Battery Life Prediction for Ensuring Robust Operation of IoT Devices in Remote Metering
Abstract
:1. Introduction
2. Related Work
3. Remote Metering Life Prediction Method
3.1. Multi-Stage Discharge Primary Battery
3.2. Data Collection and Preprocessing
Algorithm 1 Voltage Interpolation |
Input: time series , with empty value of length N Output: filled time series
|
3.3. C-SDFormer Model for Predicting the Discharge Capacity of MSD Primary Battery
3.4. SOC and Remaining Time Calculation Using the Predicted Discharge Capacity
4. Experimental Setup
4.1. Hyperparameters of C-SDFormer
4.2. Implementation Details
4.3. Evaluation Metrics
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Experimental Details
Appendix A.1. Additional Analysis and Metrics
Method | MAPE | MSE (%) | ||||||
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | Average | #1 | #2 | #3 | Average | |
DNN [13] | 14.65 | 25.86 | 19.93 | 20.14 | 0.385 | 0.960 | 0.642 | 0.662 |
LSTM [14] | 12.57 | 17.84 | 15.43 | 15.28 | 0.220 | 0.581 | 0.311 | 0.370 |
CNN [15] | 12.50 | 16.70 | 18.93 | 16.04 | 0.234 | 0.457 | 0.495 | 0.395 |
CNN-LSTM-DNN [16] | 13.84 | 14.92 | 16.01 | 14.92 | 0.326 | 0.415 | 0.597 | 0.446 |
Bi-GRU [17] | 11.89 | 23.60 | 15.50 | 16.99 | 0.326 | 0.415 | 0.597 | 0.446 |
CNN-BWGRU [18] | 12.07 | 18.55 | 13.17 | 14.59 | 0.221 | 0.697 | 0.383 | 0.433 |
C-SDFormer (Ours) | 9.840 | 16.63 | 12.01 | 12.82 | 0.211 | 0.408 | 0.208 | 0.275 |
References
- Marahatta, A.; Rajbhandari, Y.; Shrestha, A.; Singh, A.; Thapa, A.; Gonzalez-Longatt, F.; Korba, P.; Shin, S. Evaluation of a lora mesh network for smart metering in rural locations. Electronics 2021, 10, 751. [Google Scholar] [CrossRef]
- Da Cunha, M.P. High-temperature harsh-environment saw sensor technology. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–10. [Google Scholar]
- Callebaut, G.; Leenders, G.; Van Mulders, J.; Ottoy, G.; De Strycker, L.; Van der Perre, L. The art of designing remote iot devices—Technologies and strategies for a long battery life. Sensors 2021, 21, 913. [Google Scholar] [CrossRef]
- Dai, Y.; Jing, Z.; Sun, Y. Reliability-centered prediction methods of clock battery low-output-voltage event for smart electricity meters. Microelectron. Reliab. 2022, 138, 114631. [Google Scholar] [CrossRef]
- Shrestha, A.; Bishwokarma, R.; Chapagain, A.; Banjara, S.; Aryal, S.; Mali, B.; Thapa, R.; Bista, D.; Hayes, B.P.; Papadakis, A.; et al. Peer-to-peer energy trading in micro/mini-grids for local energy communities: A review and case study of Nepal. IEEE Access 2019, 7, 131911–131928. [Google Scholar] [CrossRef]
- Duan, Z.; Yuan, Z.; Jiang, Y.; Zhao, Q.; Huang, Q.; Zhang, Y.; Liu, B.; Tai, H. Power generation humidity sensor based on primary battery structure. Chem. Eng. J. 2022, 446, 136910. [Google Scholar] [CrossRef]
- Marom, R.; Amalraj, S.F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21, 9938–9954. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-enabled smart agriculture: Architecture, applications, and challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors 2020, 20, 6783. [Google Scholar] [CrossRef]
- Schmidt, C.L.; Skarstad, P.M. The future of lithium and lithium-ion batteries in implantable medical devices. J. Power Sources 2001, 97, 742–746. [Google Scholar] [CrossRef]
- Jackson, N.; Adkins, J.; Dutta, P. Capacity over capacitance for reliable energy harvesting sensors. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, Montreal, QC, Canada, 15–18 April 2019; pp. 193–204. [Google Scholar]
- Bathre, M.; Das, P.K. Smart dual battery management system for expanding lifespan of wireless sensor node. Int. J. Commun. Syst. 2023, 36, e5389. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.A.; Lipu, M.S.H.; Sahari, K.S.; Ker, P.J.; Muttaqi, K.M. State-of-charge estimation of li-ion battery in electric vehicles: A deep neural network approach. IEEE Trans. Ind. Appl. 2020, 56, 5565–5574. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Chen, W.; Wang, L.Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J. Energy Storage 2020, 30, 101459. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H.; Wu, J.; Chen, Z. Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning. J. Energy Storage 2023, 73, 108579. [Google Scholar] [CrossRef]
- Zraibi, B.; Okar, C.; Chaoui, H.; Mansouri, M. Remaining useful life assessment for lithium-ion batteries using CNN-LSTM-DNN hybrid method. IEEE Trans. Veh. Technol. 2021, 70, 4252–4261. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Lin, H.; He, Z.; Wang, M.; He, Y.; Gao, X.; Gao, M. An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation. IEEE Access 2021, 9, 11252–11263. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renew. Energy 2022, 198, 1328–1340. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, X.; Wang, Z.; Wang, J. State of charge estimation for lithium-ion battery using Transformer with immersion and invariance adaptive observer. J. Energy Storage 2022, 45, 103768. [Google Scholar] [CrossRef]
- Bao, Z.; Nie, J.; Lin, H.; Gao, K.; He, Z.; Gao, M. TTSNet: State-of-Charge Estimation of Li-ion Battery in Electrical Vehicles with Temporal Transformer-based Sequence Network. IEEE Trans. Veh. Technol. 2024, 73, 7838–7851. [Google Scholar] [CrossRef]
- Nakano, K.; Tanaka, K. Transformer-Based Online Battery State of Health Estimation from Electric Vehicle Driving Data. In Proceedings of the 15th International Conference on Applied Energy (ICAE), Doha, Qatar, 3–7 December 2023; Volume 43. [Google Scholar]
- Fauzi, M.R.; Yudistira, N.; Mahmudy, W.F. State-of-Health Prediction of Lithium-Ion Batteries using Exponential Smoothing Transformer with Seasonal and Growth Embedding. IEEE Access 2024, 12, 14659–14670. [Google Scholar] [CrossRef]
- Madden, H.H. Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Anal. Chem. 1978, 50, 1383–1386. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the International Conference on Machine Learning. PMLR, Baltimore, MA, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A time series is worth 64 words: Long-term forecasting with transformers. arXiv 2022, arXiv:2211.14730. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
Collected Data | Detail |
---|---|
Timestamp [Second] | Timestamp of data collection |
Discharge Capacity [mAh] | Battery usage using Coulomb Counter (Used as the ground truth for SOC prediction) |
Temperature [°C] | Battery operating temperature |
Voltage [V] | Present voltage |
Communication Count [count] | Number of communications attempts per 10 min |
Timestamp | Voltage [V] | Temperature [°C] | Communication Count [Count] |
---|---|---|---|
1658103487 | 3.814 | 32.81 | 0 |
1658104087 | 3.814 | 32.76 | 0 |
1658104687 | 3.785 | 32.86 | 3 |
1658105287 | 3.811 | 32.71 | 0 |
1658105887 | 3.811 | 32.69 | 0 |
1658106487 | 3.813 | 32.74 | 0 |
Input Variables | Mean | Std | Min | Max |
---|---|---|---|---|
Temperature [°C] | 25.2 | 4.37 | 3.02 | 37.1 |
Voltage [V] | 3.59 | 0.08 | 3.34 | 3.83 |
Communication Count [count] | 0.55 | 1.56 | 0.00 | 41.0 |
Stage | Order | Layers | Layers Parameters |
---|---|---|---|
Input Embedding | 1 | Xavier Initialization | gain = 1.0 |
2 | Conv1D | Number of filters = 32, Kernel size = 7 | |
3 | BatchNorm1D | - | |
4 | Activation Function | Tanh | |
5 | Conv 1D | Number of filters = 64, Kernel size = 5 | |
6 | BatchNorm 1D | - | |
7 | Activation Function | Tanh | |
8 | Conv 1D | Number of filters = 128, Kernel size = 3 | |
9 | BatchNorm 1D | - | |
10 | Activation Function | Tanh | |
11 | Conv 1D | Number of filters = 128, kernel size = 1 | |
12 | BatchNorm 1D | - | |
13 | Activation Function | Tanh | |
Encoder | 1 | Encoder layer | Self-attention heads = 4, Encoder blocks = 8 |
Feed Forward | 1 | Linear | Hidden units = 32, Activation = Gelu |
2 | Drop out | Rate = 0.05 | |
3 | Linear | Hidden units = 128 | |
Outputs | 1 | Xavier Initialization | gain = 1.0 |
2 | Conv1D | Number of filters = 64, Kernel size = 3 | |
3 | Activation Function | Tanh | |
4 | Conv1D | Number of filters = 32, Kernel size = 3 | |
5 | Linear | Hidden units = 1 |
Ablated Layer | MAE (%) | RMSE (%) | SMAPE (%) | R2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | Average | #1 | #2 | #3 | Average | #1 | #2 | #3 | Average | #1 | #2 | #3 | Average | |
w/o CNN Embedding | 4.764 | 6.822 | 7.907 | 6.497 | 6.177 | 8.628 | 9.525 | 8.110 | 7.977 | 12.92 | 12.86 | 11.21 | 0.947 | 0.871 | 0.882 | 0.900 |
w/o CNN Output | 4.524 | 4.634 | 7.064 | 5.407 | 5.597 | 6.447 | 7.064 | 6.369 | 7.235 | 8.431 | 11.49 | 9.052 | 0.954 | 0.933 | 0.915 | 0.934 |
w/o Transformer | 5.273 | 6.816 | 5.644 | 5.911 | 6.178 | 8.338 | 6.777 | 7.097 | 10.33 | 10.89 | 9.117 | 10.11 | 0.928 | 0.854 | 0.928 | 0.903 |
w/o Series Decomposition | 4.641 | 4.966 | 4.500 | 4.702 | 6.236 | 6.652 | 5.973 | 6.287 | 6.714 | 9.790 | 6.323 | 7.609 | 0.949 | 0.944 | 0.958 | 0.950 |
C-SDFormer (Ours) | 3.408 | 5.123 | 3.534 | 4.021 | 4.602 | 6.391 | 4.567 | 5.186 | 5.070 | 11.60 | 4.547 | 7.072 | 0.972 | 0.950 | 0.974 | 0.965 |
Method | MAE (%) | RMSE (%) | SMAPE (%) | R2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | Average | #1 | #2 | #3 | Average | #1 | #2 | #3 | Average | #1 | #2 | #3 | Average | |
DNN [13] | 4.799 | 7.643 | 6.366 | 6.269 | 6.207 | 9.802 | 8.018 | 8.009 | 8.131 | 11.54 | 8.708 | 9.459 | 0.949 | 0.854 | 0.920 | 0.907 |
LSTM [14] | 3.745 | 6.921 | 4.360 | 5.008 | 4.406 | 8.037 | 5.558 | 6.000 | 7.471 | 10.23 | 6.744 | 8.148 | 0.974 | 0.903 | 0.960 | 0.945 |
CNN [15] | 3.793 | 5.337 | 6.169 | 5.099 | 4.840 | 6.763 | 7.035 | 6.212 | 7.366 | 8.144 | 9.441 | 8.317 | 0.964 | 0.921 | 0.928 | 0.937 |
CNN-LSTM-DNN [16] | 4.228 | 5.120 | 6.241 | 5.196 | 5.716 | 6.448 | 7.729 | 6.631 | 7.260 | 11.03 | 9.226 | 9.172 | 0.954 | 0.943 | 0.920 | 0.939 |
Bi-GRU [17] | 3.810 | 7.492 | 6.565 | 5.955 | 4.844 | 9.250 | 8.417 | 7.503 | 6.714 | 12.32 | 8.789 | 9.274 | 0.968 | 0.889 | 0.904 | 0.920 |
CNN-BWGRU [18] | 3.777 | 6.586 | 4.995 | 5.119 | 4.704 | 8.353 | 6.192 | 6.416 | 6.834 | 12.48 | 6.898 | 8.737 | 0.970 | 0.904 | 0.948 | 0.940 |
C-SDFormer (Ours) | 3.408 | 5.123 | 3.534 | 4.021 | 4.602 | 6.391 | 4.567 | 5.186 | 5.070 | 11.60 | 4.547 | 7.072 | 0.972 | 0.950 | 0.974 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, T.; Lee, C.; Kim, S.; Kim, J. Battery Life Prediction for Ensuring Robust Operation of IoT Devices in Remote Metering. Appl. Sci. 2025, 15, 2968. https://doi.org/10.3390/app15062968
Yong T, Lee C, Kim S, Kim J. Battery Life Prediction for Ensuring Robust Operation of IoT Devices in Remote Metering. Applied Sciences. 2025; 15(6):2968. https://doi.org/10.3390/app15062968
Chicago/Turabian StyleYong, Taein, Chaebong Lee, Seongseop Kim, and Jaeho Kim. 2025. "Battery Life Prediction for Ensuring Robust Operation of IoT Devices in Remote Metering" Applied Sciences 15, no. 6: 2968. https://doi.org/10.3390/app15062968
APA StyleYong, T., Lee, C., Kim, S., & Kim, J. (2025). Battery Life Prediction for Ensuring Robust Operation of IoT Devices in Remote Metering. Applied Sciences, 15(6), 2968. https://doi.org/10.3390/app15062968