The Aerodynamic Analysis of a Rotating Wind Turbine by Viscous-Coupled 3D Panel Method
Abstract
:1. Introduction
- (1)
- aerodynamic efficiency is sacrificed in favour of greater structural integrity; and
- (2)
- local tip speed ratios decrease with decreasing radial distance, resulting in higher angles of relative wind, and, typically, higher angles of attack.
2. Numerical Formulation
2.1. Potential Flow
2.2. The Boundary Layer
2.3. The Separated Wake
2.3.1. The Double Wake Method
2.3.2. The Thick Wake Method (Current Method)
2.4. Viscous-Inviscid Coupling
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Global Offshore Wind Speeds Rankings. 4C Offshore. Available online: www.4coffshore.com/windfarms/windspeeds.aspx (accessed on 26 January 2017).
- Taiwan Pledges EUR 2.5 Bln for 2020 OW Targets. Offshore WIND. Available online: www.offshorewind.biz (accessed on 26 January 2017).
- Chen, C.R.; Huang, W.P. On the precipitation monitoring and prediction of typhoon in Central Weather Bureau, Taiwan. In Proceedings of the 8th International Symposium on Social Management Systems—Disaster Prevention and Reconstruction Management, Kaohsiung, Taiwan, 2–5 May 2012. [Google Scholar]
- Typhoon Soudelor Causes Widespread Damage to Taiwan (Update). Focus Taiwan. Available online: focustaiwan.tw/news/asoc/201508090019.aspx (accessed on 26 January 2017).
- Vermeer, L.J.; Sørensen, J.N.; Crespo, A. Wind Turbine Wake Aerodynamics. Prog. Aerosp. Sci. 2003, 39, 467–510. Available online: http://www.sciencedirect.com (accessed on 5 February 2017). [CrossRef]
- Nelson, B.; Kouh, J.S. The numerical analysis of wind turbine airfoils at high angles of attack. Int. J. Energy Environ. Eng. 2016, 7, 1–12. Available online: http://link.springer.com/article/10.1007/s40095-015-0197-6 (accessed on 5 February 2017). [CrossRef]
- Sørensen, J.N.; Shen, W.Z. Numerical modeling of Wind Turbine Wakes. J. Fluids Eng. 2002, 124, 393–399. Available online: http://fluidsengineering.asmedigitalcollection.asme.org (accessed on 5 February 2017). [CrossRef]
- Mikkelsen, R.F. Actuator Disc Methods Applied to Wind Turbines. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2003. [Google Scholar]
- Panjwani, B.; Popescu, M.; Samseth, J.; Meese, E.; Mahmoudi, J. OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture. In Proceedings of the First Symposium on OpenFOAM in Wind Energy, SOWE 2013, Oldenburg, Germany, 20–21 March 2013. [Google Scholar]
- Wilson, J.M.; Davis, C.J.; Venayagamoorthy, S.K.; Heyliger, P.R. Comparisons of Horizontal-Axis Wind Turbine Wake Interaction Models. J. Sol. Energy Eng. 2015, 137, 031001. [Google Scholar] [CrossRef]
- Troldborg, N. Actuator Line Modeling of Wind Turbine Wakes. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2008. [Google Scholar]
- Troldborg, N.; Sørensen, J.N.; Mikkelsen, R. Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Flow. Wind Energy 2010, 13, 86–99. Available online: onlinelibrary.wiley.com (accessed on 5 February 2017). [CrossRef]
- Lu, H.; Porté-Agel, F. Large-Eddy Simulation of a Very Large Wind Farm in a Stable Atmospheric Boundary Layer. Phys. Fluids 2011, 23, 065101. [Google Scholar] [CrossRef]
- Martinez Tossas, L.A.; Leonardi, S. Wind Turbine Modeling for Computational Fluid Dynamics; NREL Technical Report SR-5000-55054; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Churchfield, M.J.; Lee, S.; Michalakes, J.; Moriarty, P.J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul. 2012, 13, 1–32. Available online: www.tandfonline.com (accessed on 20 April 2017). [CrossRef]
- Churchfield, M.J.; Lee, S.; Moriarty, P.J.; Martinez, L.A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J.G. A Large-Eddy Simulation of Wind-Plant Aerodynamics. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar]
- Yang, X.; Boomsma, A.; Barone, M.; Sotiropoulos, F. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility. J. Phys. Conf. Ser. 2014, 524. Available online: iopscience.iop.org/article/10.1088/1742-6596/75/1/012019 (accessed on 20 April 2017). [CrossRef]
- Dobrev, I.; Massouh, F.; Rapin, M. Actuator surface hybrid model. J. Phys. Conf. Ser. 2007, 75. Available online: iopscience.iop.org/article/10.1088/1742-6596/75/1/012019 (accessed on 8 February 2017). [CrossRef]
- Hess, J.L.; Smith, A.M.O. Calculation of Potential Flow about Arbitrary Bodies. Prog. Aerosp. Sci. 1966, 8, 1–138. [Google Scholar] [CrossRef]
- Filkovic, D. APAME Documentation. Graduate Work, University of Zagreb, Croatia. 2008. Available online: http://www.3dpanelmethod.com/documents/Graduate%20Work.pdf (accessed on 18 May 2007).
- Katz, J.; Plotkin, A. Low-Speed Aerodynamics; McGraw-Hill: New York, NY, USA, 1991; pp. 284, 287. [Google Scholar]
- Chen, Y.C. Numerical Study an Aerodynamics Effects of Gusting Winds on a Wind Turbine during Standstill. Master’s Thesis, National Taiwan University, Taipei, Taiwan, 2011. (In Traditional Chinese). [Google Scholar]
- Technical Description of the Z72 Wind Turbine; Zephyros: Hilversum, The Netherlands, 2004.
- Thwaites, B. Approximate Calculation of the Laminar Boundary Layer. Aeronaut. Q. 1949, 1, 245–280. Available online: www.cambridge.org/ (accessed on 8 February 2017). [CrossRef]
- Head, M.R. Entrainment in the Turbulent Boundary Layer; Technical Report; Aeronautical Research Council: London, UK, 1958. [Google Scholar]
- Cebeci, T.; Bradshaw, P. Momentum Transfer in Boundary Layers; Hemisphere: Washington, DC, USA, 1977. [Google Scholar]
- Wauquiez, C. Shape Optimization of Low Speed Airfoils Using MATLAB and Automatic Differentiation. Licentiate’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
- Maskew, B.; Dvorak, F.A. The Prediction of Clmax Using a Separated Flow Model. J. Am. Helicopter Soc. 1977, 23, 2–8. [Google Scholar]
- Robinson, D.E. Implementation of a Separated Flow Panel Method for Wall Effects on Finite Swept Wings. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1988. [Google Scholar]
- Rawlinson-Smith, R. Computational Study of Stalled Wind Turbine Rotor Performance. Ph.D. Thesis, Cranfield Institute of Technology, Cranfield, UK, 1991. [Google Scholar]
- Rao, B.M.; Dvorak, F.A; Maskew, B. An Analysis Method for Multi-Component Airfoils in Separated Flow; NASA Technical Report, NASA-CR-159300; NASA Langley Research Center: Hampton, VA, USA, 1980. [Google Scholar]
- García, N.R. Unsteady Viscous-Inviscid Interaction Technique for Wind Turbine Airfoils. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2011. [Google Scholar]
- Drela, M.; Giles, M.B. Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils. AIAA J. 1987, 25, 1347–1355. Available online: www2.coe.pku.edu.cn (accessed on 8 February 2017). [CrossRef]
- Veldman, A.E.P. New quasi-simultaneous method to calculate interacting boundary layers. AIAA J. 1981, 19, 79–85. Available online: arc.aiaa.org (accessed on 8 February, 2017). [CrossRef]
- Veiga, A.E.L. The Analysis of Partially Separated Flow on Sail Systems Using a Sectional Method. Ph.D. Thesis, University of Southampton, Southampton, UK, 2006. [Google Scholar]
- Riziotis, V.A.; Voutsinas, S.G. Dynamic stall modelling on airfoils based on strong viscous-inviscid interaction coupling. Int. J. Numer. Meth. Fluids 2008, 56, 185–208. Available online: onlinelibrary.wiley.com (accessed on 8 February 2017). [CrossRef]
- García, N.R.; Sørensen, J.N.; Shen, W.Z. A strong viscous–inviscid interaction model for Rotating Airfoils. Wind Energy 2013, 17, 1957–1984. Available online: onlinelibrary.wiley.com (accessed on 8 February 2017). [CrossRef]
- García, N.R. Development of a Three-Dimensional Viscous-Inviscid Coupling Method for Wind Turbine Computations. In Proceedings of the ICOWES 2013, Lyngby, Denmark, 17–19 June 2013; pp. 69–81. [Google Scholar]
- Veldman, A.E.P. A simple interaction law for viscous–inviscid interaction. J. Eng. Math. 2009, 65, 367–383. Available online: link.springer.com/article/10.1007/s10665-009-9320-0 (accessed on 5 February 2017). [CrossRef]
- Bijleveld, H.A. Application of a Quasi-Simultaneous Interaction Method for the Prediction of Three-Dimensional Aerodynamic Flow over Wind Turbine Blades. Ph.D. Thesis, Rijksuniversiteit Groningen, Groningen, The Netherlands, 2013. [Google Scholar]
- Smith, L. An Interactive Boundary Layer Modelling Methodology for Aerodynamic Flows. MEng Thesis, University of Pretoria, Pretoria, South Africa, 2012. [Google Scholar]
- Sturdza, P.; Suzuki, Y.; Martins-Rivas, H.; Rodriguez, D. A Quasi-Simultaneous Interactive Boundary- Layer Model for a Cartesian Euler Solver. In Proceedings of the 50th AIAA Aerospace Sciences Meeting, Nashville, TN, USA, 9–12 January 2012. [Google Scholar]
- Sørensen, J.N. Aerodynamic Aspects of Wind Energy Conversion. Annu. Rev. Fluid Mech. 2011, 43, 427–448. Available online: http://www.ccpo.odu.edu/~klinck/Reprints/PDF/sorensenAnnRevFlMech11.pdf (accessed on 5 February 2017). [CrossRef]
- Larsen, G.C.; Réthoré, P.E. TOPFARM—A tool for wind farm optimization. In Proceedings of the 10th Deep Sea Offshore Wind R&D Conference, DeepWind’2013, Trondheim, Norway, 24–25 January 2013; Available online: http://www.sciencedirect.com/science/article/pii/S1876610213012708 (accessed on 5 February 2017). [CrossRef]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame, Notre Dame, IN, USA, 16–18 June 1989. [Google Scholar]
Section Label | (f) | (e) | (d) | (c) | (b) | (a) |
---|---|---|---|---|---|---|
Section type | cylindrical | transitional | aerodynamic | aerodynamic | aerodynamic | tip |
Radial location | ri/R = 0.045 | ri/R = 0.107 | ri/R = 0.193 | ri/R = 0.395 | ri/R = 0.677 | ri/R = 0.977 |
Thickness/chord | ti/ci = 1.0 | ti/ci = 0.8 | ti/ci = 0.4 | ti/ci = 0.285 | ti/ci = 0.225 | ti/ci = 0.17 |
Velocity (m/s) | Power (kW) | Error (%) | |||
---|---|---|---|---|---|
Official Data | Current Method | RANS | |||
3 | 4 | 10 | 25 | 150.0 | 525.0 |
4 | 32 | 66 | 59 | 106.3 | 84.4 |
5 | 103 | 125 | 114 | 21.4 | 10.7 |
6 | 219 | 219 | 194 | 0.0 | -11.4 |
7 | 373 | 346 | 308 | −7.2 | −17.4 |
8 | 570 | 512 | 452 | −10.2 | −20.7 |
9 | 816 | 721 | 628 | −11.6 | −23.0 |
10 | 1110 | 991 | 879 | −10.7 | −20.8 |
11 | 1430 | 1323 | 1111 | −7.5 | −22.3 |
12 | 1770 | 1716 | 1539 | −3.1 | −13.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, B.; Kouh, J.-S. The Aerodynamic Analysis of a Rotating Wind Turbine by Viscous-Coupled 3D Panel Method. Appl. Sci. 2017, 7, 551. https://doi.org/10.3390/app7060551
Nelson B, Kouh J-S. The Aerodynamic Analysis of a Rotating Wind Turbine by Viscous-Coupled 3D Panel Method. Applied Sciences. 2017; 7(6):551. https://doi.org/10.3390/app7060551
Chicago/Turabian StyleNelson, Bryan, and Jen-Shiang Kouh. 2017. "The Aerodynamic Analysis of a Rotating Wind Turbine by Viscous-Coupled 3D Panel Method" Applied Sciences 7, no. 6: 551. https://doi.org/10.3390/app7060551
APA StyleNelson, B., & Kouh, J. -S. (2017). The Aerodynamic Analysis of a Rotating Wind Turbine by Viscous-Coupled 3D Panel Method. Applied Sciences, 7(6), 551. https://doi.org/10.3390/app7060551