ionic liquids. J. Mol. Liq. 2020, 301, 112397. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Jafari, P. Thermodynamic study of aqueous two-phase systems containing biocompatible cholinium aminoate ionic-liquids and polyethylene glycol di-methyl ether 250 and their performances for bovine serum albumin separation. J. Chem. Thermodyn. 2019, 130, 17–32. [Google Scholar] [CrossRef]
- Goutham, R.; Rohit, P.; Vigneshwar, S.S.; Swetha, A.; Arun, J.; Gopinath, P.K.; Pugazhendhi, A. Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives. J. Mol. Liq. 2022, 349, 118150. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, S. Ionic liquids and deep eutectic solvents in wastewater treatment: Recent endeavours. Int. J. Environ. Sci. Technol. 2024, 21, 977–996. [Google Scholar] [CrossRef]
- Khraisheh, M.; AlMomani, F.; Inamdar, M.; Hassan, M.K.; Al-Ghouti, M.A. Ionic liquids application for wastewater treatment and biofuel production: A mini review. J. Mol. Liq. 2021, 337, 116421. [Google Scholar] [CrossRef]
- Ye, M.; Gu, Y. Amino Acids Ionic Liquids. In Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Velho, P.; Lopes, C.; Macedo, E.A. Water purification using choline-amino acid ionic liquids: Removal of amoxicillin. Ind. Eng. Chem. Res. 2024, 63, 10427–10435. [Google Scholar] [CrossRef] [PubMed]
- Barroca, L.R.; Velho, P.; Macedo, E.A. Removal of acetaminophen (paracetamol) from water using aqueous two-phase systems (ATPSs) composed of choline-amino acid ionic liquids. J. Chem. Eng. Data 2024, 69, 215–226. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography. Analyst 2011, 136, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Qiao, X.; Liu, F.; Chen, X. Amino acid ionic liquid–based magnetic dispersive solid-phase extraction for benzimidazole residue analysis in fruit juice and human serum based on theoretical screening. Food Chem. 2023, 404 Pt B, 134695. [Google Scholar] [CrossRef]
- Song, H.; Yang, J.; Zhu, X. Polyphenylalanine ionic liquid for the extraction and determination of Allura red in food samples. J. Appl. Polym. Sci. 2023, 140, e53423. [Google Scholar] [CrossRef]
- Song, H.; Yang, J.; Wan, S.; Xu, O.; Zhu, X. Mesoporous poly(amino acids) ionic liquid with excellent extraction performance for sunset yellow. Dyes Pigm. 2022, 205, 110523. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Zhu, X. Green choline amino acid ionic liquid aqueous two-phase extraction coupled with HPLC for analysis sunset yellow in beverages. Food Anal. Methods 2019, 12, 2527–2534. [Google Scholar] [CrossRef]
- Ji, Y.; Hou, Y.; Ren, S.; Wu, W. Highly efficient separation of indole from model wash oil using tetraethyl ammonium amino acid ionic liquids. Sep. Purif. Technol. 2021, 258 Pt 1, 117997. [Google Scholar] [CrossRef]
- Li, E.; Wang, Y.; Zhang, Y.; Zhao, S.; Yao, P. Deep desulfurization of model oil using green amino acid ionic liquids combined with H2O2. Pet. Sci. Technol. 2021, 39, 1116–1138. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Zhu, X. Green choline amino acid ionic liquids aqueous two-phase extraction coupled with synchronous fluorescence spectroscopy for analysis naphthalene and pyrene in water samples. Talanta 2020, 219, 121305. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, Y.; Shen, Z.; Li, J.; Zhu, X. Magnetic solid phase extraction based on amino acid ionic liquids magnetic graphene oxide nanomaterials-high performance liquid chromatography for the simultaneous determination of Sudan I–IV. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 934–944. [Google Scholar] [CrossRef]
- Shan, R.-N.; Cui, X.; Ding, Q.; He, C. Racemic metoprolol separation by enantioselective liquid-liquid extraction with amino acid ionic liquids. J. Chem. Eng. Chin. Univ. 2019, 33, 1444–1449. [Google Scholar]
- Cui, X.; Ding, Q.; Shan, R.-N.; He, C.-H.; Wu, K.-J. Enantioseparation of flurbiprofen enantiomers using chiral ionic liquids by liquid-liquid extraction. Chirality 2019, 31, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.-F.; Chu, C.-H.; Xu, W.-T.; Chen, B.-Z.; Ju, X.-H.; Xing, W.; Sun, S.-P. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment. J. Membr. Sci. 2019, 586, 44–52. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, N.; Zhou, J.; Li, X.; He, L.; Sui, H. Novel synthesis of choline-based amino acid ionic liquids and their applications for separating asphalt from carbonate rocks. Nanomaterials 2019, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Hou, Y.; Ren, S.; Yao, C.; Wu, W. Tetraethylammonium Amino Acid Ionic Liquids and CO2 for Separation of Phenols from Oil Mixtures. Energy Fuels 2018, 32, 11046–11105. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, N.; Wang, J.; Sui, H.; He, L.; Li, X. Synthesis and application of amino acid ionic liquid-based deep eutectic solvents for oil-carbonate mineral separation. Chem. Eng. Sci. 2018, 181, 264–271. [Google Scholar] [CrossRef]
- Liu, R.; Du, Y.; Chen, J.; Zhang, Q.; Du, S.; Feng, Z. Investigation of the enantioselectivity of tetramethylammonium L-hydroxyproline ionic liquid as a novel chiral ligand in ligand-exchange CE and ligand-exchange MEKC. Chirality 2015, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, S.; Fu, G.; Zhang, Z. Isoleucine ionic liquids as additives to separate mandelic acid and their derivative enantiomers by HPLC. Anal. Methods 2014, 6, 5627–5631. [Google Scholar] [CrossRef]
- Anderson, K.; Goodrich, P.; Hardacre, C.; Hussain, A.; Rooney, D.W.; Wassell, D. Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel 2013, 108, 715–722. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Zhou, Q.; Zhu, G.; Xiong, J.; Zhao, L.; Yang, X.; Wang, S. Green amino acid ionic liquids-based aqueous Biphasic systems for efficient extraction of gold(I) from alkaline solution. Ind. Eng. Chem. Res. 2023, 62, 15226–15239. [Google Scholar] [CrossRef]
- Foong, C.Y.; Zulkifli, M.F.M.; Wirzal, M.D.H.; Bustam, M.A.; Nor, L.H.M.; Saad, M.S.; Halim, N.S.A. COSMO-RS prediction and experimental investigation of amino acid ionic liquid-based deep eutectic solvents for copper removal. J. Mol. Liq. 2021, 333, 115884. [Google Scholar] [CrossRef]
- Di, H.; Liu, W.; Li, Q.; Gao, Q.; Zhu, X. Use of an amino acid ionic liquid as an ion exchange chromatography mobile phase modifier for the analysis of magnesium, calcium, zinc, and iron ions. Sep. Sci. Plus 2018, 1, 468–474. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, X. Simultaneous determination of Magnolol and Honokiol by amino acid ionic liquid synchronous fluorescence spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, T.; Du, Y.; Sun, X.; Feng, Z.; Ma, X.; Ding, W.; Chen, C. An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: Application to the separation of amino acids, β-blockers, and nucleotides. Microchim. Acta 2019, 186, 636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, L.; Shen, Y.; Qiao, J.; Mao, L. l-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE. Electrophoresis 2013, 3–4, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Qi, L.; Zhang, H.; Shen, Y.; Qiao, J.; Ma, H. Ionic liquids with amino acids as cations: Novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta 2012, 97, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Qi, L.; Shen, Y.; Zhang, H.; Qiao, J.; Ma, H. A novel chiral ligand exchange capillary electrophoresis system with amino acid ionic liquid as ligand and its application in screening d-amino-acid oxidase inhibitors. Analyst 2012, 137, 4235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, Y. Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis. J. Chromatogr. A 2013, 1306, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Mu, X.; Qi, L. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of l-amino acid oxidase. Anal. Chim. Acta 2014, 821, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Siru, R.; Song, X.; Xiaodong, S.; Mengjie, R.; Li, W.; Qi, Z. Investigation of the synergistic effect of chiral ionic liquids as additives in non-aqueous capillary electrophoresis for enantioseparation. J. Chromatogr. A 2020, 1609, 460519. [Google Scholar] [CrossRef]
- Xue, S.; Ren, S.; Wang, L.; Zhang, Q. Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis. J. Chromatogr. A 2020, 1611, 460579. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, Y.; Zhang, H.; Xu, K.; Wei, X.; Xu, P.; Zhou, Y. A novel dianionic amino acid ionic liquid-coated PEG 4000 modified Fe3O4 nanocomposite for the magnetic solid-phase extraction of trypsin. Talanta 2017, 174, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Salami, M.; Azabadi, A. Preparation and characterization of a novel glycine-based ionic liquid and its application in the synthesis of xanthenediones and dihydropyrimidones in water. Lett. Org. Chem. 2022, 19, 1047–1061. [Google Scholar] [CrossRef]
- Zheng, Z.; Deng, H.; Cai, Z.; Liao, X.; Xu, S. Synthesis of the octameric ring containing compound caulerpin using a Knoevenagel reaction catalyzed by an amino acid-ionic liquid solvent. Chem. Sel. 2022, 7, e202201381. [Google Scholar] [CrossRef]
- Rode, N.; Tantray, A.; Shelar, A.; Patil, R.; Terdale, S. Synthesis, anti-leishmanial screening, molecular docking, and ADME study of 1-amidoalkyl 2-naphthol derivatives catalyzed by amino acid ionic liquid. Res. Chem. Intermed. 2022, 48, 2391–2412. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Kumar, G.; Kumar, A. Cu(II)-amino acid ionic liquid surfactants: Metallovesicles as nano-catalytic reactors for cross dehydrogenative coupling reaction in water. Chem. Sel. 2022, 7, e202200159. [Google Scholar] [CrossRef]
- Sonawane, S.A.; Pore, D.M. L-Proline nitrate: An efficient amino acid ionic liquid catalyzed synthesis of 5-aryl-[1,2,4]-triazolidine-3-thiones. Lett. Org. Chem. 2022, 19, 743–749. [Google Scholar] [CrossRef]
- Ming, C.; Yu, X. tert-Butyloxycarbonyl-protected amino acid ionic liquids and their application to dipeptide synthesis. RSC Adv. 2021, 11, 27603. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, Y.; Yang, Z.; Zhang, Z.; Xu, F.; Wang, W.; He, H.; Diao, Y.; Zhang, Y.; Luo, Y. Efficient activation of dimethyl carbonate to synthesize bio-based polycarbonate by eco-friendly amino acid ionic liquid catalyst. Appl. Cat. A Gen. 2021, 617, 118111. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, J.; Qiao, Y.; Hou, X.; Liu, Y.; Wang, Y. Amino acid ionic liquids catalyzed d-glucosamine into pyrazine derivatives: Insight from NMR Spectroscopy. J. Agric. Food Chem. 2021, 69, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.; Satkar, Y.; More, D. L-Proline based ionic liquid: A highly efficient and homogenous catalyst for synthesis of 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and pyrano[2,3-d] pyrimidine diones under ultrasonic irradiation. Synth. Commun. 2020, 50, 1–16. [Google Scholar] [CrossRef]
- Yu, F.; Chi, Y.; Gao, C.; Chen, R.; Xie, C.; Yu, S. Baeyer-Villiger oxidation of cyclic ketones catalyzed by amino acid ionic liquids. Chem. Res. Chin. Univ. 2020, 36, 865–869. [Google Scholar] [CrossRef]
- Cao, P.; Yuan, Y.; Huang, C.; Sun, W.; Zhao, L. Promoting the sulfuric acid catalyzed isobutane alkylation by quaternary ammonium ionic liquids. AIChE J. 2020, 66, e16979. [Google Scholar] [CrossRef]
- Zhanga, Z.; Xu, F.; Zhangb, Y.; Lib, C.; Heb, H.; Yang, Z.; Li, Z. A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chem. 2020, 22, 2534–2542. [Google Scholar] [CrossRef]
- Wang, J.; Zang, H.; Jiao, S.; Wang, K.; Shang, Z.; Li, H.; Lou, J. Efficient conversion of N-acetyl-D-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst. Sci. Total Environ. 2019, 710, 136293. [Google Scholar] [CrossRef] [PubMed]
- Szepiński, E.; Smolarek, P.; Milewska, M.; Łuczak, J. Application of surface active amino acid ionic liquids as phase-transfer catalyst. J. Mol. Liq. 2020, 303, 112607. [Google Scholar] [CrossRef]
- Guíñez, R.F.; Santos, J.G.; Tapia, R.A.; Alcazar, J.J.; Aliaga, M.E.; Pavez, P. An efficient and eco-friendly method for the thiol-Michael addition in aqueous solutions using amino acid ionic liquids (AAILs) as organocatalysts. Pure Appl. Chem. 2019, 92, 97–106. [Google Scholar] [CrossRef]
- Pereira, M.P.; Martins, R.S.; de Oliveira, M.A.; Bombonato, F.I. Amino acid ionic liquids as catalysts in a solvent-free Morita–Baylis–Hillman reaction. RSC Adv. 2018, 8, 23903. [Google Scholar] [CrossRef]
- Azarifar, D.; Badalkhani, O.; Abbasi, Y. Amino acid ionic liquid-based titanomagnetite nanoparticles: An efficient and green nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles. Appl. Organomet. Chem. 2017, 32, e3949. [Google Scholar] [CrossRef]
- Bahekar, S.P.; Agrawal, N.R.; Sarode, P.B.; Agrawal, A.R.; Chandak, H.S. L-Proline nitrate: An amino acid ionic liquid for green and efficient conjugate addition of thiols to sulfonamide chalcones. Chem. Select 2017, 2, 9326–9329. [Google Scholar] [CrossRef]
- Bahekar, S.P.; Sarode, P.B.; Wadekar, M.P.; Chandak, H.S. Simple and efficient synthesis of 3,4-dihydropyrimidin-2(1H)-thiones utilizing l-proline nitrate as a proficient, recyclable and eco-friendly catalyst. J. Saudi Chem. Soc. 2017, 21, 415–419. [Google Scholar] [CrossRef]
- Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs). Pol. J. Chem. Technol. 2016, 18, 90–95. [Google Scholar] [CrossRef]
- Xu, S.; Tao, D.-J.; Chen, F.-F.; Zhou, Y.; Zhao, X.; Yu, L.-L.; Chen, X.-S.; Huang, K. Remarkably efficient hydrolysis of cinnamaldehyde to natural benzaldehyde in amino acid ionic liquids. Korean J. Chem. Eng. 2016, 33, 3374–3380. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Aswar, S.A.; Muskawar, P.N.; Sythana, S.K.; Bhagat, P.R.; Kumar, S.S.; Satvat, P.S. A novel l-amino acid ionic liquid for quick and highly efficient synthesis of oxime derivatives—An environmental benign approach. Arab. J. Chem. 2011, 8, S2. [Google Scholar] [CrossRef]
- Varyani, M.; Khatri, P.K.; Jain, S.L. Amino acid ionic liquid bound copper Schiff base catalyzed highly efficient three component A3-coupling reaction. Catal. Commun. 2016, 77, 113–117. [Google Scholar] [CrossRef]
- Zhou, Y.; Ouyang, F.; Song, Z.; Yang, Z.; Tao, D. Facile one-pot synthesis of glycidol from glycerol and dimethyl carbonate catalyzed by tetraethylammonium amino acid ionic liquids. Catal. Commun. 2015, 66, 25–29. [Google Scholar] [CrossRef]
- Ouyang, F.; Wang, Z.; Zhou, Y.; Cheng, Z.; Lu, Z.; Yang, Z.; Tao, D. Highly efficient and selective synthesis of dibutyl carbonate via the synergistic dual activation catalysis of tetraethylammonium prolinate ionic liquids. Appl. Catal. A Gen. 2015, 492, 177–183. [Google Scholar] [CrossRef]
- Lang, X.D.; Zhang, S.; Song, Q.W.; He, L.N. Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Adv. 2015, 5, 15668–15673. [Google Scholar] [CrossRef]
- Ouyang, F.; Zhou, Y.; Li, Z.M.; Hu, N.; Tao, D.J. Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng. 2014, 31, 1377–1383. [Google Scholar] [CrossRef]
- Dong, L.L.; He, L.; Tao, G.H.; Hu, C. High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids. RSC Adv. 2013, 14, 4806. [Google Scholar] [CrossRef]
- Furukawa, S.; Hasegawa, K.; Fuke, I.; Kittaka, K.; Nakakoba, T.; Goto, M.; Kamiya, N. Enzymatic synthesis of Z-aspartame in liquefied amino acid substrates. Biochem. Eng. J. 2013, 70, 84–87. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, U.K.; Kumar, R.; Sinha, R.; Sinha, A. Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Adv. 2012, 2, 10648–10651. [Google Scholar] [CrossRef]
- Gong, Q.; Luo, H.; Cao, J.; Shang, Y.; Zhang, H.; Wang, W.; Zhou, X. Synthesis of cyclic carbonate from carbon dioxide and epoxide using amino acid ionic liquid under 1 atm pressure. Aust. J. Chem. 2012, 65, 381–386. [Google Scholar] [CrossRef]
- Yana, J.; Wang, L. Synthesis of 1,4-disubstituted 1,2,3-triazoles by use of copper(I) and amino acids ionic liquid catalytic system. Synthesis 2010, 3, 447–452. [Google Scholar] [CrossRef]
- Qian, Y.; Xiao, S.; Liu, L.; Wang, Y. A mild and efficient procedure for asymmetric Michael additions of cyclohexanone to chalcones catalyzed by an amino acid ionic liquid. Tetrahedron Asym. 2008, 19, 1515–1518. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Zhu, L.; Lan, J.; Xie, R.; You, J. A concept of supported amino acid ionic liquids and their application in metal scavenging and heterogeneous catalysis. J. Am. Chem. Soc. 2007, 129, 13879–13886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Meng, Q.; Wang, C.; Ma, C.; Chen, M.; Xu, X.; Ding, Y. Effect of amino acid ionic liquids on the interfacial structure and degradation behavior of PLA/PBAT blends. J. Polym. Environ. 2024, 32, 4733–4747. [Google Scholar] [CrossRef]
- Yao, H.; Lu, X.; Ji, L.; Tan, X.; Zhang, S. Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst. Ind. Eng. Chem. Res. 2021, 60, 4180–4188. [Google Scholar] [CrossRef]
- Pavez, P.; Figueroa, R.; Medina, M.; Millán, D.; Falcone, R.D.; Tapia, R.A. Choline [Amino Acid] ionic liquid/water mixtures: A triple effect for the degradation of an organophosphorus pesticide. ACS Omega 2020, 5, 26562–26572. [Google Scholar] [CrossRef] [PubMed]
- Marullo, S.; Rizzo, C.; Dintcheva, N.T.; D’Anna, F. Amino acid-based cholinium ionic liquids as sustainable catalysts for PET depolymerization. ACS Sustain. Chem. Eng. 2021, 9, 15157–15165. [Google Scholar] [CrossRef]
- Mohamed Hatta, N.S.; Aroua, M.K.; Hussin, F.; Gew, L.T. A Systematic review of amino acid-based adsorbents for CO2 capture. Energies 2022, 15, 3753. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Liu, Y.; Xie, H.; Xu, Y.; Wei, J. SO2 absorption in pure ionic liquids: Solubility and functionalization. J. Hazard. Mater. 2020, 392, 122504. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.R.; Ashraf, M.; AlMayef, T.; Chawla, M.; Poater, A.; Cavallo, L. Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations. Chem. Phys. Lett. 2020, 745, 137239. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, Y.; Zeng, X.; Zou, J. Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids. Energ. Fuel. 2018, 32, 6130–6135. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.; Bao, Z.; Zhang, Z.; Yang, Y.; Ren, Q.; Xing, H.; Dai, S. New insights into CO2 absorption mechanisms with amino-acid ionic liquids. Chem. Sus. Chem. 2016, 9, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, B.E.; de la Fuente, J.C.; Mindrup, E.M.; FickeBrett, L.E.; Goodrich, F.; Price, E.A.; Schneider, W.F.; Brennecke, J.F. Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 2010, 132, 2116–2117. [Google Scholar] [CrossRef] [PubMed]
- Noorani, N.; Mehrdad, A. Experimental and theoretical study of CO2 sorption in biocompatible and biodegradable cholinium-based ionic liquids. Sep. Purif. Technol. 2021, 254, 117609. [Google Scholar] [CrossRef]
- Chen, W.; Chen, M.; Jiang, B.; Lei, T.; Zhang, F.; Zhang, Z. The improvement of ionic liquids on CO2 capture with biphasic absorbents. Chem. Eng. J. 2024, 493, 152720. [Google Scholar] [CrossRef]
- Wen, S.; Zheng, L.; Zhang, X.; Wu, Y. Unveiling protic amino acid ionic liquids for the efficient capture of carbon dioxide. Chem. Commun. 2024, 60, 6443–6446. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wen, S.; Zhang, X.; Zhang, S.; Guo, X.; Wu, Y. Aqueous solutions of sterically hindered amino acid ionic liquids for rapid and efficient capture of CO2. Chem. Eng. J. 2024, 488, 150771. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Y.; Zhang, R.; Yang, C.; Zhou, Y.; Zhang, G. Cost-effective preparation of carbonic anhydrase with superior performance for assisting amine and amino acid ionic liquid blends in CO2 absorption and desorption. ACS Sustain. Chem. Eng. 2024, 12, 4444–4455. [Google Scholar] [CrossRef]
- Lai, T.; Chang, Z. Theoretical insight into the chemo-absorption mechanism of amino acid ionic liquids on CO2. J. Mol. Liq. 2024, 398, 124242. [Google Scholar] [CrossRef]
- Wen, S.; Wu, H.; Zhang, X.; Wang, T.; Xu, W.; Wu, Y. Novel amino acid ionic liquids as messenger of multi-tertiary-amines solutions for highly efficient capture of CO2. Chem. Eng. Sci. 2024, 284, 119530. [Google Scholar] [CrossRef]
- Siami, H.; Razmkhah, M.; Moosavi, F. Does side chain group of anion affect absorption of SO2 in amino acid ionic liquid. J. Mol. Liq. 2023, 376, 121479. [Google Scholar] [CrossRef]
- Siami, H.; Razmkhah, M.; Moosavi, F. Cation functional group effect on SO2 absorption in amino acid ionic liquids. Front. Chem. 2023, 11, 1113394. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xie, H.; Zong, Y.; Zhao, L.; Dai, G. Enhancing CO2 absorption with amino acid ionic liquid [N1111 ][Gly] aqueous solution by twin-liquid film flow: Experimental and numerical study. Chem. Eng. Sci. 2022, 256, 117691. [Google Scholar] [CrossRef]
- Noorani, N.; Mehrdad, A.; Diznab, R.Z. Thermodynamic study on carbon dioxide absorption in vinyl imidazolium–amino acid ionic liquids. Fluid Phase Equilibria 2022, 557, 113433. [Google Scholar] [CrossRef]
- McDonald, J.L.; Sykora, R.E.; Hixon, P.; Mirjafari, A.; Davis, J.H. Impact of water on CO2 capture by amino acid ionic liquids. Environ. Chem. Lett. 2014, 12, 201–208. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Chen, G.; Fu, D. The performance and mechanism of CO2 desorption and corrosion in N-methyldiethanolamine aqueous solutions blended with amino acid ionic liquids. Int. J. Greenh. Gas. Control 2023, 125, 103875. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, G.; Xian-Kun, W.; Jing-Wen, M.; You-Ting, W.; Zhi-Bing, Z. Regeneration performance of amino acid ionic liquid (AAIL) activated MDEA solutions for CO2 capture. Chem. Eng. J. 2013, 223, 371–378. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, F.; Huang, K.; Ma, J.; Wu, Y.; Zhang, Z. Absorption of CO2 in amino acid ionic liquid (AAIL) activated MDEA solutions. Int. J. Greenh. Gas. Control 2013, 19, 379–386. [Google Scholar] [CrossRef]
- Zhou, Z.; Jing, G.; Zhou, L. Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2-methyl-1-propanol. Chem. Eng. J. 2012, 204–206, 235–243. [Google Scholar] [CrossRef]
- Lv, B.; Shi, Y.; Sun, C.; Liu, N.; Li, W.; Li, S. CO2 capture by a highly-efficient aqueous blend of monoethanolamine and a hydrophilic amino acid ionic liquid [C2OHmim][Gly]. Chem. Eng. J. 2015, 270, 372–377. [Google Scholar] [CrossRef]
- Hasanizadeh, S.; Valeh-e-Sheyda, P. On the prediction of thermo-physicochemical properties and equilibrium absorption of CO2 into aqueous protic monoethanolamine glycinate ionic liquid. Environ. Prog. Sustain. Energy 2021, 41, e13788. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.; Yun, Y.; Wang, M.; Liu, G.; Li, C.; Yang, W.; Li, M.; Liu, Z. An amino acid ionic liquid-based biphasic solvent with low viscosity, small rich-phase volume, and high CO2 loading rate for efficient CO2 capture. Sep. Purif. Technol. 2024, 347, 127592. [Google Scholar] [CrossRef]
- Li, B.; Zeng, S.; Jiang, C.; Li, G.; Bai, L.; Xu, F.; Zhang, X. Dynamic breakthrough performance of low concentration CO2 adsorption in fixed-bed column with porous amino acid ionic liquid composites. Sep. Purif. Technol. 2024, 349, 127901. [Google Scholar] [CrossRef]
- Philip, F.A.; Henni, A. Functionalization of ordered mesoporous silica (MCM-48) with task-specific ionic liquid for enhanced carbon capture. Nanomaterials 2024, 14, 514. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, G.; Wilfred, C.D. CO2/CH4 Separation in amino acid ionic liquids, polymerized ionic liquids, and mixed matrix membranes. Molecules 2024, 29, 1357. [Google Scholar] [CrossRef] [PubMed]
- Sei, H.; Kanasaki, Y.N.; Oka, K.; Tohnai, N.; Kohno, Y.; Makino, T. Accelerated oxidative degradation of phosphonium-type ionic liquid with l-prolinate anion: Degradation mechanism and CO2 separation performance. ACS Omega 2023, 8, 21154–21161. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, J.; Cheng, N.; Li, Z.; Lan, H.; Jiang, W.; Huang, K.; Peng, H.; Du, J. Facilely synthesized mesoporous polymer for dispersion of amino acid ionic liquid and effective capture of carbon dioxide from anthropogenic source. J. Taiwan Inst. Chem. Eng. 2021, 125, 115–121. [Google Scholar] [CrossRef]
- Huang, Z.; Karami, D.; Mahinpey, N. Study on the efficiency of multiple amino groups in ionic liquids on their sorbents performance for low-temperature CO2 capture. Chem. Eng. Res. Des. 2021, 167, 198–206. [Google Scholar] [CrossRef]
- Uehara, Y.; Karami, D.; Mahinpey, N. CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties. Micropor. Mesopor Mater. 2019, 278, 378–386. [Google Scholar] [CrossRef]
- Hiremath, V.; Jadhav, A.H.; Lee, H.; Kwon, S.; Seo, J.G. Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica. Chem. Eng. J. 2016, 287, 602–617. [Google Scholar] [CrossRef]
- Wang, X.; Akhmedov, N.G.; Duan, Y.; Luebke, D.; Li, B. Immobilization of amino acidionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. J. Mater. Chem. A 2013, 9, 2978. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, M.; Ding, X.; Song, T.; Wang, Y.; Dong, J.; Sun, S.; Hou, J.; Ma, Q.; Tan, X. Polymerization-induced self-assembly amino acid ionic liquid/poly(ethylene oxide) thin-film composite membranes for CO2 separation. J. Membr. Sci. 2024, 707, 123033. [Google Scholar] [CrossRef]
- Kontos, G.; Tsioptsias, C.; Tsivintzelis, I. Cellulose acetate–ionic liquid blends as potential polymers for efficient CO2 separation membranes. Polymers 2024, 16, 554. [Google Scholar] [CrossRef] [PubMed]
- Noorani, N.; Mehrdad, A.; Darbandi, M. CO2 adsorption on ionic liquid–modified cupper terephthalic acid metal organic framework grown on quartz crystal microbalance electrodes. J. Taiwan Inst. Chem. Eng. 2023, 145, 104849. [Google Scholar] [CrossRef]
- Martins, C.F.; Neves, L.A.; Chagas, R.; Ferreira, L.M.; Coelhoso, I.M.; Crespo, J.G. Removing CO2 from xenon anaesthesia circuits using an amino-acid ionic liquid solution in a membrane contactor. Sep. Purif. Technol. 2021, 275, 119190. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Matsuyama, H. High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions. J. Membr. Sci. 2017, 525, 290–297. [Google Scholar] [CrossRef]
- Kasahara, S.; Kamio, E.; Yoshizumia, A.; Matsuyama, H. Polymeric ion-gels containing an amino acid ionic liquid for facilitated CO2 transport media. Chem. Commun. 2014, 50, 2996. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J. Membr. Sci. 2012, 415–416, 168–175. [Google Scholar] [CrossRef]
- Li, J.; Dai, Z.; Usman, M.; Qi, Z.; Deng, L. CO2/H2 separation by amino-acid ionic liquids with polyethylene glycol as co-solvent. Int. J. Greenh. Gas. Control 2016, 45, 207–215. [Google Scholar] [CrossRef]
- Mao, W.; Xiao, Z.; Li, L.; Li, J.; Huang, H.; Xiao, Y.; Song, J.; Fu, Z.; Mao, L.; Yin, D. Highly efficient and tunable catalytic addition of CO2 with epoxides over 2D Co-TCPP nanosheet at ambient condition. Mol. Catal. 2023, 536, 112901. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Ma, L.; Zhou, Y.; Wang, J. Amino acid anion paired mesoporous poly(ionic liquids) as metal-/halogen-free heterogeneous catalysts for carbon dioxide fixation. ACS Sustain. Chem. Eng. 2019, 7, 9387–9398. [Google Scholar] [CrossRef]
- Kumar, P.; Varyani, M.; Khatri, P.K.; Paul, S.; Jain, S.L. Post combustion capture and conversion of carbon dioxide using histidine derived ionic liquid at ambient conditions. J. Ind. Eng. Chem. 2017, 49, 152–157. [Google Scholar] [CrossRef]
- Yue, S.; Hao, X.; Wang, P.; Li, J. Amino acid-based ionic liquids for CO2 conversion to form cyclic carbonate under solvent-free conditions. Mol. Catal. 2017, 433, 420–429. [Google Scholar] [CrossRef]
- Shaikh, A.R.; Vidal-López, A.; Brotons-Rufes, A.; Pajski, J.J.; Zafar, S.; Mahmood, R.A.; Khan, M.U.; Poater, A.; Chawla, M.; Cavallo, L. Amino acid ionic liquids as efficient catalysts for CO2 capture: A combined static and dynamic approach. Results Surf. Interfaces 2024, 14, 100175. [Google Scholar] [CrossRef]
- Latini, G.; Signorile, M.; Crocellà, V.; Bocchini, S.; Pirri, C.F.; Bordiga, S. Unraveling the CO2 reaction mechanism in bio-based amino-acid ionic liquids by operando ATR-IR spectroscopy. Catal. Today 2019, 336, 148–160. [Google Scholar] [CrossRef]
- Noorani, N.; Mehrdad, A. Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption. J. Mol. Liq. 2022, 357, 119078. [Google Scholar] [CrossRef]
- Yang, G.; Wang, S.; Yuan, Y.; Lin, J. Theoretical study on the energy storage performance of electrical double layer supercapacitors with choline amino acid ionic liquids electrolyte. J. Phys. Chem. Solids 2024, 193, 112181. [Google Scholar] [CrossRef]
- Fan, J.-P.; Yuan, C.; Lai, X.-H.; Xie, C.-F.; Chen, H.-P.; Peng, H.-L. Density, viscosity and electrical conductivity of four amino acid based ionic liquids derived from l-Histidine, l-Lysine, l-Serine, and Glycine. J. Mol. Liq. 2022, 364, 119944. [Google Scholar] [CrossRef]
- Colherinhas, G.; Malaspina, T.; Fileti, E.E. Storing energy in biodegradable electrochemical supercapacitors. ACS Omega 2018, 3, 13869–13875. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, W.; Li, S.; Feng, G. Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Adv. 2017, 7, 28945–28950. [Google Scholar] [CrossRef]
- Razmkhah, M.; Mosavian, M.T.H.; Moosavi, F. What is the effect of polar and nonpolar side chain group on bulk and electrical double layer properties of amino acid ionic liquids? Electrochim. Acta 2018, 285, 393–404. [Google Scholar] [CrossRef]
- Wang, M.; Deng, C.; Nie, Z.; Xu, X.H.; Yao, S.Z. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes. Sci. China Ser. B Chem. 2009, 52, 1991–1998. [Google Scholar] [CrossRef]
- Mehta, P.; Vedachalam, S.; Sathyaraj, G.; Garai, S.; Arthanareeswaran, G.; Sankaranarayanan, K. Fast sensing ammonia at room temperature with proline ionic liquid incorporated cellulose acetate membranes. J. Mol. Liq. 2020, 305, 112820. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, X. A novel fluorescence “turn off-on” sensor based on N-doped graphene quantum dots in amino acid ionic liquid medium and its application. Talanta 2019, 197, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, O.; Li, J.; Zhu, X. Synthesis of poly-amino acid ionic liquid up-conversion fluorescent probe and its application in Fe(II)/Fe(III) speciation analysis. J. Fluoresc. 2020, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Liu, S.; Luo, F.; Yao, P. Amino acid imidazole ionic liquids as green corrosion inhibitors for mild steel in neutral media: Synthesis, electrochemistry, surface analysis and theoretical calculations. J. Electroanal. Chem. 2023, 944, 117650. [Google Scholar] [CrossRef]
- Li, E.; Li, Y.; Liu, S.; Yao, P. Choline amino acid ionic liquids as green corrosion inhibitors of mild steel in acidic medium. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657 Pt A, 130541. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, S.; Gong, M.; Li, W. Experimental and theoretical study on the corrosion inhibition of mild steel by 1-octyl-3-methylimidazolium l-prolinate in sulfuric acid solution. Ind. Eng. Chem. Res. 2014, 53, 16349–16358. [Google Scholar] [CrossRef]
- Chen, X.D.; Gong, M.; Fu, Q.S.; Zheng, X.W.; Feng, X.S. [Omim][Pro] Amino Acid Ionic Liquids as a Corrosion Inhibitor for Copper in 3.5 % NaCl Solution. Appl. Mech. Mater. 2014, 496–500, 47–50. [Google Scholar] [CrossRef]
- Gong, M.; Jiang, C.M.; Zheng, X.W.; Zeng, X.M.; Lin, X.Z. Corrosion Inhibition of Carbon Steel in Sulfuric Acid by [BMIm] [Lys] Amino Acid Ionic Liquids. Adv. Mater. Res. 2012, 476–478, 1434–1440. [Google Scholar] [CrossRef]
- Singh, H. A DFT insight into structure, NBO, NCI, QTAIM, vibrational, and NLO properties of cationic amino acid ionic liquid [Pro-H+] BF4−]. Struct. Chem. 2024, 35, 471–483. [Google Scholar] [CrossRef]
- van Valkenburg, M.E.; Vaughn, R.L.; Williams, M.; Wilkes, J.S. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 2005, 425, 181–188. [Google Scholar] [CrossRef]
- Minea, A.A. Overview of ionic liquids as candidates for new heat transfer fluids. Int. J. Thermophys. 2020, 41, 151. [Google Scholar] [CrossRef]
- Paul, T.C.; Tikadar, A.; Mahamud, R.; Salman, A.S.; Morshed, A.K.M.M.; Khan, J.A. A Critical review on the development of ionic liquids-based nanofluids as heat transfer fluids for solar thermal energy. Processes 2021, 9, 858. [Google Scholar] [CrossRef]
- Liang, K.-H.; Lu, Z.-W.; Ren, C.-X.; Wei, J.; Fang, D.-W. Feasibility of 1-ethyl-4-butyl-1,2,4-triazolium acetyl amino acid ionic liquids as sustainable heat-transfer fluids. ACS Sustain. Chem. Eng. 2022, 10, 3417–3429. [Google Scholar] [CrossRef]
- Yadav, R.; Kahlon, N.K.; Kumar, S.; Devunuri, N.; Venkatesu, P. Biophysical study on the phase transition behaviour of biocompatible thermoresponsive polymer influenced by tryptophan-based amino acid ionic liquids. Polymer 2021, 228, 123871. [Google Scholar] [CrossRef]
- Moshikur, R.M.; Ali, M.K.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Formation and potential application of micelles composed of biocompatible N-lauroyl-amino acid ionic liquids surfactant. J. Mol. Liq. 2020, 320 Pt A, 114424. [Google Scholar] [CrossRef]
- Trivedi, T.J.; Rao, K.S.; Singh, T.; Mandal, S.K.; Sutradhar, N.; Panda, A.B.; Kumar, A. Task-specific, biodegradable amino acid ionic liquid surfactants. ChemSusChem 2011, 4, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.S.; So, S.; Kumar, A. Vesicles and reverse vesicles of an ionic liquid in ionic liquids. Chem. Commun. 2013, 49, 8111–8113. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, H.; Housaindokht, M.R.; Moosavi, F. The effect of anion on aggregation of amino acid ionic liquid: Atomistic simulation. J. Mol. Graph. Model. 2020, 101, 107733. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, L.; Tan, S. Controllable synthesis of mesoporous silica with ionic liquid–supramolecular organogel cotemplate. Cryst. Growth Des. 2020, 20, 6400–6406. [Google Scholar] [CrossRef]
- Lei, X.; Liu, T.; Tang, S. Fabrication of cactus rod-like mesoporous alumina with ionic liquid-supramolecular gelator as cotemplate. Cryst. Growth Des. 2018, 18, 4971–4977. [Google Scholar] [CrossRef]
- Fujiwara, S.; Ohno, H.; Ichikawa, T. A tailor-made design of lipidic bicontinuous cubic matrices using amino acid ionic liquids as self-assembly media. Mol. Syst. Des. Eng. 2018, 3, 668–676. [Google Scholar] [CrossRef]
- Balsamo, M.; Erto, A.; Lancia, A.; Totarella, G.; Montagnaro, F.; Turco, R. Post-combustion CO2 capture: On the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids. Fuel 2018, 218, 155–161. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, A.; Wang, X.; Qi, J.; Wang, F.; Ma, Y.; Ito, Y.; Wei, Y. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates. J. Chromatogr. A 2015, 1400, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Hu, Y.; Jiang, L.; Jia, R.; Huang, H. Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via Ionic bonding and cross-linking method. Ind. Eng. Chem. Res. 2013, 52, 2844–2851. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Zhang, H.; Chen, J. Amino acid ionic liquid modified mesoporous carbon: A tailor-made nanostructure biosensing platform. ChemSusChem 2012, 5, 1918–1925. [Google Scholar] [CrossRef] [PubMed]
- del Hierro, I.; Pérez, Y.; Fajardo, M. Silanization of iron oxide magnetic nanoparticles with ionic liquids based on amino acids and its application as heterogeneous catalysts for Knoevenagel condensation reactions. Mol. Catal. 2018, 450, 112–120. [Google Scholar] [CrossRef]
- Safavi, A.; Zeinali, S.; Yazdani, M. Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids. Amino Acids 2012, 43, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Khavani, M.; Mehranfar, A.; Mofrad, M.R.K. Effects of ionic liquids on the stabilization process of gold nanoparticles. J. Phys. Chem. B 2022, 126, 9617–9631. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, F.; Li, Y.; Cai, M.; Li, H.; Fan, X.; Zhu, M. Choline amino acid ionic liquids: A novel green potential lubricant. J. Mol. Liq. 2022, 360, 119539. [Google Scholar] [CrossRef]
- Aathira, M.S.; Khatri, P.K.; Jain, S.L. Synthesis and evaluation of bio-compatible cholinium amino acid ionic liquids for lubrication applications. J. Ind. Eng. Chem. 2018, 64, 420–429. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Guo, X.; Ji, T.; Chen, L.; Yuan, R.; Brisbin, L.; Wang, H.; Zhu, J. Non-corrosive green lubricants: Strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv. 2015, 5, 66067–66072. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, J.; Zeng, Q.; Chao, M.; Gong, K.; Li, W.; Wang, X. A comprehensive study of amino acids based ionic liquids as green lubricants for various contacts. Tribol. Int. 2021, 162, 107137. [Google Scholar] [CrossRef]
- Song, Z.; Liang, Y.; Fan, M.; Zhou, F.; Liu, W. Ionic liquids from amino acids: Fully green fluid lubricants for various surface contacts. RSC Adv. 2014, 4, 19396–19402. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, C.; Zhang, C.; Zhao, S.; Cai, M.; Liu, Z.; Yu, Q. Amino acid ionic liquids as anticorrosive and lubricating additives for water and their environmental impact. Tribol. Int. 2021, 153, 106663. [Google Scholar] [CrossRef]
Catalyst | Reaction Conditions | Biodiesel Yield | Reference |
---|---|---|---|
[TBA][Arg] [TMA][Arg] [Ch][Arg] | Sunflower oil: methanol (1:9 mole ratio); 6% (w/w on oil base) catalyst; 60 min; 80 °C | Fatty acid esters 98.8–99.8% | [121] |
[N2222][Arg] | Soybean oil: methanol (1:10 molar ratio); 20% (w/w on oil base) catalyst; 60 min; 100 °C | Fatty acid esters 98.4% | [122] |
[Ch][Arg] | Soybean oil: methanol (1:9 molar ratio); 15 % (w/w on oil base) catalyst; 60 min; 80 °C | Fatty acid esters 98.6% | [123] |
[Ch][Arg] | Soybean oil: glycerol (1:2 molar ratio), 10% catalyst (based on soybean oil weight); 12 h; 100 °C | Monoacylglycerols (biosurfactant) 60% | [124] |
[TMA][Arg] | Soybean oil: glycerol (1:2 molar ratio), 10% catalyst (based on soybean oil weight); 30 min; 105 °C | Monoacylglycerols (biosurfactant) 65% | [124] |
[Ch][Arg] [TBA][Arg] [TMA][Arg] | Castor oil: glycerol (1:6 molar ratio); 12 % catalyst (based on castor oil); 120 min; 100 °C | Monoacylglycerols (biosurfactant) 65–83% | [125] |
1-n-heptyl-3-methylimidazolium alanine [C7mim][Ala] | Soybean oil: methanol (1:23 molar ratio); 8% catalyst (based on soybean oil); 60 min; 60 °C | Fatty acid esters 40 % | [126] |
Method/AA IL Used | Pollutant/Target | Achieved * | References |
---|---|---|---|
ATPE (25 °C; 0.1 MPa) [Ch][L-Gly]–K2HPO4–water (*) [Ch][L-Ala]–K2HPO4–water [Ch][L-Ser]–K2HPO4–water | extraction of amoxicillin | extraction efficiency (E%) = 97 ± 2; partition coefficient (K) > (16 ± 6)101 | [155] |
ATPE (25 °C; 0.1MPa) [Ch][L-Gly]–K2HPO4–water [Ch][L-Ala]–K2HPO4–water (*) [Ch][L-Ser]–K2HPO4–water [Ch][L-Ala]–K3HPO4–water [Ch][L-Leu]–K3HPO4–water (**) | extraction of acetaminophen | (*) E (%) =97.5 (**) E (%) =97.5 | [156] |
IL-assisted ligand-exchange HPLC C18 column, eluent IL, and 3.0 mM Cu(II) were dissolved in methanol/water (20/80, v/v) at a flow rate of 0.5 mL/min, where IL is [Emim][Leu][Bmim][Ala], [Bmim][Val], [Bmim][Leu] (*), [Bmim][Ser], [Bmim][Ph-Ala], and [Omim][Leu] | enantioselective resolution of (S, R) ofloxacin | (*) separation within 14 min; enantioseparation factor (α) = 1.34; resolution (Rs) = 1.63 | [157] |
extraction from model oil [C2mpyr][Gly] (*) [C2mpyr][Ala] (*) [C2mpyr][Ser] [C2mpyr][Pro] | extraction of naphthenic acid | (*) E (%) = 98; recovery of the naphthenic acid: 70–80%; 4 cycles without any loss of extraction capacity | [75] |
solid-phase extraction (SPE) magnetic nanoparticles (Fe3O4@SiO2) grafted with-1-octyl-3-octenyl-benzimidazolium glycinate, [C8obim][Gly] | extraction of benzimidazoles | trace detection in plasma and juice | [158] |
SPE and HPLC poly-{3-(3-(7-(diethylamino)-2-carbonyl-2 h-amino-3-propyl)-1-ethyl bromo imidazole} P[Phe][EMI] | extraction of Allura red | limit of detection (LOD) = 0.004 μg/mL (in food); recovery (%) 92–102. | [159] |
SPE and HPLC poly-{1-ethyl-3-benzyltriethylammonium alanine P[ETA][Ala]} | extraction of sunset yellow | LOD = 0.01 μg/mL (in beverages); recovery (%) 92–110 | [160] |
ATPE and subsequent HPLC-UV detection [Ch][Gly]-K3PO4 [Ch][Ala]-K3PO4 (*) [Ch][Lys]-K3PO4 [Ch][Arg]-K3PO4 | extraction of sunset yellow | (*) LOD = 0.021 μg/mL (in beverages); recovery 87.04–101.21% (in beverages) | [161] |
extraction from model oil [N2222][L-Ala] (*), [N2222][Gly], [N2222][L-Pro], [N2222][Sarcosine], [N2222][L-Lys], [N2222][L-Arg], [N2222][L-Val] | extraction of indole | (*) E (%) = 98; separation within 5 min | [162] |
oxidation–extraction from model oil [Omim][Phe] (*) [Omim][His], [Omim][Gly], [Omim][Trp] | extraction of dibenzothiophene | (*) desulfurization: 97.4% first cycle; 93.4% eighth cycle | [163] |
ATPE (25 °C; 0.1MPa) [Ch][Ala]-K3PO4 [Ch][Gly]-K3PO4 [Ch][Lys]-K3PO4 [Ch][Leu]-K3PO4 (*) | extraction of naphthalene and pyrene | (*) recovery (%) naphthalene: 98.9 (lake water) and 95.2 (tap water); pyridine: 103.1% (lake water) and 107.8 (tap water) | [164] |
SPE and HPLC magnetic graphene oxide grafted with [Bmim][Trp] | extraction of Sudan I–IV | high-affinity extraction on the IL-modified adsorbent; 10-fold enrichment factor; LOD=1.0 ng/mL | [165] |
chiral liquid–liquid extraction system CH2Cl2-[Bmim][Trp] | enantioselective extraction of metoprolol | (S)-metoprolol, enantioselectivity (pH 8.5, 25 °C) = 1.29 | [166] |
chiral liquid–liquid extraction system CH2Cl2-[Bmim][L-Trp] (*) CH2Cl2-[Bmim][L-Glu] CH2Cl2-[Bmim][L-Ser] CH2Cl2-[Bmim][L-Phe] | enantioselective resolution of flurbiprofen | (S)-flurbiprofen maximum α = 1.20; 5 cycles of reuse | [167] |
nanofiltration nanofiltration membrane grafted with 1,1,1-trimethylhydrazinium glycinate [αN111][Gly] | pigment adsorption | higher selectivity for Na2SO4 and NaCl than commercial DK and DL nanomembranes | [168] |
extraction totuene/AA ILs (1:2) [Ch][Gly] [Ch][Pro] [Ch][His] (*) [Ch][Ser] [Ch][Phe] | extraction of asphalt from carbonate rocks | (*) 91% recovery of asphalt in a single step | [169] |
extraction [N2222][L-Ala] (*) [N2222][L-Phe] N2222][Gly] [N2222][L-Pro] [N2222][L-Sar] | extraction of phenol-contaminated oil | (*) E (%) = 99 for phenol (model system toluene–phenol); E (%) from 97.9 to 98.8%; the rest of the AA ILs is between (*) 98.6% phenol extraction efficiency (real coal tar oil mixture) | [170] |
microemulsion extraction [Trp][BF4]–urea | extra-heavy oil extraction from carbonate asphalt rocks | 11% enhanced oil recovery in comparison to control | [171] |
chiral ligand-exchange capillary electrophoresis (CE) and ligand-exchange micellar electrokinetic capillary chromatography Cu (II)-tetramethylammonium L-hydroxyproline [TMA][L-OH-Pro] | enantioselective resolution of AAs | Rs = 3.03 for Trp; Rs = 4.35 for 3,4-dihydroxy- phenylalanine | [172] |
chiral ligand-exchange HPLC [Bmim][L-Ile] | enantioselective resolution of mandelic acid and its derivatives | Rs between 1.15 and 2.16 depends on the substituents | [173] |
ligand-exchange chiral separations (CE and HPLC) Cu (II)-[1-alkyl-mim][L-Pro] | enantioselective resolution of D, L-Phe, D, L-His, D, L-Trp, and D,L-Tyr | Rs=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE | [138] |
reactive extraction [N4441][Ser] [N4441][Thr] [N4441][Cys] [N4441][Pro] [N4441][Lys] (*) [N4441][Val] [P4444][Ser] [P4444][Lys] (**) [P4444][Thr] [P4444][Pro] [P4444][Cys] | removal of naphthenic acid from crude oil | for [N4441][AA] series, % naphthenic acid removal is in the range 21–46% (*) 46%; for [P4444][AA] series, % naphthenic acid removal is in the range 27–41% (**) 41%. | [174] |
ATPE [Ch][L-Met] [Ch][Gly] [Ch][L-Ala] [Ch][L-Pro] | gold(I) recovery from aurocyanide wastewater | E (%) = 99 for Au (I) | [175] |
magnetic dispersive SPE Fe3O4@SiO2@MAPs@AAIL-POSS based on: [C8obim][Gly] | benzimidazole residue analysis in fruit juice and human serum | E (%)> 97 10 recovery cycles of the adsorbent | [158] |
membrane adsorption Nylon 6,6/ChOH-Gly (1:5) Nylon 6,6/ ChOH:Gly (1:2) (*) | Cu (II) removal | (*) highest permeability of the membrane; 80% Cu(I) removal until steady state reached | [176] |
mobile phase for ion exchange chromatography [Emim][Gly] [Bmim][Gly] [Hmim][Gly] (*) [Hmim][Ala] [Hmim][Asp] | analysis of Mg2+, Ca2+, Zn2+, and Fe3+ in oral solution and water | (*) good resolution and sensitive quantitative determination; (*) linear range: 0.01–50 mg/L, except for Ca2+, which is 0.1–100 mg/L; (*) LOD in the range of 0.57–3.58 µg/L | [177] |
synchronous fluorescence spectrometry [Omim][Ala] | simultaneous determination of Magnolol and Honokiol | LOD =1.46 ng/mL (Magnolol), LOD = 0.92 ng/mL (Honokiol); the recovery rates: 98.6–100.7% (Magnolol) and 99.7–100.6% (Honokiol) | [178] |
capillary electrochromatography poly(glycidyl methacrylate-co-ethylene dimethacrylate)monolithic column modified with [N1111][Arg] and graphene oxide | separation ability for amino acids, β-blockers, and nucleotides | Rs: Trp, Phe, 5-OH-Trp: 2.231 and 2.036; β-blockers: 2.779 and 2.470; and nucleotides: 8.345 and 3.321 | [179] |
chiral ligand-exchange capillary electrophoresis Zn(II)-[Bmim][L-Lys] Zn(II)-[Hmim][L-Lys] (*) Zn(II)-[Omim][L-Lys] | resolution of mixtures of D,L-Dns-Ile, D,L-Dns-Met, and D,L-Dns-Ser; resolution of D-Dns-Ile, D-Dns-Met, and D-Dns-Ser | (*) excellent Rs at the optimum conditions | [180] |
chiral ligand-exchange capillary electrophoresis Cu(II)-[L-Pro][CF3COO] (*) Cu(II)-[L-Pro][NO3] Cu(II)-[L-Pro][BF] Cu(II)-[L-Pro2][SO4] | resolution of mixtures of Dns-D,L-AAs | nine pairs of labeled D,L-AAs were successfully separated with Rs ranging from 0.93 to 6.72 | [181] |
chiral ligand-exchange capillary electrophoresis Zn(II)-[Bmim][Orn] (L-ornithine) | Resolution of Dns-D,L-AAs enantiomers; screening of D-AA oxidase inhibitors | Rs values range from 0.53 to 3.53 | [182] |
Capillary electrophoresis Glycogen–[N1111][Arg] (*) Glycogen–[N1111][Asp] | Resolution of racemic mixtures of either drug: Nefopam hydrochloride, citalopram hydrobromide, or duloxetine hydrochloride | Rs = 2.13 for Nefopam; Rs = 3.12 for citalopram; Rs = 5.73 for duloxetine | [183] |
chiral ligand-exchange capillary electrophoresis Zn(II)-[L-Epy][L-Lys] (*) Zn(II)-[L-Bpy][L-Lys] Zn(II)-[L-Hpy][L-Lys] Zn(II)-[L-Opy][L-Lys] | enantioseparation of Dns-D, L-AA (such as Ala, Asp, Asn, Ile, Met, Phe, Ser, Thr, Tyr, and Trp) | the Rs values are in the range of 0.8–3.9 | [184] |
non-aqueous capillary electrophoresis β-cyclodextrin-[N1111][L-Arg] β-cyclodextrin-[N2222][L-Arg] β-cyclodextrin-[N3333][L-Arg] | enantioseparation of Dns-D,L-AAs | the Rs values are in the range of 1.31–3.2 | [185] |
capillary electrophoresis Cu(II)-[N1111][L-Arg] (*) Cu(II)-[N1111][L-Pro] Cu(II)-[N1111][L-Glu] | enantioseparation of Dns-D,L-AAs | the Rs values are in the range of 0.86–5.51 | [186] |
magnetic solid-phase extraction PEG4000-nanoFe3O4-[Glu][TMG] | trypsin isolation | extraction capacity 718 mg/g; at least 5 cycles without loss of capacity | [187] |
AA IL Catalyst | Reaction/Mechanism | Advantages of the AA IL Catalyst | References |
---|---|---|---|
[pyridine-N-sulfonyl glycine][Cl] | Biginelli reaction; Knoevenagel condensation; media: water, at reflux temperature | Target product(s): xanthenediones and dihydropyrimidinones; remarkable catalytic activity, water as a solvent, high yields, short reaction time | [188] |
AA IL solvent | intermolecular Knoevenagel reaction; media: toluene, reflux | Target product(s): caulerpin (61 % yield) 50% higher yield than that obtained with conventional catalysts | [189] |
[Pro][H2PO4] | Biginelli reaction (aminoalkylation) | Target product(s): aminoalkyl naphthols the yield of the derivatives is within the range of 84–97% | [190] |
[ValOLauryl]2[CuCl4] [PheOLauryl]2[CuCl4] | cross-dehydrogenative coupling reaction (C-C bond formation); media: water | Target product(s): propargyl amines (up to 94 % yield) | [191] |
[L-Pro][NO3] | cyclocondenzation reaction | Target product(s): 5-aryl-1,2,4-thiazolidine-3-thiones the yield of the derivatives is within the range of 80–95%; 5 cycles of catalyst reuse without significant loss of activity | [192] |
[Emim][Boc-AAs] | solid-phase peptide synthesis; carbonate–pyridine–acetate-mediated peptide synthesis | Target product(s): dipeptides the yield of the dipeptides is within the range of 89–95% with all catalysts, except for [Emim][Boc-Asn], for which it is only 10%; 5 cycles of catalyst reuse without significant loss of activity | [193] |
[N1111][Arg] (*), [N1111][Ala], [N1111][Phe], [N1111][Trp], [N1111][Ser], [N1111][Asn], [N1111][Cys] | reaction of polycondensation | Target product(s): poly(isosorbite carbonate) (*) carboxymethyl intermediates greater than 99% | [194] |
[Ch][Pro] | self-condensation reaction | Target product(s): deoxyfructosazine or fructosazine 33.8% yield of deoxyfructosazine for 30 min/100 °C 16.7% fructosazine for 30 min/100 °C | [195] |
[L-Pro][NO3] | Knoevenagel condensation, Michael-type addition, intramolecular cyclization, and imine–enamine tautomerism | Target product(s): 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione or pyrano[2,3-d] pyrimidine diones the yield of the derivatives is within the range of 86–94% | [196] |
[ProH][CH3COO], [ProH][H2PO4], [ProH][CF3COO], [ProH][NO3], [ProH][HSO4], [ProH][Cl], [ProH][CF3SO3], [GluH][CF3SO3], [AspH][CF3SO3], [TyrH][CF3SO3], [TrpH][CF3SO3], [PheH][CF3SO3], [AlaH][CF3SO3], [ProH][CF3SO3] (*) | Baeyer–Villiger oxidation | Target product(s): β-valerolactone (*) cyclopentanone conversion 98.55%, β-valerolactone yield 64.51%; selectivity 65.46% (*) 4 cycles of catalyst reuse without affecting conversion % and selectivity % | [197] |
[Pro][HSO4] [Gly][HSO4] | isobutane C4 alkylation | worse quality of the products compared to conventional catalysts like H2SO4 | [198] |
[Emim][Lys], [Emim][Thr], [Emim][Val], [Emim][Ala], [Emim][Ser], [Emim][His], [Emim][Asp] | catalytic copolymerization | Target product(s): poly(isosorbide carbonate) the yield of the polymers is within the range of 91–99% | [199] |
[Gly][Cl] (*), [Leu][Cl], [Thr][Cl], [Phe][Cl], [Asp][Cl], [Ala][Cl], [Val][Cl], [Lys][Cl]2, [Gly][HSO4] | dehydration reaction | Target product(s): 3-acetamido-5-acetylfuran (*) 52.61% yield; fast 10 min reaction | [200] |
[Mor1,4][AcGly] [Mor1,6][AcGly] [Mor1,8][AcGly] [Mor1,10][AcGly] [Mor1,12][AcGly] (*) | N-alkylation- and C-alkylation reactions of dibenzoazepine; C-alkylation reaction of fluorene derivatives | Target product(s): (*) for the synthesis of N-butyl- dibenzazepine, it has the same efficiency as [N4444][Br] (*) a 15% higher yield of 9,9-di-n-butyl-2,7-dibromofluorene was obtained from fluorene compared to using a phase-transfer catalyst | [201] |
[Bmim][His] (*), [Bmim[Ala], [Bmim][Phe], Bmim][Asn], [Bmim][Ser], Bmim][Met], [Bmim[Gly], [Bmim][Pro], [Bmim][Br] | thiol-Michael addition | Target product(s): S-(2-nitro-1-phenylethyl)-L-Cysteine (*) the highest kcat (1695 M−1 s−1) | [202] |
3-(Tri-ethylammonium)propan-1,2-diol [[N222,PDO]-based [N222,PDO][L-Val] [N222,PDO][L-Leu] [N222,PDO][L-Pro] (*) [N222,PDO][L-His] [N222,PDO][L-Tyr] N-((1,3-Dioxolan-4-yl) methyl)-N,N,N-tri-ethylammonium [N222,1,3-Dioxane-4yl-met]-based [N222,1,3-Dioxane-4yl-met][L-Val] [N222,1,3-Dioxane-4yl-met][L-Leu] [N222,1,3-Dioxane-4yl-met][L-Pro] [N222,1,3-Dioxane-4yl-met][L-His] [N222,1,3-Dioxane-4yl-met][L-Tyr | Morita–Baylis–Hillman reaction | Target product(s): 3-[Hydroxy(4-nitrophenyl)methyl]but-3-en-2-one and analogs (*) 1st cycle—68% yield for 4 h; 5th cycle—60% yield for 96 h | [203] |
[N4444][Asp] supported on metal–organic framework | one-pot three-component reaction: deprotonation, addition reaction, dehydration, nucleophilic addition, automerization, and intermolecular cyclization | Target product(s): 1,4-dihydropyrano[2,3-c]pyrazoles the yield of the derivatives is within the range of 88–96% | [204] |
[L-Pro][NO3] | thia-Michael addition for C-S bond formation; conjugate addition of the thiol to sulfonamide chalcones for the synthesis of b-sulfidocarbonyl compounds | Target product(s): sulfonamide chalcones the yield of the derivatives is within the range of 78–92% | [205] |
[L-Pro][NO3] | Biginelli reaction | Target product(s): 3,4-dihydropyrimidin-2(1H)-thiones the yield of the derivatives is within the range of 86–92% | [206] |
[N4444][L-Leu] [N4444][L-Val] [N4444][L-Ile] [N4444][L-Thr] [N4444][L-His] [N4444][L-L-Met] [N4444][L-Tyr [N4444][L-Trp] | Knoevenagel condensation | Target product(s): 2-benzylidenemalononitrile the yield of the derivatives obtained for 30 min is within the range of 74–89% 6 cycles of reuse of catalysts without significant loss of activity | [207] |
[N1111][Pro] (*) [N1111][Gly] [N1111][Ala] [N1111][Val] | hydrolysis | Target product(s): benzaldehyde (*) 94% yield | [208] |
1-(2-aminoethyl)-3-methyl-imidazolium [Aemim][Asp] | condensation reaction | Target product(s): acetophenoximes the yield of the derivatives is within the range of 85–96% | [209] |
[N4444][D, L][Thr]-salicylaldehyde-Cu(II) complex | A3 coupling reaction | Target product(s): propargylamines the yield of the derivatives is within the range of 39–95% | [210] |
[N2222][Pro] | one-pot synthesis: transesterification and elimination reaction | Target product(s): 68% yield of glycidol | [211] |
[N2222][Pro] (*), [N2222][Gly], [N2222][Ala], [N2222][Val], [N2222][Ser] | transesterification reaction | Target product(s): (*) 72% yield of dibutyl carbonate | [212] |
[P4444][Arg] | cyclocondensation | Target product(s): 2,4(1H, 3H)-diones the yield of the derivatives is within the range of 87–96% 5 times of reuse of catalyst without significant loss of activity | [213] |
[P4444][Pro], [P4444][Val], [P4444][Ala], [P4444][Gly], [P4444][Ser] | Knoevenagel condensation reaction | Target product(s): α,β-unsaturated cyano derivatives the yield of ethyl-2-cyano-3- phenylacrylate is within the range of 81–96% [P4444][Pro] is the most active 6 cycles of reuse without significant loss of activity | [214] |
[Pro][HSO4], [Gly][HSO4], [Ala][HSO4] | esterification | Target product(s): 99.9% yield of ethyl valerate | [215] |
[P4444][Z-Asp] | enzymatic synthesis of a model peptide, Z-APM | the IL is both media and substrate much higher productivity compared with conventional IL reaction media for proteases | [216] |
[Gly][NO3] (*), [Gly][SO4] [Gly][Cl] | Biginelli condensation | Target product(s): 3,4-dihydropyrimidin-2(1H)-ones (*) 92% yield of dihydropyrimidinone | [217] |
[ProN4,4][Br] | cycloaddition reaction | Target product(s): cyclic carbonate 83% yield of styrene carbonate; 98% selectivity | [218] |
[N2222][Pro] [N2222][ OH-Pro] [Emim][Pro] [Emim][OH-Pro] | click reaction | Target product(s): 1,4-disubstituted 1,2,3-triazoles the yield of the derivatives is from traces to 99% | [219] |
[Emim][Pro] | Michael additions of cyclohexanones | Target product(s): chalcones the yield of the derivatives is within the range of 85–98%; moderate to good enantioselectivity (16–94%) | [220] |
[Bmim][Pro] supported on polystyrene | N-arylation/ Buchwald–Hartwig amination | Target product(s): N-(4-methoxyphenyl)imidazole derivatives the yield of the derivatives is from traces to 97% | [221] |
p-toluenesulfonic acid ionic liquid ([Lys][p-TSA])–lipase system | degradation of poly(lactide)/poly(butylene adipate-co-terephthalate | weight loss of the blend at optimal conditions reached 31.59% after 49 days, which was 3.79 times higher than that of the PLA/PBAT blend without [Lys][p-TSA] | [222] |
[Bmim][Pro] | degradation of polyethylene terephthalate | Target product: bis(2-hydroxyethyl terephthalate – 75.3% yield; 100.0% conversion of the starting material | [223] |
[Ch][Met] [Ch][Ala] [Ch][Gly] [Ch][Pro] (*) | hydrolysis of paraoxon (organophosphorus pesticide) | (*) τ1/2 = 19.8 min | [224] |
[Ch][Gly] | glycolysis of poly(ethylene terephthalate) | Target product: bis-hydroxyethyl terephthalate – 51% yield; 85% conversion of the starting material | [225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guncheva, M.; Yakimova, B. Diversity of Potential (Bio)Technological Applications of Amino Acid-Based Ionic Liquids. Appl. Sci. 2025, 15, 1515. https://doi.org/10.3390/app15031515
Guncheva M, Yakimova B. Diversity of Potential (Bio)Technological Applications of Amino Acid-Based Ionic Liquids. Applied Sciences. 2025; 15(3):1515. https://doi.org/10.3390/app15031515
Chicago/Turabian StyleGuncheva, Maya, and Boryana Yakimova. 2025. "Diversity of Potential (Bio)Technological Applications of Amino Acid-Based Ionic Liquids" Applied Sciences 15, no. 3: 1515. https://doi.org/10.3390/app15031515
APA StyleGuncheva, M., & Yakimova, B. (2025). Diversity of Potential (Bio)Technological Applications of Amino Acid-Based Ionic Liquids. Applied Sciences, 15(3), 1515. https://doi.org/10.3390/app15031515