The Future of Manufacturing and Industry 4.0
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, K. From post-industrial to post-modern society. In The Information Society Reader; Routledge: London, UK, 2020; pp. 103–120. [Google Scholar]
- Hammond, J.L.; Hammond, B. The Rise of Modern Industry; Routledge: London, UK, 2013. [Google Scholar]
- Dosi, G.; Nelson, R.R. Chapter 3—Technical Change and Industrial Dynamics as Evolutionary Processes. In Handbook of The Economics of Innovation; Hall, B.H., Rosenberg, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 51–127. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015, 80, 1–53. [Google Scholar]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of things. Int. J. Commun. Syst. 2012, 25, 1101. [Google Scholar] [CrossRef]
- Kopetz, H.; Steiner, W. Internet of things. In Real-Time Systems: Design Principles for Distributed Embedded Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 325–341. [Google Scholar]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Vrontis, D.; Christofi, M.; Pereira, V.; Tarba, S.; Makrides, A.; Trichina, E. Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. In Artificial Intelligence and International HRM; Routledge: London, UK, 2023; pp. 172–201. [Google Scholar]
- Raj, M.; Seamans, R. Primer on artificial intelligence and robotics. J. Organ. Des. 2019, 8, 11. [Google Scholar] [CrossRef]
- Perez, J.A.; Deligianni, F.; Ravi, D.; Yang, G.Z. Artificial intelligence and robotics. arXiv 2018, 147, 2–44. [Google Scholar]
- Grabowska, S. Smart Factories in the Age of Industry 4.0. Manag. Syst. Prod. Eng. 2020, 28, 90–96. [Google Scholar] [CrossRef]
- Okuyelu, O.; Adaji, O. AI-driven real-time quality monitoring and process optimization for enhanced manufacturing performance. J. Adv. Math. Comput. Sci. 2024, 39, 81–89. [Google Scholar] [CrossRef]
- Badmus, O.; Rajput, S.A.; Arogundade, J.B.; Williams, M. AI-driven business analytics and decision making. World J. Adv. Res. Rev. 2024, 24, 616–633. [Google Scholar] [CrossRef]
- Soori, M.; Jough, F.K.G.; Dastres, R.; Arezoo, B. AI-based decision support systems in Industry 4.0, A review. J. Econ. Technol. in press. 2024. [Google Scholar] [CrossRef]
- Portney, K.E. Sustainability; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Lim, Y.S.; Stanimirova, R.D.; Xu, H.; Petkov, J. Sustainability. 2022. Available online: https://www.researchgate.net/ (accessed on 15 April 2025).
- Scoones, I. Sustainability. Dev. Pract. 2007, 17, 589–596. [Google Scholar] [CrossRef]
- Thiele, L.P. Sustainability; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Ekardt, F. Sustainability; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Adenuga, O.T.; Mpofu, K.; Boitumelo, R.I. Energy efficiency analysis modelling system for manufacturing in the context of industry 4.0. Procedia CIRP 2019, 80, 735–740. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Liu, Y.; Zhang, Y.; Ren, S.; Kong, X.; Leng, J. Industry 4.0 and cleaner production: A comprehensive review of sustainable and intelligent manufacturing for energy-intensive manufacturing industries. J. Clean. Prod. 2024, 467, 142879. [Google Scholar] [CrossRef]
- Cheah, C.G.; Chia, W.Y.; Lai, S.F.; Chew, K.W.; Chia, S.R.; Show, P.L. Innovation designs of industry 4.0 based solid waste management: Machinery and digital circular economy. Environ. Res. 2022, 213, 113619. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Q.; Jia, M. Integrating Industry 4.0 and the Internet of Things (IoT) for eco-friendly manufacturing. Int. J. Adv. Manuf. Technol. 2023, 1–10. [Google Scholar]
- Vangeri, A.K.; Bathrinath, S.; Anand, M.C.J.; Shanmugathai, M.; Meenatchi, N.; Boopathi, S. Green Supply Chain Management in Eco-Friendly Sustainable Manufacturing Industries. In Environmental Applications of Carbon-Based Materials; IGI Global: Hershey, PA, USA, 2024; pp. 253–287. [Google Scholar]
- Shafik, W. Industry 4.0 technologies’ opportunities and challenges for realising net-zero economy. In Net Zero Economy, Corporate Social Responsibility and Sustainable Value Creation: Exploring Strategies, Drivers, and Challenges; Springer: Cham, Switzerland, 2024; pp. 19–41. [Google Scholar]
- Singh, R.; Filho, W.L.; Katragadda, R.; Khan, S. A Conceptual Study on Utilizing Technology for Attaining Net Zero Through Industry 4.0. In Zero Carbon Industry, Eco-Innovation and Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2025; pp. 53–69. [Google Scholar]
- Yadav, S.; Samadhiya, A.; Kumar, A.; Majumdar, A.; Garza-Reyes, J.A.; Luthra, S. Achieving the sustainable development goals through net zero emissions: Innovation-driven strategies for transitioning from incremental to radical lean, green and digital technologies. Resour. Conserv. Recycl. 2023, 197, 107094. [Google Scholar] [CrossRef]
- Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022, 65, 279–295. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Paschek, D.; Luminosu, C.T.; Ocakci, E. Industry 5.0 challenges and perspectives for manufacturing systems in the society 5.0. Sustainability and Innovation in Manufacturing Enterprises: Indicators, Models and Assessment for Industry 5.0; Springer: Berlin/Heidelberg, Germany, 2022; pp. 17–63. [Google Scholar]
- Golovianko, M.; Terziyan, V.; Branytskyi, V.; Malyk, D. Industry 4.0 vs. Industry 5.0: Co-existence, transition, or a hybrid. Procedia Comput. Sci. 2023, 217, 102–113. [Google Scholar] [CrossRef]
- Naseer, S.; Khalid, S.; Parveen, S.; Abbass, K.; Song, H.; Achim, M.V. COVID-19 outbreak: Impact on global economy. Front. Public Health 2023, 10, 1009393. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.M.; Lee, C. The challenges and opportunities of a global health crisis: The management and business implications of COVID-19 from an Asian perspective. Asian Bus. Manag. 2020, 19, 277. [Google Scholar] [CrossRef]
- Li, Z.; Farmanesh, P.; Kirikkaleli, D.; Itani, R. A comparative analysis of COVID-19 and global financial crises: Evidence from US economy. Econ. Res.-Ekon. Istraž. 2022, 35, 2427–2441. [Google Scholar] [CrossRef]
- Uğur, N.G.; Akbıyık, A. Impacts of COVID-19 on global tourism industry: A cross-regional comparison. Tour. Manag. Perspect. 2020, 36, 100744. [Google Scholar] [CrossRef] [PubMed]
- Szczygielski, J.J.; Charteris, A.; Bwanya, P.R.; Brzeszczyński, J. The impact and role of COVID-19 uncertainty: A global industry analysis. Int. Rev. Financ. Anal. 2022, 80, 101837. [Google Scholar] [CrossRef] [PubMed]
- Nyambuu, U.; Semmler, W. Non-sustainable Growth, Resource Extraction, and Boom-Bust Cycles. In Sustainable Macroeconomics, Climate Risks and Energy Transitions: Dynamic Modeling, Empirics, and Policies; Springer International Publishing: Cham, Switzerland, 2023; pp. 21–43. [Google Scholar]
- Lang, M.; Marsden, T. Rethinking growth: Towards the well-being economy. Local Econ. 2018, 33, 496–514. [Google Scholar] [CrossRef]
- Nelles, J.; Kuz, S.; Mertens, A.; Schlick, C.M. Human-centered design of assistance systems for production planning and control: The role of the human in Industry 4.0. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 2099–2104. [Google Scholar] [CrossRef]
- Dehbozorgi, M.H.; Postell, J.; Ward, D.; Leardi, C.; Sullivan, B.P.; Rossi, M. Human in the loop: Revolutionizing industry 5.0 with design thinking and systems thinking. Proc. Des. Soc. 2024, 4, 245–254. [Google Scholar] [CrossRef]
- Pacaux-Lemoine, M.P.; Trentesaux, D.; Zambrano Rey, G.; Millot, P. Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Comput. Ind. Eng. 2017, 111, 581–595. [Google Scholar] [CrossRef]
- Rannertshauser, P.; Kessler, M.; Arlinghaus, J.C. Human-centricity in the design of production planning and control systems: A first approach towards Industry 5.0. IFAC-PapersOnLine 2022, 55, 2641–2646. [Google Scholar] [CrossRef]
- Mensah, P.; Merkuryev, Y. Developing a Resilient Supply Chain. Procedia-Soc. Behav. Sci. 2014, 110, 309–319. [Google Scholar] [CrossRef]
- Zahiri, B.; Zhuang, J.; Mohammadi, M. Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study. Transp. Res. Part E Logist. Transp. Rev. 2017, 103, 109–142. [Google Scholar] [CrossRef]
- Maharjan, R.; Kato, H. Resilient supply chain network design: A systematic literature review. Transp. Rev. 2022, 42, 739–761. [Google Scholar] [CrossRef]
- Danach, K.; Dirani, A.E.; Rkein, H. Revolutionizing Supply Chain Management With AI: A Path to Efficiency and Sustainability. IEEE Access 2024, 12, 188245–188255. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Artificial intelligence in operations management and supply chain management: An exploratory case study. Prod. Plan. Control 2022, 33, 1573–1590. [Google Scholar] [CrossRef]
- Abdelkader, S.; Amissah, J.; Kinga, S.; Mugerwa, G.; Emmanuel, E.; Mansour, D.E.A.; Bajaj, M.; Blazek, V.; Prokop, L. Securing modern power systems: Implementing comprehensive strategies to enhance resilience and reliability against cyber-attacks. Results Eng. 2024, 23, 102647. [Google Scholar] [CrossRef]
- Damilos, S.; Saliakas, S.; Karasavvas, D.; Koumoulos, E.P. An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0. Appl. Sci. 2024, 14, 4207. [Google Scholar] [CrossRef]
- Iliuţă, M.E.; Moisescu, M.A.; Pop, E.; Ionita, A.D.; Caramihai, S.I.; Mitulescu, T.C. Digital Twin—A Review of the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Yao, Z.; Wu, X.; Wu, Y.; Wen, X. Enhancing Industrial Design Competitiveness: Research and Application of a Machine Tool Industrial Design Decision-Making Method Based on Product Family Architecture and Systematic Evaluation. Appl. Sci. 2023, 13, 11831. [Google Scholar] [CrossRef]
- Nagy, L.; Abonyi, J.; Ruppert, T. Knowledge Graph-Based Framework to Support Human-Centered Collaborative Manufacturing in Industry 5.0. Appl. Sci. 2024, 14, 3398. [Google Scholar] [CrossRef]
- Renna, P. Performance Evaluation of Reconfiguration Policy in Reconfigurable Manufacturing Systems including Multi-Spindle Machines: An Assessment by Simulation. Appl. Sci. 2024, 14, 2778. [Google Scholar] [CrossRef]
- Tripathi, S.; Bachmann, N.; Brunner, M.; Jodlbauer, H. Preparedness for Data-Driven Business Model Innovation: A Knowledge Framework for Incumbent Manufacturers. Appl. Sci. 2024, 14, 3454. [Google Scholar] [CrossRef]
- Kowalski, M.; Rybarczyk, D.; Milecki, A. Stationary 3D Scanning System for IoT Applications. Appl. Sci. 2024, 14, 11587. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Yang, H.Y.; Xu, B.X.; Ting, Y.H.; Chen, S.C.; Jong, W.R. Prediction of Short-Shot Defects in Injection Molding by Transfer Learning. Appl. Sci. 2023, 13, 12868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskó, S.; Ruppert, T. The Future of Manufacturing and Industry 4.0. Appl. Sci. 2025, 15, 4655. https://doi.org/10.3390/app15094655
Jaskó S, Ruppert T. The Future of Manufacturing and Industry 4.0. Applied Sciences. 2025; 15(9):4655. https://doi.org/10.3390/app15094655
Chicago/Turabian StyleJaskó, Szilárd, and Tamás Ruppert. 2025. "The Future of Manufacturing and Industry 4.0" Applied Sciences 15, no. 9: 4655. https://doi.org/10.3390/app15094655
APA StyleJaskó, S., & Ruppert, T. (2025). The Future of Manufacturing and Industry 4.0. Applied Sciences, 15(9), 4655. https://doi.org/10.3390/app15094655