A Multi-Objective Formulation for the Internet Shopping Optimization Problem with Multiple Item Units
Abstract
:1. Introduction
2. Proposed Multi-Objective Formulation
3. Algorithms for the Experimental Comparison
3.1. AGEMOEA
3.2. AGEMOEA2
3.3. GWASFGA
3.4. MOCell
3.5. MOMBI
3.6. MOMBI2
3.7. NSGA2
3.8. SMS-EMOA
4. Experimental Setup
5. Numerical Results
6. Graphical Results
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ISHOP-U | The Internet Shopping Optimization problem with multiple item Units |
IGD | Inverted Generational Distance |
AGEMOEA | Adaptive Geometry Estimation-based Multi-Objective Evolutionary Algorithm |
AGEMOEA2 | Adaptive Geometry Estimation Based Multi-Objective Evolutionary Algorithm 2 |
GWASFGA | Global Weighting Achievement Scalarizing Function Genetic Algorithm |
MOCell | Multi-objective Cellular |
MOMBI | Many-Objective Metaheuristic Based on the Indicator |
MOMBI2 | Many-Objective Metaheuristic Based on the Indicator 2 |
NSGA2/NSGA-II | Nondominated Sorting Genetic Algorithm 2 |
SMS-EMOA | The S Metric Selection Evolutionary Multi-Objective Algorithm |
S | Small |
M | Medium |
L | Large |
References
- Ornelas, F.; Santiago, A.; Martínez, S.I.; Ponce-Flores, M.P.; Terán-Villanueva, J.D.; Balderas, F.; Rocha, J.A.C.; García, A.H.; Laria-Menchaca, J.; Treviño-Berrones, M.G. The Internet Shopping Optimization Problem with Multiple Item Units (ISHOP-U): Formulation, Instances, NP-Completeness, and Evolutionary Optimization. Mathematics 2022, 10, 2513. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st ed.; Series of Books in the Mathematical Sciences; W. H. Freeman: New York, NY, USA, 1979. [Google Scholar]
- Sipser, M. Introduction to the Theory of Computation, 3rd ed.; Course Technology: Boston, MA, USA, 2013. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Yahui, W.; Ling, S.; Cai, Z.; Liuqiang, F.; Xiangjie, J. NSGA-II algorithm and application for multi-objective flexible workshop scheduling. J. Algorithms Comput. Technol. 2020, 14, 1748302620942467. [Google Scholar] [CrossRef]
- Chen, J.; Xue, Z.; Han, D. Dynamic multi-objective optimization for mixed traffic flow based on partial least squares prediction model. J. Algorithms Comput. Technol. 2019, 13, 1748302619873589. [Google Scholar] [CrossRef]
- Morales, M.Á.G.; Huacuja, H.J.F.; Solís, J.F.; Reyes, L.C.; Santillán, C.G.G. A Survey of Models and Solution Methods for the Internet Shopping Optimization Problem. In Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design; Castillo, O., Melin, P., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 105–122. [Google Scholar] [CrossRef]
- García-Morales, M.A.; Brambila-Hernández, J.A.; Fraire-Huacuja, H.J.; Frausto-Solis, J.; Cruz-Reyes, L.; Gómez-Santillan, C.G.; Valadez, J.M.C.; Aguirre-Lam, M.A. Multi-objective Evolutionary Algorithm Based on Decomposition to Solve the Bi-objective Internet Shopping Optimization Problem (MOEA/D-BIShOP). In Proceedings of the Advances in Computational Intelligence. MICAI 2023 International Workshops, Yucatán, Mexico, 13–18 November 2023; Calvo, H., Martínez-Villaseñor, L., Ponce, H., Zatarain Cabada, R., Montes Rivera, M., Mezura-Montes, E., Eds.; Springer: Cham, Switzerland, 2024; pp. 326–336. [Google Scholar]
- Musial, J.; Lopez-Loces, M.C. Trustworthy Online Shopping with Price Impact. Found. Comput. Decis. Sci. 2017, 42, 121–136. [Google Scholar] [CrossRef]
- Castán Rocha, J.A.; Santiago, A.; García-Ruiz, A.H.; Terán-Villanueva, J.D.; Martínez, S.I.; Treviño Berrones, M.G. Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines. Mathematics 2024, 12, 3733. [Google Scholar] [CrossRef]
- Saborido, R.; Ruiz, A.B.; Luque, M. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Evol. Comput. 2017, 25, 309–349. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.B.; Saborido, R.; Luque, M. A preference-based evolutionary algorithm for multiobjective optimization: The weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 2015, 62, 101–129. [Google Scholar] [CrossRef]
- Santiago, A.; Huacuja, H.J.F.; Dorronsoro, B.; Pecero, J.E.; Santillan, C.G.; Barbosa, J.J.G.; Monterrubio, J.C.S. A Survey of Decomposition Methods for Multi-objective Optimization. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems; Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 453–465. [Google Scholar] [CrossRef]
- Nebro, A.J.; Durillo, J.J.; Luna, F.; Dorronsoro, B.; Alba, E. MOCell: A cellular genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 2009, 24, 726–746. [Google Scholar] [CrossRef]
- Gómez, R.H.; Coello, C.A.C. MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2488–2495. [Google Scholar] [CrossRef]
- Hernández Gómez, R.; Coello Coello, C.A. Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 11–15 July 2015; GECCO ’15. pp. 679–686. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the Evolutionary Algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar] [CrossRef]
- Santiago, A.; Dorronsoro, B.; Fraire, H.J.; Ruiz, P. Micro-Genetic algorithm with fuzzy selection of operators for multi-Objective optimization: μFAME. Swarm Evol. Comput. 2021, 61, 100818. [Google Scholar] [CrossRef]
- Fleischer, M. The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In Evolutionary Multi-Criterion Optimization; Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–533. [Google Scholar]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.; da Fonseca, V. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Masuda, H.; Nojima, Y. A Study on Performance Evaluation Ability of a Modified Inverted Generational Distance Indicator. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 11–15 July 2015; GECCO ’15. pp. 695–702. [Google Scholar] [CrossRef]
- Giagkiozis, I.; Purshouse, R.C.; Fleming, P.J. Generalized Decomposition. In Evolutionary Multi-Criterion Optimization; Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 428–442. [Google Scholar]
- Ishibuchi, H.; Setoguchi, Y.; Masuda, H.; Nojima, Y. Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes. IEEE Trans. Evol. Comput. 2017, 21, 169–190. [Google Scholar] [CrossRef]
- Ishibuchi, H.; He, L.; Shang, K. Regular Pareto Front Shape is not Realistic. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 2034–2041. [Google Scholar] [CrossRef]
- Ornelas, F.; Santiago, A.; Castan Rocha, J.A.; Ibarra Martínez, S.; García, A.H. Warm Starting Integer Programming for the Internet SHopping Optimization Problem with Multiple Item Units (ISHOP-U). In Artificial Intelligence in Prescriptive Analytics: Innovations in Decision Analysis, Intelligent Optimization, and Data-Driven Decisions; Pedrycz, W., Rivera, G., Fernández, E., Meschino, G.J., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 153–170. [Google Scholar] [CrossRef]
- Del-Angel, J.; Santiago, A.; Ibarra-Martínez, S.; Castán-Rocha, J.A.; Treviño-Berrones, M.G. A Linear Genetic Programming Approach for the Internet Shopping Optimization Problem with Multiple Item Units (ISHOP-U). Comput. Y Sist. 2024, 28, 1687–1693. [Google Scholar] [CrossRef]
- Ornelas, F.; García, A.H.; Santiago, A.; Martínez, S.I.; Rocha, J.A.C.; Balderas, F.; Laria-Menchaca, J.; Treviño-Berrones, M.G. Integer Programming, low complexity Heuristics, and Gaussian instances for the Internet Shopping Optimization Problem with multiple item Units (ISHOP-U). J. Univ. Comput. Sci. 2025, 31, 298. [Google Scholar] [CrossRef]
Parameter | AGEMOEA | AGEMOEA2 |
---|---|---|
Population size: | 100 | 100 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | ||
Mutation: | ||
MOMBI | MOMBI2 | |
Population size: | 101 | 101 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | ||
Mutation: | ||
SMS-EMOA | MOCell | |
Archive size: | - | 100 |
Population size: | 100 | 100 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | ||
Mutation: | ||
GWASFGA | NSGA2 | |
Population size: | 100 | 100 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | ||
Mutation: |
Problem | AGEMOEA | AGEMOEA2 | GWASGFA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
S1 | ||||||||
S2 | ||||||||
S3 | ||||||||
S4 | ||||||||
S5 | ||||||||
M1 | ||||||||
M2 | ||||||||
M3 | ||||||||
M4 | ||||||||
M5 | ||||||||
L1 | ||||||||
L2 | ||||||||
L3 | ||||||||
L4 | ||||||||
L5 |
Problem | AGEMOEA | AGEMOEA2 | GWASGFA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
S1 | ||||||||
S2 | ||||||||
S3 | ||||||||
S4 | ||||||||
S5 | ||||||||
M1 | ||||||||
M2 | ||||||||
M3 | ||||||||
M4 | ||||||||
M5 | ||||||||
L1 | ||||||||
L2 | ||||||||
L3 | ||||||||
L4 | ||||||||
L5 |
Problem | AGEMOEA | AGEMOEA2 | GWASGFA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
S1 | ||||||||
S2 | ||||||||
S3 | ||||||||
S4 | ||||||||
S5 | ||||||||
M1 | ||||||||
M2 | ||||||||
M3 | ||||||||
M4 | ||||||||
M5 | ||||||||
L1 | ||||||||
L2 | ||||||||
L3 | ||||||||
L4 | ||||||||
L5 |
Hypervolume | IGD Plus | Additive Epsilon | |||
---|---|---|---|---|---|
Algorithm | Ranking | Algorithm | Ranking | Algorithm | Ranking |
NSGA2 | 1.25 | NSGA2 | 1.12 | GWASFGA | 1.03 |
GWASFGA | 2.63 | GWASFGA | 2.64 | NSGA2 | 2.05 |
SMS-EMOA | 2.72 | SMS-EMOA | 2.72 | SMS-EMOA | 3.21 |
MOCell | 3.40 | MOCell | 3.53 | MOCell | 3.71 |
MOMBI | 6.11 | MOMBI | 6.05 | MOMBI | 6.03 |
MOMBI2 | 6.18 | MOMBI2 | 6.24 | MOMBI2 | 6.53 |
AGEMOEA2 | 6.83 | AGEMOEA2 | 6.82 | AGEMOEA | 6.72 |
AGEMOEA | 6.88 | AGEMOEA | 6.89 | AGEMOEA2 | 6.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castán Rocha, J.A.; Santiago, A.; Ibarra Martínez, S.; Laria-Menchaca, J.; Terán-Villanueva, J.D.; Santiago, J. A Multi-Objective Formulation for the Internet Shopping Optimization Problem with Multiple Item Units. Appl. Sci. 2025, 15, 4700. https://doi.org/10.3390/app15094700
Castán Rocha JA, Santiago A, Ibarra Martínez S, Laria-Menchaca J, Terán-Villanueva JD, Santiago J. A Multi-Objective Formulation for the Internet Shopping Optimization Problem with Multiple Item Units. Applied Sciences. 2025; 15(9):4700. https://doi.org/10.3390/app15094700
Chicago/Turabian StyleCastán Rocha, José Antonio, Alejandro Santiago, Salvador Ibarra Martínez, Julio Laria-Menchaca, Jesús David Terán-Villanueva, and Jovanny Santiago. 2025. "A Multi-Objective Formulation for the Internet Shopping Optimization Problem with Multiple Item Units" Applied Sciences 15, no. 9: 4700. https://doi.org/10.3390/app15094700
APA StyleCastán Rocha, J. A., Santiago, A., Ibarra Martínez, S., Laria-Menchaca, J., Terán-Villanueva, J. D., & Santiago, J. (2025). A Multi-Objective Formulation for the Internet Shopping Optimization Problem with Multiple Item Units. Applied Sciences, 15(9), 4700. https://doi.org/10.3390/app15094700