Impact of Low-Load High-Volume Initial Sets vs. Traditional High-Load Low-Volume Bench Press Protocols on Functional and Structural Adaptations in Powerlifters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.3.1. Anthropometric Measurements
2.3.2. Maximal Strength Testing
2.3.3. Velocity Measurements
2.3.4. Resistance Training Protocol
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The effect of strength training on performance in endurance athletes. Sports Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.; Suarez-Arrones, L.; de Hoyo, M.; Loturco, I. Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. Int. J. Sports Med. 2022, 43, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Pietta-Dias, C.; Bello, M.D.; da Silva, R.; Vargas, C.; Machado, G.D.B.; Roncada, C.; Tiggemann, C.L.; Schröder, N. Differential impact of endurance, strength, or combined training on quality of life and plasma serotonin in healthy older women. Aging Clin. Exp. Res. 2019, 31, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Vanderburgh, P.M.; Batterham, A.M. Validation of the Wilks powerlifting formula. Med. Sci. Sports Exerc. 1999, 31, 1869–1875. [Google Scholar] [CrossRef]
- Pasini, A.; Caruso, L.; Bortolotto, E.; Lamberti, N.; Toselli, S.; Manfredini, F.; Zaccagni, L.; Rinaldo, N. Prediction of bench press performance in powerlifting: The role of upper limb anthropometry. J. Hum. Sport Exerc. 2023, 18, 484–500. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Williams, T.D.; Esco, M.R.; Fedewa, M.V.; Bishop, P.A. Bench press load-velocity profiles and strength after overload and taper microcyles in male powerlifters. J. Strength Cond. Res. 2020, 34, 3338–3345. [Google Scholar] [CrossRef]
- Aidar, F.J.; Brito, C.J.; de Matos, D.G.; de Oliveira, L.A.S.; de Souza, R.F.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Neiva, H.P.; Neto, F.R.; Reis, V.M.; et al. Force–velocity relationship in Paralympic powerlifting: Two or multiple-point methods to determine a maximum repetition. BMC Sports Sci. Med. Rehabil. 2022, 14, 159. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Storey, A.; Cross, M.R.; Brown, S.R.; Lenetsky, S.; Ramsay, H.; Dillen, C.; Zourdos, M.C. RPE and Velocity Relationships for the Back Squat, Bench Press, and Deadlift in Powerlifters. J. Strength Cond. Res. 2017, 31, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load–Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 228856. [Google Scholar] [CrossRef]
- Pálinkás, G.; Béres, B.; Utczás, K.; Tróznai, Z.; Petridis, L. Large inter-individual variability in force-velocity profile changes in response to acute high-load resistance training. Physiol. Int. 2024, 111, 186–198. [Google Scholar] [CrossRef]
- Nunes, J.P.; Kassiano, W.; Costa, B.D.V.; Mayhew, J.L.; Ribeiro, A.S.; Cyrino, E.S. Equating Resistance-Training Volume Between Programs Focused on Muscle Hypertrophy. Sports Med. 2021, 51, 1171–1178. [Google Scholar] [CrossRef]
- Lasevicius, T.; Ugrinowitsch, C.; Schoenfeld, B.J.; Roschel, H.; Tavares, L.D.; De Souza, E.O.; Laurentino, G.; Tricoli, V. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur. J. Sport Sci. 2018, 18, 772–780. [Google Scholar] [CrossRef]
- Longo, A.R.; Silva-Batista, C.; Pedroso, K.; de Salles Painelli, V.; Lasevicius, T.; Schoenfeld, B.J.; Aihara, A.Y.; de Almeida Peres, B.; Tricoli, V.; Teixeira, E.L. Volume load rather than resting interval influences muscle hypertrophy during high-intensity resistance training. J. Strength Cond. Res. 2022, 36, 1554–1559. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Refalo, M.C.; Hamilton, D.L.; Paval, D.R.; Gallagher, I.J.; Feros, S.A.; Fyfe, J.J. Influence of resistance training load on measures of skeletal muscle hypertrophy and improvements in maximal strength and neuromuscular task performance: A systematic review and meta-analysis. J. Sports Sci. 2021, 39, 1723–1745. [Google Scholar] [CrossRef] [PubMed]
- Letieri, R.V.; Teixeira, A.M.; Furtado, G.E.; Lamboglia, C.G.; Rees, J.L.; Gomes, B.B. Effect of 16 weeks of resistance exercise and detraining comparing two methods of blood flow restriction in muscle strength of healthy older women: A randomized controlled trial. Exp. Gerontol. 2018, 114, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.D.M.; Miramonti, A.A.; Hill, E.C.; Smith, C.M.; Cochrane-Snyman, K.C.; Housh, T.J.; Cramer, J.T. Greater neural adaptations following high- vs. low-load resistance training. Front. Physiol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Hammarström, D.; Øfsteng, S.; Koll, L.; Hanestadhaugen, M.; Hollan, I.; Apró, W.; Whist, J.E.; Blomstrand, E.; Rønnestad, B.R.; Ellefsen, S. Benefits of higher resistance-training volume are related to ribosome biogenesis. J. Physiol. 2020, 598, 543–565. [Google Scholar] [CrossRef]
- Yeom, D.-C.; Hwang, D.-J.; Lee, W.-B.; Cho, J.-Y.; Koo, J.-H. Effects of Low-Load, High-Repetition Resistance Training on Maximum Muscle Strength and Muscle Damage in Elite Weightlifters: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 17079. [Google Scholar] [CrossRef]
- Schoenfeld, B.; Fisher, J.; Grgic, J.; Haun, C.; Helms, E.; Phillips, S.; Steele, J.; Vigotsky, A. Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. Int. J. Strength Cond. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J.; Pérez, C.E.; Pallarés, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Abad, C.C.C.; Tabares, F.; Moraes, J.E.; Kobal, R.; Kitamura, K.; Nakamura, F.Y. Bar velocities capable of optimising the muscle power in strength-power exercises. J. Sports Sci. 2017, 35, 734–741. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Cornejo-Daza, P.J.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of velocity loss during body mass prone-grip pull-up training on strength and endurance performance. J. Strength Cond. Res. 2020, 34, 911–917. [Google Scholar] [CrossRef]
- Bonilla, D.A.; De León, L.G.; Alexander-Cortez, P.; Odriozola-Martínez, A.; Herrera-Amante, C.A.; Vargas-Molina, S.; Petro, J.L. Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr. Health 2022, 28, 95–109. [Google Scholar] [CrossRef]
- Gentil, P.; Budzynski-Seymour, E.; Souza, D.; Steele, J.; Fisher, J.P.; Bottaro, M. Evaluating the results of resistance training using ultrasound or flexed arm circumference: A case for keeping it simple? J. Clin. Transl. Res. 2020, 6, 61–65. [Google Scholar]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- International Powerlifting Federation. IPF GL Formula. Available online: https://www.powerlifting.sport/rules/codes/info/ipf-formula (accessed on 20 November 2024).
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Moss, B.M.; Refsnes, P.E.; Abildgaard, A.; Nicolaysen, K.; Jensen, J. Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 193–199. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; García-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Effect of different velocity loss thresholds dur-ing a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J. Sports Sci. 2018, 36, 1331–1339. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Baz-Valle, E.; Balsalobre-Fernández, C.; Alix-Fages, C.; Santos-Concejero, J. A systematic review of the effects of different resistance training volumes on muscle hypertrophy. J. Hum. Kinet. 2022, 81, 199–210. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef]
- Abad, C.C.; Prado, M.L.; Ugrinowitsch, C.; Tricoli, V.; Barroso, R. Combination of General and Specific Warm-Ups Improves Leg-Press One Repetition Maximum Compared with Specific Warm-Up in Trained Individuals. J. Strength Cond. Res. 2011, 25, 2242–2245. [Google Scholar] [CrossRef]
- Barnes, M.J.; Petterson, A.; Cochrane, D.J. Effects of different warm-up modalities on power output during the high pull. J. Sports Sci. 2017, 35, 976–981. [Google Scholar] [CrossRef]
- Hackett, D.A.; Johnson, N.A.; Halaki, M.; Chow, C.-M. A novel scale to assess resistance-exercise effort. J. Sports Sci. 2012, 30, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Aburto, J.; Janicijevic, D.; Pérez-Castilla, A.; Chirosa-Ríos, L.J.; García-Ramos, A. Changes in bench press performance and throwing velocity after strength-oriented and ballistic resistance training programs. J. Sports Med. Phys. Fit. 2020, 60, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.; Fisher, J.P.; Assunção, A.R.; Bottaro, M.; Gentil, P. The role of volume-load in strength and absolute endurance adaptations in adolescent’s performing high- or low-load resistance training. Appl. Physiol. Nutr. Metab. 2016, 42, 193–201. [Google Scholar] [CrossRef]
- Ormsbee, M.J.; Carzoli, J.P.; Klemp, A.; Allman, B.R.; Zourdos, M.C.; Kim, J.-S.; Panton, L.B. Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. J. Strength Cond. Res. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Mang, Z.A.; Ducharme, J.B.; Mermier, C.; Kravitz, L.; Magalhaes, F.d.C.; Amorim, F. Aerobic Adaptations to Resistance Training: The Role of Time under Tension. Int. J. Sports Med. 2022, 43, 829–839. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Van Every, D.W.; Plotkin, D.L. Loading Recommendations for Muscle Strength, Hypertrophy, and Local En-durance: A Re-Examination of the Repetition Continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef]
Characteristic | LL-HV (n = 13) | HL-LV (n = 13) | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (years) | 23.2 ± 2.7 | 23.9 ± 3.7 | 0.273 |
Body mass (kg) | 81.8 ± 9.2 | 80.8 ± 12.7 | 0.614 |
Height (cm) | 175.3 ± 4.3 | 174.6 ± 3.9 | 0.677 |
Powerlifting experience (years) | 4.9 ± 2.2 | 5.1 ± 3.1 | 0.402 |
% 1RM | Group | Time | Mean ± SD (m/s) | Δ (%) | Hedges’ g ES (95% CI) | ANOVA | ||
---|---|---|---|---|---|---|---|---|
Time | Group | Interaction | ||||||
80% | LL-HV | Pre | 0.43 ± 0.09 | 16.2 * | 0.80 (0.00, 1.59) | F = 6.4 p = 0.019 | F = 1.1 p = 0.315 | F = 5.6 p = 0.033 |
Post | 0.50 ± 0.08 | |||||||
HL-LV | Pre | 0.43 ± 0.07 | 0.9 | 0.00 (−0.77, 0.77) | ||||
Post | 0.43 ± 0.10 | |||||||
85% | LL-HV | Pre | 0.36 ± 0.09 | 18.9 * | 0.80 (0.00, −1.59) | F = 10.7 p = 0.003 | F = 0.1 p = 0.706 | F = 1.3 p = 0.271 |
Post | 0.43 ± 0.08 | |||||||
HL-LV | Pre | 0.36 ± 0.07 | 9.1 | 0.42 (−0.36, 1.20) | ||||
Post | 0.40 ± 0.11 | |||||||
90% | LL-HV | Pre | 0.29 ± 0.08 | 30.1 * | 0.13 (−0.64, 0.90) | F = 13.7 p = 0.001 | F = 0.4 p = 0.508 | F = 3.3 p = 0.084 |
Post | 0.38 ± 0.07 | |||||||
HL-LV | Pre | 0.30 ± 0.07 | 10.1 | 0.34 (−0.44, 1.11) | ||||
Post | 0.33 ± 0.10 | |||||||
95% | LL-HV | Pre | 0.25 ± 0.09 | 26.2 * | 0.73 (−0.07, 1.52) | F = 5.6 p = 0.026 | F = 4.0 p = 0.057 | F = 1.8 p = 0.189 |
Post | 0.31 ± 0.07 | |||||||
HL-LV | Pre | 0.22 ± 0.04 | 8.1 | 0.25 (−0.52, 1.03) | ||||
Post | 0.24 ± 0.10 |
Variable | Group | Time | Mean ± SD | Δ (%) | Hedges’ g ES (95% CI) | ANOVA | ||
---|---|---|---|---|---|---|---|---|
Time | Group | Interaction | ||||||
Body mass (kg) | LL-HV | Pre | 81.8 ± 9.2 | 1.3 | 0.11 (−0.88, 0.66) | F = 1.0 p = 0.330 | F = 0.1 p = 0.745 | F = 0.6 p = 0.455 |
Post | 82.9 ± 9.5 | |||||||
HL-LV | Pre | 80.8 ± 12.7 | 0.1 | 0.01 (−0.78, 0.76) | ||||
Post | 80.9 ± 13.6 | |||||||
1RM (kg) | LL-HV | Pre | 106.3 ± 19.6 | 8.4 | 0.42 (−0.35, 1.20) | F = 10.8 p = 0.003 | F = 0.2 p = 0.683 | F = 3.5 p = 0.072 |
Post | 114.8 ± 19.2 | |||||||
HL-LV | Pre | 106.2 ± 19.1 | 2.2 | 0.10 (−0.67, 0.87) | ||||
Post | 108.5 ± 23.6 | |||||||
Wilks points | LL-HV | Pre | 72.1 ± 12.1 | 7.2 | 0.41 (−0.36, 1.19) | F = 13.2 p < 0.001 | F = 0.1 p = 0.889 | F = 3.5 p = 0.075 |
Post | 77.2 ± 11.7 | |||||||
HL-LV | Pre | 73.2 ± 11.4 | 2.2 | 0.12 (−0.65, 0.89) | ||||
Post | 74.8 ± 13.9 | |||||||
IPF-GL points | LL-HV | Pre | 14.8 ± 2.5 | 8.4 | 0.49 (−0.29, 1.27) | F = 11.0 p = 0.003 | F = 0.1 p = 0.752 | F = 3.8 p = 0.063 |
Post | 16.1 ± 2.6 | |||||||
HL-LV | Pre | 15.0 ± 2.4 | 2.2 | 0.10 (−0.66, 0.87) | ||||
Post | 15.3 ± 3.1 |
Variable | Group | Time | Mean ± SD | Δ (%) | Hedges’ g ES (95% CI) | ANOVA | ||
---|---|---|---|---|---|---|---|---|
Time | Group | Interaction | ||||||
Arm circumference (cm) | LL-HV | Pre | 38.0 ± 2.8 | 3.2 * | 0.42 (−0.35, 1.20) | F = 4.2 p = 0.050 | F = 1.3 p = 0.268 | F = 4.7 p = 0.040 |
Post | 39.2 ± 2.7 | |||||||
HL-LV | Pre | 37.3 ± 3.2 | −0.1 | −0.01 (−0.78, 0.76) | ||||
Post | 37.3 ± 3.2 | |||||||
Chest circumference (cm) | LL-HV | Pre | 105.2 ± 6.5 | 2.3 | 0.35 (−0.42, 1.13) | F = 14.4 p = 0.001 | F = 0.5 p = 0.504 | F = 3.9 p = 0.060 |
Post | 107.5 ± 6.2 | |||||||
HL-LV | Pre | 104.3 ± 6.8 | 0.7 | 0.13 (−0.64, 0.90) | ||||
Post | 105.0 ± 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Alcázar, F.J.; Jiménez-Martínez, P.; Alix-Fages, C.; Ruiz-Ariza, A.; Casuso, R.A.; Varela-Goicoechea, J.; García-Ramos, A.; Jerez-Martínez, A. Impact of Low-Load High-Volume Initial Sets vs. Traditional High-Load Low-Volume Bench Press Protocols on Functional and Structural Adaptations in Powerlifters. Appl. Sci. 2025, 15, 1974. https://doi.org/10.3390/app15041974
González-Alcázar FJ, Jiménez-Martínez P, Alix-Fages C, Ruiz-Ariza A, Casuso RA, Varela-Goicoechea J, García-Ramos A, Jerez-Martínez A. Impact of Low-Load High-Volume Initial Sets vs. Traditional High-Load Low-Volume Bench Press Protocols on Functional and Structural Adaptations in Powerlifters. Applied Sciences. 2025; 15(4):1974. https://doi.org/10.3390/app15041974
Chicago/Turabian StyleGonzález-Alcázar, Francisco J., Pablo Jiménez-Martínez, Carlos Alix-Fages, Alberto Ruiz-Ariza, Rafael A. Casuso, Jesús Varela-Goicoechea, Amador García-Ramos, and Agustín Jerez-Martínez. 2025. "Impact of Low-Load High-Volume Initial Sets vs. Traditional High-Load Low-Volume Bench Press Protocols on Functional and Structural Adaptations in Powerlifters" Applied Sciences 15, no. 4: 1974. https://doi.org/10.3390/app15041974
APA StyleGonzález-Alcázar, F. J., Jiménez-Martínez, P., Alix-Fages, C., Ruiz-Ariza, A., Casuso, R. A., Varela-Goicoechea, J., García-Ramos, A., & Jerez-Martínez, A. (2025). Impact of Low-Load High-Volume Initial Sets vs. Traditional High-Load Low-Volume Bench Press Protocols on Functional and Structural Adaptations in Powerlifters. Applied Sciences, 15(4), 1974. https://doi.org/10.3390/app15041974