Analyzing the Economic Performance of a TLS-Based Structural Safety Diagnosis Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Challenges in Structural Safety Diagnosis
2.2. TLS-Based 3D Scanning Reverse Modeling Process
2.3. Economic Analysis of TLS-Based 3D Scanning Reverse Modeling
2.4. Research Methodology
2.4.1. Overall Framework
2.4.2. Queue Method
- M/M/1 Model
- M/D/1 Model
- Probabilistic Analysis of Customer Counts and Wait Times
- Analyze Economic Performance Considering Cost of Service and On-call Costs
- Analyze the ROI of adopting digital technologies
3. Results
3.1. Overview of Case Projects
3.2. Visual Inspection and TLS-Based 3D Scanning Reverse Modeling Process
3.3. Queuing Model Results (M/M/1 vs. M/D/1)
3.4. Economic Performance Analysis
3.4.1. Service Cost (SC) and Waiting Cost (WC)
3.4.2. Total Cost (TC)
3.5. ROI Evaluation
3.5.1. Comparing Project-Level and Company-Level ROI
3.5.2. Sensitivity and Further Considerations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarkas, A. Factors influencing labour productivity in Bahrain’s construction industry. Int. J. Constr. Manag. 2015, 15, 94–108. [Google Scholar] [CrossRef]
- Jarkas, A.; Balushi, R.; Raveendranath, P. Determinants of construction labour productivity in Oman. Int. J. Constr. Manag. 2015, 15, 332–344. [Google Scholar] [CrossRef]
- Ham, N.; Lee, S. Empirical Study on Structural Safety Diagnosis of Large-Scale Civil Infrastructure Using Laser Scanning and BIM. Sustainability 2018, 10, 4024. [Google Scholar] [CrossRef]
- Chowdhury, T.; Adafin, J.; Wilkinson, S. Review of digital technologies to improve productivity of New Zealand construction industry. J. Inf. Technol. Constr. 2019, 24, 569–587. [Google Scholar] [CrossRef]
- Park, H.-P. A Fundamental Study on International Comparison of Labor Productivity in Construction Industry. In Proceedings of the Korean Institute of Building Construction Conference, Jeju, Republic of Korea, 16–18 May 2018; pp. 310–311. Available online: https://koreascience.kr/article/CFKO201826857077446.pdf (accessed on 25 March 2025).
- Cheng, M.; Khasani, R.; Citra, R. Image-based preliminary emergency assessment of damaged buildings after earthquake: Taiwan case studies. Eng. Appl. Artif. Intell. 2023, 126, 107164. [Google Scholar] [CrossRef]
- Das, M.; Rapolu, N.; Meda, D.; Kalapatapu, P.; Kumar, V. Automated Structural Surface Damage Identification, Classification and Severity Estimation Using Deep Learning Approaches. In Proceedings of the 14th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Rashidi, M.; Mohammadi, M.; Kivi, S.; Abdolvand, M.; Truong-Hong, L.; Samali, B. A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sens. 2020, 12, 3796. [Google Scholar] [CrossRef]
- Valero, E.; Bosché, F.; Bueno, M. Laser scanning for BIM. J. Inf. Technol. Constr. 2022, 27, 486–495. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, Y.; Tang, Y.; Tian, B. Application of Terrestrial Laser Scanning (TLS) in the Architecture, Engineering and Construction (AEC) Industry. Sensors 2022, 22, 265. [Google Scholar] [CrossRef]
- Keitaanniemi, A.; Virtanen, J.; Rönnholm, P.; Kukko, A.; Rantanen, T.; Vaaja, M. The Combined Use of SLAM Laser Scanning and TLS for the 3D Indoor Mapping. Buildings 2021, 11, 386. [Google Scholar] [CrossRef]
- Stefańska, A.; Markowski, H.; Dixit, S. Three-dimensional laser scanning for structure documentation and construction management: A case study of renovation and rebuilt of metro tunnels. Ain Shams Eng. J. 2024, 15, 102665. [Google Scholar] [CrossRef]
- Chacón, R.; Puig-Polo, C.; Real, E. TLS measurements of initial imperfections of steel frames for structural analysis within BIM-enabled platforms. Autom. Constr. 2021, 125, 103618. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, C.; Wei, Q. Digital technology adoption and enterprise investment efficiency. Financ. Res. Lett. 2025, 72, 106623. [Google Scholar] [CrossRef]
- Hwang, W.; Kim, H. Does the adoption of emerging technologies improve technical efficiency? Evidence from Korean manufacturing SMEs. Small Bus. Econ. 2021, 7, 627–643. [Google Scholar] [CrossRef]
- Woliński, S. Multi-faced assessment of structural safety. Arch. Civ. Eng. 2023, 67, 133–154. [Google Scholar] [CrossRef]
- Jeong, H.-J.; Ham, N.-H.; Lee, B.-D.; Park, K.-M.; Kim, J.-J. A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning. J. KIBIM 2019, 9, 11–21. [Google Scholar] [CrossRef]
- Pandey, S.; Sinha, A. Visual Inspection Of Structures—Primary Aspect Of Structural Health Assessment. Tuijin Jishu/J. Propuls. Technol. 2023, 44, 4127–4135. [Google Scholar] [CrossRef]
- Anil, A.; Thanuja, R.; Sankar, S.; Gopal, V.; Kumar, E.; Kumar, S. Qualitative Assessment of a Construction Building. Adv. Mater. Res. 2024, 1182, 63–71. [Google Scholar] [CrossRef]
- Agdas, D.; Rice, J.; Martinez, J.; Lasa, I. Comparison of visual inspection and structural-health monitoring as bridge condition assessment methods. J. Bridge Eng. 2016, 30, 04015049. [Google Scholar] [CrossRef]
- Ichitsubo, M.; Horiguchi, I.; Nagamachi, M. A study on the evaluation of structure damages for the visual inspection. In Proceedings of the 2005 International Conference on Active Media Technology (AMT 2005), Kagawa, Japan, 19–21 May 2005; pp. 455–460. [Google Scholar] [CrossRef]
- Smith, D.K.; Tardif, M. Building Information Modeling: A Strategic Implementation Guide for Architects, Engineers, Constructors, and Real Estate Asset Managers; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bertola, N.; Brühwiler, E. Risk-based methodology to assess bridge condition based on visual inspection. Struct. Infrastruct. Eng. 2021, 19, 575–588. [Google Scholar] [CrossRef]
- Kwon, N.; Song, K.; Ahn, Y.; Park, M.; Jang, Y. Maintenance cost prediction for aging residential buildings based on case-based reasoning and genetic algorithm. J. Build. Eng. 2020, 28, 101006. [Google Scholar] [CrossRef]
- Park, M.; Kwon, N.; Lee, J.; Lee, S.; Ahn, Y. Probabilistic Maintenance Cost Analysis for Aged Multi-Family Housing. Sustainability 2019, 11, 1843. [Google Scholar] [CrossRef]
- Mohamed, A.; Abdallah, M.; Marzouk, M. BIM and semantic web-based maintenance information for existing buildings. Autom. Constr. 2020, 116, 103209. [Google Scholar] [CrossRef]
- Mohamed, H.; Hashim, N.; Yusuwan, N.; Hanafiah, M.; Shamsuddin, S. Assessing cost and benefit attributes of Building Information Modelling (BIM) implementation in Malaysian public agency: PLS-SEM approach. J. Inf. Technol. Constr. 2024, 29, 308–323. [Google Scholar] [CrossRef]
- Datta, S.; Tayeh, B.; Hakeem, I.; Aisheh, Y. Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review. Sustainability 2023, 15, 12466. [Google Scholar] [CrossRef]
- Bowden, S.; Dorr, A.; Thorpe, A.; Anumba, C.; Gooding, P. Making the Case for Mobile IT in Construction. In Proceedings of the Computing in Civil Engineering, Cancun, Mexico, 12–15 July 2005; pp. 1–12. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Feng, Y.; Xu, P. “Turning green into gold”: A framework for energy performance contracting (EPC) in China’s real estate industry. J. Clean. Prod. 2015, 109, 166–173. [Google Scholar] [CrossRef]
- Yap, J.; Lam, C.; Skitmore, M.; Talebian, N. Barriers to the adoption of new safety technologies in construction: A developing country context. J. Civ. Eng. Manag. 2022, 28, 120–133. [Google Scholar] [CrossRef]
- Afolabi, A.; Nnaji, C.; Okoro, C. Immersive Technology Implementation in the Construction Industry: Modeling Paths of Risk. Buildings 2022, 12, 363. [Google Scholar] [CrossRef]
- Ren, X.; Terwel, K.; Van Gelder, P. Human and organizational factors influencing structural safety: A review. Struct. Saf. 2024, 107, 102407. [Google Scholar] [CrossRef]
- Nong, X.; Luo, X.; Lin, S.; Ruan, Y.; Ye, X. Multimodal Deep Neural Network-Based Sensor Data Anomaly Diagnosis Method for Structural Health Monitoring. Buildings 2023, 13, 1976. [Google Scholar] [CrossRef]
- Kim, T.; Yoon, Y.; Lee, B.; Ham, N.; Kim, J.J. Cost–benefit analysis of scan-vs-BIM-based quality management. Buildings 2022, 12, 2052. [Google Scholar] [CrossRef]
- Zawada, K.; Rybak-Niedziółka, K.; Donderewicz, M.; Starzyk, A. Digitization of AEC Industries Based on BIM and 4.0 Technologies. Buildings 2024, 14, 1350. [Google Scholar] [CrossRef]
- De Souza, A.; Debs, L. Identifying Emerging Technologies and Skills Required for Construction 4.0. Buildings 2023, 13, 2535. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Sepasgozar, S.; Zlatanova, S. A Systematic Review of Digital Technology Adoption in Off-Site Construction: Current Status and Future Direction towards Industry 4.0. Buildings 2020, 10, 204. [Google Scholar] [CrossRef]
- Elghaish, F.; Matarneh, S.; Talebi, S.; Kagioglou, M.; Hosseini, M.; Abrishami, S. Toward digitalization in the construction industry with immersive and drones technologies: A critical literature review. Smart Sustain. Built Environ. 2020, 10, 345–363. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, W.; Mellado, N.; Grussenmeyer, P.; Li, R.; Chen, Y.; Wan, P.; Zhang, X.; Cai, S. Automated markerless registration of point clouds from TLS and structured light scanner for heritage documentation. J. Cult. Herit. 2019, 39, 202–213. [Google Scholar] [CrossRef]
- Aryan, A.; Bosché, F.; Tang, P. Planning for terrestrial laser scanning in construction: A review. Autom. Constr. 2021, 129, 103551. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A. Evaluation of LiDAR-Derived Features Relevance and Training Data Minimization for 3D Point Cloud Classification. Remote Sens. 2022, 14, 5934. [Google Scholar] [CrossRef]
- Rougeron, G.; Le Garrec, J.; Andriot, C. Optimal positioning of terrestrial LiDAR scanner stations in complex 3D environments with a multiobjective optimization method based on GPU simulations. ISPRS J. Photogramm. Remote Sens. 2022, 193, 60–76. [Google Scholar] [CrossRef]
- Teng, J.; Shi, Y.; Wang, H.; Wu, J. Review on the Research and Applications of TLS in Ground Surface and Constructions Deformation Monitoring. Sensors 2022, 22, 9179. [Google Scholar] [CrossRef]
- Artese, S.; Zinno, R. TLS for Dynamic Measurement of the Elastic Line of Bridges. Appl. Sci. 2020, 10, 1182. [Google Scholar] [CrossRef]
- Grasso, S.; Bellinvia, S.; Salerno, N.; Rizzo, S. A Simple and Economical System for Automatic Near-Field Scanning for Power Electronics Converters. Energies 2023, 16, 7868. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Zhu, J.; Tang, X.; Wang, L. Freehand scanning photoacoustic microscopy with simultaneous localization and mapping. Photoacoustics 2022, 28, 100411. [Google Scholar] [CrossRef] [PubMed]
- Matusova, D.; Bartosova, V. Utilization the Process BIM—Building Information Modeling in Facility Management. In Proceedings of the Advances and Trends in Engineering Sciences and Technologies II, Bangalore, India, 5–7 January 2017; pp. 429–436. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Bagchi, A. Integrating BIM into sensor-based facilities management operations. J. Facil. Manag. 2022, 20, 385–400. [Google Scholar] [CrossRef]
- Teicholz, P. BIM for Facility Managers; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- García, O.; Diaz-Severiano, J.; Gómez-Jáuregui, V.; Del Val, C.; Iglesias, J.; Royano, A.; González, C. Modelling As-Built MEP Facilities in a BIM Environment. In Proceedings of the International Conference on The Digital Transformation in the Graphic Engineering, Logroño, Spain, 20–21 June 2019; pp. 491–498. [Google Scholar] [CrossRef]
- Zeibak-Shini, R.; Sacks, R.; Filin, S.; Khaled, L. Towards generation of as-damaged BIM models using laser-scanning and as-built BIM: First estimate of as-damaged locations of reinforced concrete frame members in masonry infill structures. Adv. Eng. Inform. 2016, 30, 312–326. [Google Scholar] [CrossRef]
- Zeibak-Shini, R.; Khaled, L.; Sacks, R. Mapping the Structural Frame of a Damaged Reinforced Concrete Building using As-Damaged Scans and As-Built BIM. In Proceedings of the 32nd CIB W78 Conference, Eindhoven, The Netherlands, 27–29 October 2015. [Google Scholar]
- Wałach, D.; Kaczmarczyk, G. Application of TLS Remote Sensing Data in the Analysis of the Load-Carrying Capacity of Structural Steel Elements. Remote Sens. 2021, 13, 2759. [Google Scholar] [CrossRef]
- Chmeit, R.; Lyu, J.; Pitt, M. Implementation Challenges of Building Information Modelling (BIM) in Small to Medium-Sized Enterprises (SMEs) Participating in Public Projects in Qatar. Comput. Decis. Mak. Int. J. 2024, 1, 252–279. [Google Scholar] [CrossRef]
- Silva, T.; Vieira, D.; De Carvalho, M. Exploring the Challenges in Building Information Modeling (BIM) During the Design Phase: Evidence From Cross-Country Studies. IEEE Trans. Eng. Manag. 2024, 71, 14846–14860. [Google Scholar] [CrossRef]
- Pham, C.; Cao, C.; Van Le, C.; Nguyen, L.; Le, T.; Van Nguyen, T.; La, H. BIM and TLS Point Cloud Integration for Information Management of Underground Coal Mines: A Case Study in Nui Beo Underground Coal Mining in Vietnam. KSCE J. Civ. Eng. 2024, 28, 5829–5840. [Google Scholar] [CrossRef]
- Tang, X.; Wang, M.; Wang, Q.; Guo, J.; Zhang, J. Benefits of Terrestrial Laser Scanning for Construction QA/QC: A Time and Cost Analysis. J. Manag. Eng. 2022, 38, 05022001. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Li, Z.; Zhang, B.; Zhang, W. Barriers to promoting prefabricated construction in China: A cost–benefit analysis. J. Clean. Prod. 2018, 172, 649–660. [Google Scholar] [CrossRef]
- Nezhadpour Esmaeeli, A.; Heravi, G. A decision support framework for economic evaluation of flexible strategies in pavement construction projects. Int. J. Pavement Eng. 2019, 20, 1342–1358. [Google Scholar] [CrossRef]
- Tarefder, R.A.; Ahmad, M. Cost-effectiveness analysis of chip seal with and without millings. Int. J. Pavement Eng. 2018, 19, 893–900. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Dara, C.; Hachem-Vermette, C. Evaluation of low-impact modular housing using energy optimization and life cycle analysis. Energy Ecol. Environ. 2019, 4, 286–299. [Google Scholar] [CrossRef]
- Vassiliades, C.; Barone, G.; Buonomano, A.; Forzano, C.; Giuzio, G.; Palombo, A. Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis. Renew. Energy 2022, 187, 103–119. [Google Scholar] [CrossRef]
- Vitkova, A.; Vitásek, S. A Case Study on Sustainable Technologies in Residential Buildings from a Life Cycle Cost Analysis (LCC) Perspective. Sustainability 2024, 16, 10892. [Google Scholar] [CrossRef]
- Mariana, Z.; Daniela, M.; Luiza, I. Return on Investment—Indicator for Measuring the Profitability of Invested Capital. Valahian J. Econ. Stud. 2016, 7, 79–86. [Google Scholar] [CrossRef]
- Walasek, D.; Barszcz, A. Analysis of the adoption rate of building information modeling [BIM] and its return on investment [ROI]. Procedia Eng. 2017, 172, 1227–1234. [Google Scholar] [CrossRef]
- Ham, N.H. A Case Study on the Economic Impacts of Design Errors in BIM-based High-Rise Construction Project. Ph.D. Thesis, Hanyang University, Seoul, Republic of Korea, 2018. [Google Scholar]
- Sawhney, A.; Abourizk, S.; Halpin, D. Construction project simulation using CYCLONE. Can. J. Civ. Eng. 1998, 25, 16–25. [Google Scholar] [CrossRef]
- Lestari, D.; Alfianto, D.; Rosidi, Y. CYCLONE Modeling Analysis Operation Slab Work Project Conggeang Bridge—Cisumdawu Toll Road Section 5A. J. Transnatl. Univ. Stud. 2024, 3, 100. [Google Scholar] [CrossRef]
- Martínez, J.; Ioannou, P. General-purpose systems for effective construction simulation. J. Constr. Eng. Manag. 1999, 125, 265–276. [Google Scholar] [CrossRef]
- Rece, L.; Vlase, S.; Ciuiu, D.; Neculoiu, G.; Mocanu, Ș.; Modrea, A. Queueing Theory-Based Mathematical Models Applied to Enterprise Organization and Industrial Production Optimization. Mathematics 2022, 10, 2520. [Google Scholar] [CrossRef]
- Saini, B.; Singh, D.; Sharma, K. Application of Queueing Theory to Analyze the Performance Metrics of Manufacturing Systems. Asian Res. J. Math. 2024, 20, 84–95. [Google Scholar] [CrossRef]
- Saini, B.; Singh, D.; Sharma, D. Exploring the Role of Queueing Theory in Manufacturing: An Analytical Study. Int. Res. J. Adv. Eng. Manag. 2024, 2, 255–266. [Google Scholar] [CrossRef]
- Bebittovimalan, A.; Thiagarajan, M. An Infinite Capacity Single Server Markovian Queueing System with Discouraged Arrivals Retention of Reneged Customers and Controllable Arrival Rates with Feedback. Indian J. Sci. Technol. 2024, 17, 3100–3108. [Google Scholar] [CrossRef]
- Gal, A.; Senderovich, A.; Weidlich, M. Challenge Paper. J. Data Inf. Qual. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Amjath, M.; Kerbache, L.; Smith, J.; Elomri, A. Optimisation of Buffer Allocations in Manufacturing Systems: A Study on Intra and Outbound Logistics Systems Using Finite Queueing Networks. Appl. Sci. 2023, 13, 9525. [Google Scholar] [CrossRef]
- Staffolani, A.; Darvariu, V.; Bellavista, P.; Musolesi, M. RLQ: Workload Allocation with Reinforcement Learning in Distributed Queues. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 856–868. [Google Scholar] [CrossRef]
- Teknomo, K. Queuing rule of thumb based on M/M/s queuing theory with applications in construction management. Civ. Eng. Dimens. 2012, 14, 139–146. [Google Scholar]
- Ham, N.; Moon, S.; Kim, J.H.; Kim, J.J. Optimal BIM staffing in construction projects using a queueing model. Autom. Constr. 2020, 113, 103123. [Google Scholar] [CrossRef]
- Wee, K.; Ham, N.; Kim, J.J. Microscopical Resource Allocation for Large-Scale Apartment Foundation Work Using Queuing Systems. Buildings 2022, 12, 89. [Google Scholar] [CrossRef]
- Kim, J.W.; Ham, N.; Kim, J.J. Quantitative analysis of waiting length and waiting time for frame construction work activities using a queue model; focusing on Korean apartment construction. Sustainability 2021, 13, 3778. [Google Scholar] [CrossRef]
Classification | Project A | Project B | Project C |
---|---|---|---|
Use | Apartment complex | Conveyor belt system | Automobile manufacturing plant |
Structure | Reinforced concrete structure | Steel frame structure | Steel frame structure |
Scale |
| 52,000 mm × 26,000 mm × 16,000 mm | 5,000,000 m3 |
Investigation target | Fire-damaged area | Displacement of steel members | Displacement and deformation of pipe racks |
Notable points | Fire incident occurred during construction | Completed in 1987 (aging structure) |
|
Main tasks |
|
|
|
Contract period | 2 months (44 days) | 4 months (88 days) | 8 months (176 days) |
Classification | Project A | Project B | Project C | ||||
---|---|---|---|---|---|---|---|
Customer | 21,550 | 5200 | 2743 | ||||
Professional engineer | Person | 1 | 1 | 1 | 1 | 1 | 1 |
cost | 432,440 | 432,440 | 432,440 | 432,440 | 432,440 | 432,440 | |
Senior engineer | Person | 2 | 1 | 8 | 4 | 8 | 3 |
cost | 282,545 | 282,545 | 282,545 | 282,545 | 282,545 | 282,545 | |
Junior engineer | Person | 1 | 1 | 1 | 1 | 1 | 1 |
cost | 175,259 | 175,259 | 175,259 | 175,259 | 175,259 | 175,259 | |
Total cost | 1,172,789 | 890,244 | 2,868,059 | 1,737,879 | 2,868,059 | 1,455,334 | |
Equipment | - | TLS + BIM | - | TLS + BIM | - | TLS + BIM | |
Equipment cost | 120,000,000 | 120,000,000 | 120,000,000 | ||||
Service contract period | 2 months (44 days) | 4 months (88 days) | 8 months (176 days) | ||||
Service fee | 30,000,000 | 28,5000,000 | 120,000,000 |
Classification | Method | Labor Input | Process |
---|---|---|---|
Project A | Visual inspection | 4 people/40 days |
|
TLS inspection | 3 people/14 days |
| |
Project B | Visual inspection | 10 people/80 days |
|
TLS inspection | 6 people/55 days |
| |
Project C | Visual inspection | 10 people/154 days |
|
TLS inspection | 5 people/66 days |
|
Classification | Project A | Project B | Project C | |||
---|---|---|---|---|---|---|
As-Is | To-Be | As-Is | To-Be | As-Is | To-Be | |
Queue analysis model | M/M/1 | M/D/1 | M/M/1 | M/D/1 | M/M/1 | M/D/1 |
Investigation period required | 40 | 14 | 80 | 55 | 154 | 66 |
489.77 | 59.09 | 15.59 | ||||
538.75 | 1538.29 | 65 | 94.55 | 17.81 | 41.56 | |
0.91 | 0.32 | 0.91 | 0.62 | 0.88 | 0.38 | |
0.09 | 0.68 | 0.09 | 0.38 | 0.12 | 0.62 | |
10 | 0.47 | 10 | 1.15 | 7.02 | 0.49 | |
9.1 | 0.15 | 9.09 | 0.52 | 6.15 | 0.11 | |
0.02 | 0.001 | 0.169 | 0.019 | 0.45 | 0.031 | |
0.018 | 0.0003 | 0.154 | 0.009 | 0.394 | 0.007 |
Classification | Project A | Project B | Project C | |||
---|---|---|---|---|---|---|
As-Is | To-Be | As-Is | To-Be | As-Is | To-Be | |
0.091 | 0.682 | 0.091 | 0.375 | 0.125 | 0.625 | |
0.002 | 0.000 | 0.478 | 0.012 | 0.758 | 0.039 | |
0.002 | 0.000 | 0.434 | 0.007 | 0.662 | 0.015 |
Classification | Project A | Project B | Project C | |||
---|---|---|---|---|---|---|
As-Is | To-Be | As-Is | To-Be | As-Is | To-Be | |
1,172,789 | 890,244 | 2,865,329 | 1,735,149 | 2,865,329 | 1,452,604 | |
Server | 1 | 1 | 1 | 1 | 1 | 1 |
195,465 | 148,374 | 477,555 | 289,192 | 477,555 | 242,101 | |
10 | 0.47 | 10 | 1.67 | 7 | 0.6 | |
1,172,789 | 890,244 | 2,865,329 | 1,735,149 | 2,865,329 | 1,452,604 | |
1,954,648 | 69,241 | 4,775,548 | 481,986 | 3,342,884 | 145,260 |
Classification | Project A | Project B | Project C | |||
---|---|---|---|---|---|---|
As-Is | To-Be | As-Is | To-Be | As-Is | To-Be | |
Investigation period required | 40 | 14 | 80 | 55 | 154 | 66 |
(1 day) | 3,127,437 | 959,485 | 7,640,877 | 2,217,135 | 6,208,213 | 1,597,864 |
(1 project) | 125,097,493 | 13,432,793 | 611,270,187 | 121,942,416 | 956,064,776 | 105,459,050 |
Classification | Project Level | Company Level (A + B + C) | ||
---|---|---|---|---|
Project A | Project B | Project C | ||
Total cost (a) | 13,432,793 | 121,942,416 | 105,459,050 | 240,834,259 |
Service fee (b) | 30,000,000 | 285,000,000 | 120,000,000 | 435,000,000 |
Revenue (b − a) | 16,567,207 | 163,057,584 | 14,540,950 | 194,165,741 |
Investment | 120,000,000 | 120,000,000 | 120,000,000 | 120,000,000 |
ROI (%) | 13.81 | 135.88 | 12.12 | 161.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Wee, K.; Ham, N.; Kim, J.-j. Analyzing the Economic Performance of a TLS-Based Structural Safety Diagnosis Process. Appl. Sci. 2025, 15, 4657. https://doi.org/10.3390/app15094657
Kim T, Wee K, Ham N, Kim J-j. Analyzing the Economic Performance of a TLS-Based Structural Safety Diagnosis Process. Applied Sciences. 2025; 15(9):4657. https://doi.org/10.3390/app15094657
Chicago/Turabian StyleKim, Taewan, Kyungsoo Wee, Namhyuk Ham, and Jae-jun Kim. 2025. "Analyzing the Economic Performance of a TLS-Based Structural Safety Diagnosis Process" Applied Sciences 15, no. 9: 4657. https://doi.org/10.3390/app15094657
APA StyleKim, T., Wee, K., Ham, N., & Kim, J.-j. (2025). Analyzing the Economic Performance of a TLS-Based Structural Safety Diagnosis Process. Applied Sciences, 15(9), 4657. https://doi.org/10.3390/app15094657