Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production
Abstract
:1. Introduction
2. Yogurt
2.1. Yogurt Production
2.2. Fruit Preparations
2.3. Physicochemical and Sensory Properties
2.4. Textural and Rheological Characteristics
3. Sorbates and Benzoates
4. Clean Label Concepts in Yogurt Production
5. Lactic Acid Bacteria
5.1. General Characteristics
5.2. Mechanism of LAB
5.3. Antimicrobial Compounds Produced by LAB
5.3.1. Bacteriocins
5.3.2. Organic Acids
5.3.3. Exopolysaccharides
5.3.4. Other Compounds
5.4. Antioxidant Compounds
6. Challenges in Using LAB and Their Metabolites as a Clean Label Approach
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasegawa, Y.; Bolling, B.W. Yogurt consumption for improving immune health. Curr. Opin. Food Sci. 2023, 51, 101017. [Google Scholar] [CrossRef]
- Aktar, T. Physicochemical and sensory characterisation of different yoghurt production methods. Int. Dairy J. 2022, 125, 105245. [Google Scholar] [CrossRef]
- Bankole, A.O.; Irondi, E.A.; Awoyale, W.; Ajani, E.O. Application of natural and modified additives in yogurt formulation: Types, production, and rheological and nutraceutical benefits. Front. Nutr. 2023, 10, 1257439. [Google Scholar] [CrossRef]
- Mazdeh, Z.F.; Sasanfar, S.; Chalipour, A.; Pirhadi, E.; Yahyapour, G.; Mohammadi, A.; Rostami, A.; Amini, M.; Hajimahmoodi, M. Simultaneous determination of preservatives in dairy products by HPLC and chemometric analysis. Int. J. Anal. Chem. 2017, 2017, 3084359. [Google Scholar] [CrossRef]
- Walczak-Nowicka, Ł.J.; Herbet, M. Sodium Benzoate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review. Nutrients 2022, 14, 1497. [Google Scholar] [CrossRef]
- Dehghan, P.; Mohammadi, A.; Mohammadzadeh-Aghdash, H.; Ezzati Nazhad Dolatabadi, J. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 2018, 80, 123–130. [Google Scholar] [CrossRef]
- Xiao, N.; Ruan, S.; Mo, Q.; Zhao, M.; Liu, T.; Feng, F. Effects of potassium sorbate on systemic inflammation and gut microbiota in normal mice: A comparison of continuous intake and washout period. Food Chem. Toxicol. 2024, 184, 114443. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Maruyama, S.; Lim, J.; Streletskaya, N.A. Clean label trade-offs: A case study of plain yogurt. Front. Nutr. 2021, 8, 704473. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.-R. Clean label starch: Production, physicochemical characteristics, and industrial applications. Food Sci. Biotechnol. 2021, 30, 1–17. [Google Scholar] [CrossRef]
- Abarquero, D.; Bodelón, R.; Flórez, A.B.; Fresno, J.M.; Renes, E.; Mayo, B.; Tornadijo, M.E. Technological and safety assessment of selected lactic acid bacteria for cheese starter cultures design: Enzymatic and antimicrobial activity, antibiotic resistance and biogenic amine production. LWT 2023, 180, 114709. [Google Scholar] [CrossRef]
- Giaouris, E. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms. In Recent Trends in Biofilm Science and Technology; Simoes, M., Borges, A., Simões, C.L., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 205–232. ISBN 9780128194973. [Google Scholar]
- Mgomi, F.C.; Yuan, L.; Wang, Y.; Rao, S.-Q.; Yang, Z.-Q. Physiological properties, survivability and genomic characteristics of Pediococcus pentosaceus for application as a starter culture. Int. J. Dairy Technol. 2022, 75, 588–602. [Google Scholar] [CrossRef]
- Mgomi, F.C.; Yang, Y.-r.; Cheng, G.; Yang, C. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 100118. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Maktabdar, M. Lactic acid bacteria as biopreservation against spoilage molds in dairy products—A review. Front. microbiol. 2022, 12, 819684. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Ibrahim, S.A. Lactic acid bacteria: An essential probiotic and starter culture for the production of yoghurt. Int. J. Food Sci. Tech. 2022, 57, 7008–7025. [Google Scholar] [CrossRef]
- Ahansaz, N.; Tarrah, A.; Pakroo, S.; Corich, V.; Giacomini, A. Lactic acid bacteria in dairy foods: Prime sources of antimicrobial compounds. Fermentation 2023, 9, 964. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.; Liang, S.; Xiang, F.; Wang, X.; Lian, H.; Li, B.; Liu, F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int. J. Biol. Macromol. 2024, 257, 128733. [Google Scholar] [CrossRef]
- Ministérios da Agricultura e do Comércio e Turismo. Portaria nº 742/92 de 24 de Julho. Diário da República: Série I-B, 1992, nº 169. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/742-1992-292747 (accessed on 22 November 2014).
- Nagaoka, S. Yogurt Production. Methods Mol. Biol. 2019, 1887, 45–54. [Google Scholar] [CrossRef]
- Chandan, R.C. An overview of yogurt production and composition. In Yogurt in Health and Disease Prevention; Shah, P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 31–47. ISBN 978-0-12-805134-4. [Google Scholar]
- Das, K.; Choudhary, R.; Thompson-Witrick, K.A. Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. LWT 2019, 108, 69–80. [Google Scholar] [CrossRef]
- Chandan, R.C. Manufacture of various types of yogurt. In Manufacturing Yogurt and Fermented Milks, 1st ed.; Chandan, R.C., White, C.H., Kilara, A., Hui, Y.H., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 179–336. ISBN 0-8138-2304-8. [Google Scholar]
- Wan, Z.; Khubber, S.; Dwivedi, M.; Misra, N.N. Strategies for lowering the added sugar in yogurts. Food Chem. 2021, 344, 128573. [Google Scholar] [CrossRef]
- Ahmad, I.; Hao, M.; Li, Y.; Zhang, J.; Ding, Y.; Lyu, F. Fortification of yogurt with bioactive functional foods and ingredients and associated challenges—A review. Trends Food Sci. Technol. 2022, 129, 558–580. [Google Scholar] [CrossRef]
- Pilote-Fortin, H.; Ben Said, L.; Cashman-Kadri, S.; St-Gelais, D.; Fliss, I. Stability, bioavailability and antifungal activity of reuterin during manufacturing and storage of stirred yoghurt. Int. Dairy J. 2021, 121, 105141. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Du, L.; Li, J.; Xu, J.; Shi, Z.; Li, C.; Tu, M.; Zeng, X.; Wu, Z.; et al. The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. Food Bioscience 2022, 49, 101953. [Google Scholar] [CrossRef]
- Kowaleski, J.; Quast, L.B.; Steffens, J.; Lovato, F.; Rodrigues dos Santos, L.; Zambiazi da Silva, S.; Maschio de Souza, D.; Felicetti, M.A. Functional yogurt with strawberries and chia seeds. Food Biosci. 2020, 37, 100726. [Google Scholar] [CrossRef]
- Kamber, U. The effect of fruits to the characteristics of fruit yogurt. Pak. J. Agri. Sci. 2019, 56, 495–502. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocol. 2020, 100, 105453. [Google Scholar] [CrossRef]
- World Health Organization; Food Agriculture Organization of the United Nations. Codex Alimentarius. In Milk and Milk Products, 2nd ed.; World Health Organization; Food Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-105837-4. [Google Scholar]
- Mena, B.; Aryana, K. Physico-Chemical, Microbiological and Sensory Characteristics of Yogurt as Affected by Added Lactose. Food Nutr. Sci. 2019, 10, 1243–1262. [Google Scholar] [CrossRef]
- Bierzuńska, P.; Cais-Sokolińska, D.; Yiğit, A. Storage stability of texture and sensory properties of yogurt with the addition of polymerized whey proteins. Foods 2019, 8, 548. [Google Scholar] [CrossRef]
- Lesme, H.; Rannou, C.; Famelart, M.-H.; Bouhallab, S.; Prost, C. Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends Food Sci. Technol. 2020, 98, 140–149. [Google Scholar] [CrossRef]
- Ścibisz, I.; Ziarno, M.; Mitek, M. Color stability of fruit yogurt during storage. J. Food Sci. Technol. 2019, 56, 1997–2009. [Google Scholar] [CrossRef]
- Krastanov, A.; Yeboah, P.J.; Wijemanna, N.D.; Eddin, A.S.; Ayivi, R.D.; Ibrahim, S.A.; Krastanov, A.; Yeboah, P.J.; Wijemanna, N.D.; Eddin, A.S.; et al. Volatile aromatic flavor compounds in yogurt: A review. In Current Issues and Advances in the Dairy Industry; Ibrahim, A.S., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Sözeri Atik, D.; Öztürk, H.İ.; Akın, N. Perspectives on the yogurt rheology. Int. J. Biol. Macromol. 2024, 263, 130428. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Turgeon, S.L. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocol. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Mousavi, M.; Heshmati, A.; Daraei Garmakhany, A.; Vahidinia, A.; Taheri, M. Texture and sensory characterization of functional yogurt supplemented with flaxseed during cold storage. Food Sci. Nutr. 2019, 7, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Sözeri Atik, D.; Öztürk, H.İ.; Akın, N.; Özer, B. Textural and rheological characterisation of yoghurts produced with cultures isolated from traditional back-slopped yoghurts. Int. Dairy J. 2023, 138, 105557. [Google Scholar] [CrossRef]
- Cota-López, R.; Velazquez, G.; Méndez-Montealvo, G.; Pérez-Ramírez, I.F.; Murúa-Pagola, B.; Espinoza-Mellado, R.; Hernández-Gama, R. Effect of adding high concentrations of retrograded starch with different amylose content on the physicochemical properties and sensory attributes of Greek-style yogurt. Int. J. Biol. Macromol. 2023, 241, 124501. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yang, H.; Wang, X.; Zhu, F.; Tang, D.; Cheng, J.; Liu, X. Effects of mulberry pomace on physicochemical and textural properties of stirred-type flavored yogurt. J. Dairy Sci. 2021, 104, 12403–12414. [Google Scholar] [CrossRef]
- Torres, I.C.; Amigo, J.M.; Knudsen, J.C.; Tolkach, A.; Mikkelsen, B.Ø.; Ipsen, R. Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. Int. Dairy J. 2018, 81, 62–71. [Google Scholar] [CrossRef]
- Gao, F.; Li, D.; Li, H.; Chen, H.; Mao, X.; Wang, P. Influence of Post-Heating Treatment on the Sensory and Textural Properties of Stirred Fermented Milk. Foods 2023, 12, 3042. [Google Scholar] [CrossRef]
- Jaster, H.; Arend, G.D.; Rezzadori, K.; Chaves, V.C.; Reginatto, F.H.; Petrus, J.C.C. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Res. Int. 2018, 104, 119–125. [Google Scholar] [CrossRef]
- Marhons, Š.; Hyršlová, I.; Stetsenko, V.; Jablonská, E.; Veselý, M.; Míchová, H.; Čurda, L.; Štĕtina, J. Properties of yoghurt treated with microbial transglutaminase and exopolysaccharides. Int. Dairy J. 2023, 144, 105701. [Google Scholar] [CrossRef]
- Lussier, N.; Gilbert, A.; St-Gelais, D.; Turgeon, S.L. Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents. Dairy 2023, 4, 108–123. [Google Scholar] [CrossRef]
- Gilbert, A.; Rioux, L.-E.; St-Gelais, D.; Turgeon, S.L. Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time affect microgel size related to syneresis. J. Dairy Sci. 2020, 103, 2139–2152. [Google Scholar] [CrossRef]
- Sanusi, M.S.; Sunmonu, M.O.; Alaka, A.; Raji, A.O.; Abdulazeez, A.; Joshua, V.A.; Adeyemi, I.A. Physicochemical, antioxidant and microbial properties of sweetened yoghurt produced from partial substitution of sugar with soursop puree. Food Prod. Process Nutr. 2023, 5, 13. [Google Scholar] [CrossRef]
- Hejazi, L.; Mahboubi-Rabbani, M.; Mahdavi, V.; Alemi, M.; Khanniri, E.; Bayanati, M. A critical review on sodium benzoate from health effects to analytical methods. Results Chem 2024, 11, 101798. [Google Scholar] [CrossRef]
- European Commision. Commission Regulation (EU) 2024/2597 of October 2024 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of sorbic acid (E 200) and potassium sorbate (E 202) and the Annex to Commission Regulation (EU) No 231/2012 as regards the specifications for sorbic acid (E 200), potassium sorbate (E 202) and propyl gallate (E 310). Off. J. Eur. Union 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402597 (accessed on 11 December 2024).
- Mohammadzadeh-Aghdash, H.; Sohrabi, Y.; Mohammadi, A.; Shanehbandi, D.; Dehghan, P.; Ezzati Nazhad Dolatabadi, J. Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chem. 2018, 257, 211–215. [Google Scholar] [CrossRef]
- Peng, Q.; Chang, H.; Wang, R.; You, Z.; Jiang, S.; Ma, C.; Huo, D.; Zhu, X.; Zhang, J. Potassium sorbate suppresses intestinal microbial activity and triggers immune regulation in zebrafish (Danio rerio). Food Funct. 2019, 10, 7164–7173. [Google Scholar] [CrossRef]
- Nagpal, R.; Indugu, N.; Singh, P. Distinct Gut Microbiota Signatures in Mice Treated with Commonly Used Food Preservatives. Microorganisms 2021, 9, 2311. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Huang, C.-C.; Du, Y.-C.; Chen, H.-S. Choice Experiment Assessment of Consumer Preferences for Yogurt Products Attributes: Evidence from Taiwan. Nutrients 2022, 14, 3523. [Google Scholar] [CrossRef] [PubMed]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef]
- Souza, M.; Drunkler, D.A.; Colla, E. Probiotic functional yogurt: Challenges and opportunities. Fermentation 2024, 10, 6. [Google Scholar] [CrossRef]
- Choi, D.; Bedale, W.; Chetty, S.; Yu, J.-H. Comprehensive review of clean-label antimicrobials used in dairy products. Compr. Rev. Food Sci. Food Saf. 2023, 23, e13263. [Google Scholar] [CrossRef]
- Branco, P.; Maurício, E.M.; Costa, A.; Ventura, D.; Roma-Rodrigues, C.; Duarte, M.P.; Fernandes, A.R.; Prista, C. Exploring the Multifaceted Potential of a Peptide Fraction Derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, Antioxidant, Antidiabetic, and Anti-Inflammatory Properties. Antibiotics 2023, 12, 1332. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, H.; Çetın, B. Multidimensional evaluation of techno-functional properties of yoghurt bacteria. Int. Dairy J. 2024, 148, 105795. [Google Scholar] [CrossRef]
- Aguirre-Garcia, Y.L.; Nery-Flores, S.D.; Campos-Muzquiz, L.G.; Flores-Gallegos, A.C.; Palomo-Ligas, L.; Ascacio-Valdés, J.A.; Sepúlveda-Torres, L.; Rodríguez-Herrera, R. Lactic acid fermentation in the food industry and bio-preservation of food. Fermentation 2024, 10, 168. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Yılmaz, B.; Şahin, T.Ö.; Güneşliol, B.E.; Ayten, Ş.; Russo, P.; Spano, G.; Rocha, J.M.; Bartkiene, E.; Özogul, F. Dairy lactic acid bacteria and their potential function in dietetics: The food–gut-health axis. Foods 2021, 10, 3099. [Google Scholar] [CrossRef]
- Abdul Hakim, B.N.; Xuan, N.J.; Oslan, S.N.H. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and their health-promoting effects. Microbiol. Spectr. 2017, 5, 10.1128/microbiolspec.bad-0010-2016. [Google Scholar] [CrossRef]
- Sibanda, T.; Marole, T.A.; Thomashoff, U.L.; Thantsha, M.S.; Buys, E.M. Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front. Microbiol. 2024, 15, 1327010. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res. Int. 2014, 55, 247–262. [Google Scholar] [CrossRef]
- Yerlikaya, O.; Saygili, D.; Akpinar, A. An application of selected enterococci using Bifidobacterium animalis subsp. lactis BB-12 in set-style probiotic yoghurt-like products. Food Biosc. 2021, 41, 101096. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Bai, M.; Kwok, L.-Y.; Zhong, Z.; Sun, Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit. Rev. Food Sci. Nutr. 2023, 20, 1–18. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef] [PubMed]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef]
- Hassoun, A.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J.; Özogul, F.; Özogul, Y.; Çoban, Ö.E.; Guðjónsdóttir, M.; Barba, F.J.; Marti-Quijal, F.J.; et al. Use of spectroscopic techniques to monitor changes in food quality during application of natural preservatives: A review. Antioxidants 2020, 9, 882. [Google Scholar] [CrossRef]
- Sharma, M.; Wasan, A.; Sharma, R.K. Recent developments in probiotics: An emphasis on Bifidobacterium. Food Biosc. 2021, 41, 100993. [Google Scholar] [CrossRef]
- Abo-Amer, A. Characterization of a bacteriocin-like inhibitory substance produced by Lactobacillus plantarum isolated from Egyptian home-made yogurt. ScienceAsia 2007, 33, 313–319. [Google Scholar] [CrossRef]
- Lopez-Brea, S.G.; Gómez-Torres, N.; Arribas, M.Á. Spore-forming bacteria in dairy products. In Microbiology in Dairy Processing: Challenges and Opportunities; Poltronieri, P., Ed.; Wiley-Blackwell: Oxford, UK, 2017; pp. 11–36. ISBN 978-1-119-11480-2. [Google Scholar]
- Yang, S.Y.; Yoon, K.S. Quantitative Microbial Risk Assessment of Listeria monocytogenes and Enterohemorrhagic Escherichia coli in Yogurt. Foods 2022, 11, 971. [Google Scholar] [CrossRef]
- Makita, K.; Desissa, F.; Teklu, A.; Zewde, G.; Grace, D. Risk assessment of staphylococcal poisoning due to consumption of informally-marketed milk and home-made yoghurt in Debre Zeit, Ethiopia. Int. J. Food Microbiol. 2012, 153, 135–141. [Google Scholar] [CrossRef]
- Miranda, R.O.; Campos-Galvão, M.E.M.; Nero, L.A. Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis. Food Res. Int. 2018, 105, 897–904. [Google Scholar] [CrossRef]
- Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Med. Princ. Pract. 2018, 27, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.; Badr, A.; El-Sohaimy, S. Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties. Biosci. Res. 2018, 15, 4171–4183. Available online: https://www.researchgate.net/publication/331178852_Novel_antifungal_bacteriocin_from_lactobacillus_paracasei_KC39_with_anti-mycotoxigenic_properties (accessed on 11 December 2024).
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Guo, J.; Liu, Y.; Xue, X.; Wang, X.; Wei, L.; Ma, J. Potential impact of combined inhibition by bacteriocins and chemical substances of foodborne pathogenic and spoilage bacteria: A review. Foods 2023, 12, 3128. [Google Scholar] [CrossRef]
- Liu, A.; Xu, R.; Zhang, S.; Wang, Y.; Hu, B.; Ao, X.; Li, Q.; Li, J.; Hu, K.; Yang, Y.; et al. Antifungal mechanisms and application of lactic acid bacteria in bakery products: A review. Front. Microbiol. 2022, 13, 924398. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Yang, H. Integrated metabolomics of “big six” Escherichia coli on pea sprouts to organic acid treatments. Food Res. Int. 2022, 157, 111354. [Google Scholar] [CrossRef]
- Stanojević-Nikolić, S.; Dimić, G.; Mojović, L.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Process. Preserv. 2016, 40, 990–998. [Google Scholar] [CrossRef]
- Garnier, L.; Penland, M.; Thierry, A.; Maillard, M.-B.; Jardin, J.; Coton, M.; Leyva Salas, M.; Coton, E.; Valence, F.; Mounier, J. Antifungal activity of fermented dairy ingredients: Identification of antifungal compounds. Int. J. Food Microbiol. 2020, 322, 108574. [Google Scholar] [CrossRef]
- Qiao, N.; Yu, L.; Zhang, C.; Wei, C.; Zhao, J.; Zhang, H.; Tian, F.; Zhai, Q.; Chen, W. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites. FEMS Microbiol. Lett. 2020, 367, 18. [Google Scholar] [CrossRef]
- Shi, C.; Knøchel, S. Sensitivity of Molds From Spoiled Dairy Products Towards Bioprotective Lactic Acid Bacteria Cultures. Front. Microbiol. 2021, 12, 631730. [Google Scholar] [CrossRef]
- Guérin, M.; Silva, C.R.-D.; Garcia, C.; Remize, F. Lactic acid bacterial production of exopolysaccharides from fruit and vegetables and associated benefits. Fermentation 2020, 6, 115. [Google Scholar] [CrossRef]
- Jurášková, D.; Ribeiro, S.C.; Silva, C.C.G. Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods 2022, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Korcz, E.; Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Nehal, F.; Sahnoun, M.; Smaoui, S.; Jaouadi, B.; Bejar, S.; Mohammed, S. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microb. Pathog. 2019, 132, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Pan, T.-M.; Wu, Y.-J.; Chang, S.-J.; Chang, M.-S.; Hu, C.-Y. Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int. J. Food Microbiol. 2010, 144, 104–110. [Google Scholar] [CrossRef]
- Ortiz-Rivera, Y.; Sánchez-Vega, R.; Gutiérrez-Méndez, N.; León-Félix, J.; Acosta-Muñiz, C.; Sepulveda, D.R. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J. Dairy Sci. 2017, 100, 4258–4268. [Google Scholar] [CrossRef]
- Schmidt, M.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 2018, 88, 139–148. [Google Scholar] [CrossRef]
- Assari, F.; Mojgani, N.; Sanjabi, M.R.; Mirdamadi, S.; Jahandar, H. Technological assessment of autochthonous lactic acid bacteria and their antibacterial activities against food borne pathogens in goat milk lactic cheese: LAB as biopreservative in dairy products. Appl. Food Biotechnol. 2023, 10, 61–71. [Google Scholar] [CrossRef]
- Aunsbjerg, S.D.; Honoré, A.H.; Marcussen, J.; Ebrahimi, P.; Vogensen, F.K.; Benfeldt, C.; Skov, T.; Knøchel, S. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 2015, 194, 46–53. [Google Scholar] [CrossRef]
- Teneva, D.; Denev, P. Biologically active compounds from probiotic microorganisms and plant extracts used as biopreservatives. Microorganisms 2023, 11, 1896. [Google Scholar] [CrossRef]
- Mun, S.Y.; Kim, S.K.; Woo, E.R.; Chang, H.C. Purification and characterization of an antimicrobial compound produced by Lactobacillus plantarum EM showing both antifungal and antibacterial activities. LWT 2019, 114, 108403. [Google Scholar] [CrossRef]
- Liang, N.; Cai, P.; Wu, D.; Pan, Y.; Curtis, J.M.; Gänzle, M.G. High-speed counter-current chromatography (HSCCC) purification of antifungal hydroxy unsaturated fatty acids from plant-seed oil and lactobacillus cultures. J. Agric. Food Chem. 2017, 65, 11229–11236. [Google Scholar] [CrossRef] [PubMed]
- Leyva Salas, M.; Mounier, J.; Maillard, M.B.; Valence, F.; Coton, E.; Thierry, A. Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products. Food Chem. 2019, 301, 125260. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Milner, J.A. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Biochem. 2009, 20, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Terra, A.L.M.; Contessa, C.R.; Rasia, T.A.; Vaz, B.S.; Moraes, C.C.; de Medeiros Burkert, J.F.; Costa, J.A.V.; Morais, M.G.; Moreira, J.B. Nanotechnology perspectives for bacteriocin applications in active food packaging. Ind. Biotechnol. 2022, 18, 137–146. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B.; Suganya, P.; Gurushankar, K. Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products—An in vitro and in silico approach. Int. J. Biol. Macromol. 2022, 220, 291–306. [Google Scholar] [CrossRef]
- Naskar, A.; Kim, K. Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics 2021, 13, 86. [Google Scholar] [CrossRef]
Type of Yogurt | Study Factor | Textural and Rheological Properties | Syneresis | Reference |
---|---|---|---|---|
Greek-style | Retrograded starch | Increased consistency, firmness, and water-holding capacity. | Decreased | [41] |
Stirred | Mulberry pomace | Increased titratable acidity, water-holding capacity, consistency, and viscosity. Decreased firmness. Improved microstructure. | Decreased | [42] |
Low-fat stirred | Increased apparent viscosity. | - | [43] | |
Stirred | Post-heating treatment | Treatments below 65 °C/25 s increased gel strength, firmness, and viscosity. Treatments above 65 °C/25 s–Decreased these properties. | - | [44] |
- | Concentrated strawberry pulp | Decreased viscosity. | - | [45] |
Unstirred | Exopolysaccharides | Increase gel strength and viscosity. | Decreased | [46] |
Stirred | Heat exchanger type | Plate heat exchanger. Tubular heat exchanger, firmer yogurt gel. | Decreased | [47] |
- | ||||
Fat content | Increased firmness and viscosity. | Decreased | ||
Stirred | Smoothing temperature | Yogurt at 42 °C: heterogeneous microstructure. | Increased | [48] |
Yogurts at 20 °C and throughout a 42 °C-to-20 °C cooling ramp: homogeneous network. | Decreased | |||
The apparent viscosity was higher at 20 °C than at 42 °C. | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Raymundo, A.; Moreira, J.B.; Prista, C. Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production. Appl. Sci. 2025, 15, 2686. https://doi.org/10.3390/app15052686
Santos C, Raymundo A, Moreira JB, Prista C. Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production. Applied Sciences. 2025; 15(5):2686. https://doi.org/10.3390/app15052686
Chicago/Turabian StyleSantos, Cristiana, Anabela Raymundo, Juliana Botelho Moreira, and Catarina Prista. 2025. "Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production" Applied Sciences 15, no. 5: 2686. https://doi.org/10.3390/app15052686
APA StyleSantos, C., Raymundo, A., Moreira, J. B., & Prista, C. (2025). Exploring the Potential of Lactic Acid Bacteria Fermentation as a Clean Label Alternative for Use in Yogurt Production. Applied Sciences, 15(5), 2686. https://doi.org/10.3390/app15052686