Research on Heat Transfer Coefficient Prediction of Printed Circuit Plate Heat Exchanger Based on Deep Learning
Abstract
:1. Introduction
2. Data Acquisition and Preprocessing
2.1. Geometric Model and Simulation Environment
2.2. Dataset Acquisition
2.3. Feature Selection Method
2.4. Prediction Model
2.4.1. Machine Learning Models
2.4.2. Deep Learning Models
2.5. Evaluation Indicators
3. Experimental Results and Analysis
3.1. Experimental Results of Different Proportions of Dataset Division
3.2. Results of Full Feature Modeling
3.3. Feature Selection Set Modeling Results
3.4. Deep Learning Modeling Results
3.4.1. Basic Deep Learning Modeling Results
3.4.2. Modeling Results of Deep Learning Models Based on Attention Mechanism
3.5. Explainable Analysis
3.5.1. Global Interpretation
3.5.2. Local Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, F.; Ma, T.; Chen, Y.T.; Wang, Q. Study on chemical spray etching of stainless steel for printed circuit heat exchanger channels. Nucl. Eng. Des. 2019, 341, 91–99. [Google Scholar] [CrossRef]
- Chai, L.; Tassou, S.A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm. Sci. Eng. Prog. 2020, 18, 100543. [Google Scholar] [CrossRef]
- Sun, F.; Xie, G.N.; Li, S.L. An artificial-neural-network based prediction of heat transfer behaviors for in-tube supercritical CO2 flow. Appl. Soft Comput. 2021, 102, 107110. [Google Scholar] [CrossRef]
- Wen, Z.X.; Wu, J.L.; Wang, S.S.; Cheng, J.Q.; Li, Q. Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE. Int. J. Heat Mass Transf. 2024, 223, 125278. [Google Scholar] [CrossRef]
- Li, H.Z.; Zhang, Y.F.; Zhang, L.X.; Yao, M.; Kruizenga, A.; Anderson, M. PDF-Based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle. Int. J. Heat Mass Transf. 2016, 98, 204–218. [Google Scholar] [CrossRef]
- Meshram, A.; Jaiswal, A.K.; Khivsara, S.D.; Ortega, J.D.; Ho, C.; Bapat, R.; Dutta, P. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications. Appl. Therm. Eng. 2016, 109, 861–870. [Google Scholar] [CrossRef]
- Pesteei, S.M.; Mehrabi, M. Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural network. Int. Commun. Heat Mass Transf. 2010, 37, 901–906. [Google Scholar] [CrossRef]
- Yin, D.D.; Zhou, Y.L.; Guo, X.T.; Wang, D. Numerical analysis of wavy PCHEs in supercritical CO2/propane mixture Brayton cycle. Appl. Therm. Eng. 2023, 235, 121346. [Google Scholar] [CrossRef]
- Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C.; Ceccato, R.; Salmaso, L. Machine learning approach for predicting refrigerant two-phase pressure drop inside Brazed Plate Heat Exchangers (BPHE). Int. J. Heat Mass Transf. 2020, 163, 120450. [Google Scholar] [CrossRef]
- Tian, Z.; Gu, B.; Yang, L.; Liu, F. Performance prediction for a parallel flow condenser based on artificial neural network. Appl. Therm. Eng. 2014, 63, 459–467. [Google Scholar] [CrossRef]
- Wu, H.W.; Bagherzadeh, S.A.; D’Orazio, A.; Habibollahi, N.; Karimipour, A.; Goodarzi, M.; Bach, Q.V. Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal properties such as pressure drop and heat transfer coefficient for non-Newtonian binary fluids. Phys. A Stat. Mech. Its Appl. 2019, 535, 122409. [Google Scholar]
- Li, Q.; Zhan, Q.; Yu, S.; Sun, J.; Cai, W. Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods. Energy 2023, 282, 128711. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, J.; Huai, X.; Cheng, K.; Cui, X. Studies on the thermal-hydraulic performance of zigzag channel with supercritical pressure CO2. J. Supercrit. Fluids 2019, 148, 104–115. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, B.G.; Chung, J.T. Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels. Appl. Therm. Eng. 2017, 123, 1434–1443. [Google Scholar] [CrossRef]
- Han, Z.X.; Guo, J.F.; Huai, X.L. Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy. Energy 2023, 270, 126928. [Google Scholar] [CrossRef]
- Kim, W.; Baik, Y.; Jeon, S.; Jeon, D.; Byon, C. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs. Int. J. Heat Mass Transf. 2017, 106, 1294–1302. [Google Scholar] [CrossRef]
- Animah, I.; Shafiee, M. Application of risk analysis in the liquefied natural gas (LNG) sector: An overview. J. Loss Prev. Process Ind. 2020, 63, 103980. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson correlation coefficient. Noise Reduct. Speech Process. 2009, 2, 1–4. [Google Scholar]
- Pei, S.; Wang, J.; Tian, C.; Li, X.; Guo, B.; Guo, J.; Yao, Y. Assist-as-Needed Controller of a Rehabilitation Exoskeleton for Upper-Limb Natural Movements. Appl. Sci. 2025, 15, 2644. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBOOST: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CATBOOST: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31. Available online: https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html (accessed on 11 March 2025).
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support vector regression. Effic. Learn. Mach. Theor. Concepts Appl. Eng. Syst. Des. 2015, 67–80. Available online: https://link.springer.com/chapter/10.1007/978-1-4302-5990-9_4 (accessed on 11 March 2025).
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 64–67. [Google Scholar]
- Hochreiter, S. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Lim, B.; Zohren, S. Time-Series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Li, J.; Lin, Y.; Gui, Z.; Wang, P. Inception–Attention–BiLSTM Hybrid Network: A Novel Approach for Shear Wave Velocity Prediction Utilizing Well Logging. Appl. Sci. 2025, 15, 2345. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 7354–7363. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Huang, Z.; Bai, Y.; Liu, H.; Lin, Y. Multiscale Feature Modeling and Interpretability Analysis of the SHAP Method for Predicting the Lifespan of Landslide Dams. Appl. Sci. 2025, 15, 2305. [Google Scholar] [CrossRef]
- Jiang, T.; Li, M.J.; Yang, J.Q. Research on optimization of structural parameters for airfoil fin PCHE based on machine learning. Appl. Therm. Eng. 2023, 229, 120498. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Xie, B.; Zhang, L.; Zhang, Y. Experimental study of the flow and heat transfer performance of a PCHE with rhombic fin channels. Energy Convers. Manag. 2022, 254, 115137. [Google Scholar] [CrossRef]
- Wen, J.; Ma, H.; Xu, G.; Dong, B.; Liu, Z.; Zhuang, L. Experimental and numerical study on the thermal and hydraulic characteristics of an improved PCHE with high-viscosity fluid. Appl. Therm. Eng. 2025, 271, 126345. [Google Scholar] [CrossRef]
Variable | Name | Straight-Through Flow Channel Range | Hexagonal Flow Channel Range |
---|---|---|---|
Feature variable (X) | Inlet temperature Tin (Pa) | [111.15, 377.9662] | [111.15, 401.14103] |
Inlet pressure Pin (Pa) | [3.03, 11,865.28] | [79.26, 2412.52] | |
Wall heat flux density qw (W/m2) | [73,696.66, 155,707.46] | [38,664.40, 123,604.93] | |
Inner wall surface temperature Tinw (K) | [119.70, 443.74] | [124.51, 476.46] | |
Mass flow rate V (G/kg/(m2/s)) | [118.13, 265.39] | [118.13, 265.39] | |
Temperature difference Td (K) | [0.1497, 2.1355] | [−21.44, 28.31] | |
Entrance density vin (m/s) | [0.27, 11.45] | [0.27, 5.21] | |
Entrance density pin (kg/m3) | [23.43, 432.16] | [32.81, 432.16] | |
Dynamic viscosity u (kg/(m·s)) | [0.000073, 0.015] | [0.000006, 0.000733] | |
Channel diameter D (mm) | [1.2, 1.8] | [1.2, 1.8] | |
Hydraulic diameter Dh (m) | [0.0011, 0.001466] | [0.0011, 0.001466] | |
Prandtl number Pr | [0.78, 2.95] | [0.00071, 0.0028] | |
Reynolds number Re | [8.39, 4078.00] | [632.97, 24,610.42] | |
Target variable (Y) | Convective heat transfer coefficient h (W/(m2·K)) | [781.42, 20,806.38] | [554.168, 9625.993] |
Flow Channel Shape | The Number of Hidden Layers | Proportion | R2 | RMSE | MAE |
---|---|---|---|---|---|
Straight-through flow channel | 1 | 8:2 | 0.811366 (±0.023) | 1684.46 | 220.96 |
7:3 | 0.888352 (±0.015) | 1279.26 | 212.50 | ||
6:4 | 0.872762 (±0.018) | 1334.39 | 206.80 | ||
2 | 8:2 | 0.833303 (±0.021) | 1583.49 | 134.61 | |
7:3 | 0.888936 (±0.016) | 1275.91 | 123.90 | ||
6:4 | 0.880276 (±0.017) | 1294.39 | 100.16 | ||
3 | 8:2 | 0.825920 (±0.022) | 1618.17 | 140.13 | |
7:3 | 0.891799 (±0.014) | 1259.36 | 128.88 | ||
6:4 | 0.877902 (±0.019) | 1307.16 | 95.89 | ||
Hexagonal flow channel | 1 | 8:2 | 0.971331 (±0.012) | 177.025 | 99.994 |
7:3 | 0.972071 (±0.011) | 190.571 | 115.218 | ||
6:4 | 0.965544 (±0.013) | 225.748 | 119.630 | ||
2 | 8:2 | 0.992383 (±0.008) | 91.245 | 36.105 | |
7:3 | 0.995199 (±0.007) | 79.016 | 36.672 | ||
6:4 | 0.992690 (±0.009) | 103.981 | 43.366 | ||
3 | 8:2 | 0.993313 (±0.008) | 93.246 | 41.798 | |
7:3 | 0.994084 (±0.007) | 80.419 | 35.863 | ||
6:4 | 0.991977 (±0.009) | 108.933 | 47.613 |
Flow Channel Shape | Feature Selection Methods | Model | R2 | RMSE | MAE |
---|---|---|---|---|---|
Straight-through flow channel | None | RF | 0.878151 (±0.015) | 1305.83 | 150.24 |
SVM | 0.841181 (±0.020) | 1490.82 | 118.37 | ||
CATBOOST | 0.857127 (±0.018) | 1426.64 | 135.54 | ||
XGBOOST | 0.878457 (±0.016) | 1304.19 | 148.45 | ||
ANN | 0.891799 (±0.014) | 1259.36 | 128.88 | ||
Pearson | RF | 0.880556 (±0.017) | 1292.86 | 162.91 | |
SVM | 0.857282 (±0.019) | 1413.23 | 123.74 | ||
CATBOOST | 0.875124 (±0.016) | 1292.53 | 117.41 | ||
XGBOOST | 0.880421 (±0.015) | 1293.61 | 187.34 | ||
ANN | 0.882849 (±0.014) | 1280.41 | 144.92 | ||
Hexagonal flow channel | None | RF | 0.983842 (±0.008) | 144.95 | 62.19 |
SVM | 0.988545 (±0.007) | 122.05 | 35.28 | ||
CATBOOST | 0.991751 (±0.006) | 114.13 | 49.47 | ||
XGBOOST | 0.975712 (±0.009) | 177.72 | 71.64 | ||
ANN | 0.995199 (±0.007) | 79.02 | 36.67 | ||
Pearson | RF | 0.985837 (±0.008) | 135.71 | 58.59 | |
SVM | 0.990887 (±0.007) | 108.86 | 82.31 | ||
CATBOOST | 0.992613 (±0.006) | 98.12 | 51.55 | ||
XGBOOST | 0.966728 (±0.010) | 208.04 | 95.96 | ||
ANN | 0.991593 (±0.007) | 104.55 | 53.81 |
Model | Hyperparameter Range |
---|---|
CNN | batch_size = [8, 16, 32, 64, 128, 256] learning_rate = [0.01, 0.001, 0.0001] Dropout_rate = [0.01, 0.05, 0.1] |
GRU, LSTM, BiLSTM, BiGRU, Transformer | batch_size = [8, 16, 32, 64, 128, 256] learning_rate = [0.01, 0.001, 0.0001] dropout_rate = [0.01, 0.05, 0.1] hidden_dim = [16, 32, 64] num_layers = [1, 2, 3] |
Model | R2 | RMSE | MAE |
---|---|---|---|
CNN | 0.883029 | 1276.46 | 131.92 |
+SA | 0.873534 | 1353.64 | 151.79 |
+SE | 0.883679 | 1285.78 | 135.95 |
+LA | 0.843451 | 1451.12 | 186.87 |
LSTM | 0.893166 | 1219.79 | 118.88 |
+SA | 0.903425 | 1208.32 | 113.48 |
+SE | 0.938732 | 1102.43 | 105.94 |
+LA | 0.825413 | 1608.54 | 211.49 |
Transformer | 0.883673 | 1266.21 | 131.73 |
+SA | 0.886291 | 1268.49 | 149.13 |
+SE | 0.914283 | 1155.07 | 128.27 |
+LA | 0.833451 | 1480.45 | 175.39 |
Model | R2 | RMSE | MAE |
---|---|---|---|
CNN | 0.996270 | 55.751 | 35.456 |
+SA | 0.996367 | 68.737 | 40.859 |
+SE | 0.996446 | 62.744 | 38.157 |
+LA | 0.997125 | 60.147 | 36.806 |
LSTM | 0.998251 | 46.512 | 26.816 |
+SA | 0.987895 | 146.027 | 97.554 |
+SE | 0.983603 | 161.526 | 98.774 |
+LA | 0.997325 | 58.975 | 36.614 |
Transformer | 0.992415 | 97.613 | 39.735 |
+SA | 0.989617 | 131.531 | 68.774 |
+SE | 0.998861 | 56.820 | 35.138 |
+LA | 0.999257 | 39.561 | 26.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Zhao, Y.; Wu, J.; Zhang, L. Research on Heat Transfer Coefficient Prediction of Printed Circuit Plate Heat Exchanger Based on Deep Learning. Appl. Sci. 2025, 15, 4635. https://doi.org/10.3390/app15094635
Su Y, Zhao Y, Wu J, Zhang L. Research on Heat Transfer Coefficient Prediction of Printed Circuit Plate Heat Exchanger Based on Deep Learning. Applied Sciences. 2025; 15(9):4635. https://doi.org/10.3390/app15094635
Chicago/Turabian StyleSu, Yi, Yongchen Zhao, Jingjin Wu, and Ling Zhang. 2025. "Research on Heat Transfer Coefficient Prediction of Printed Circuit Plate Heat Exchanger Based on Deep Learning" Applied Sciences 15, no. 9: 4635. https://doi.org/10.3390/app15094635
APA StyleSu, Y., Zhao, Y., Wu, J., & Zhang, L. (2025). Research on Heat Transfer Coefficient Prediction of Printed Circuit Plate Heat Exchanger Based on Deep Learning. Applied Sciences, 15(9), 4635. https://doi.org/10.3390/app15094635