Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Media Components
2.3. Microbial Cultures in a BioLector Microbiooreactor System
2.4. Taguchi Array Design
2.5. Biomass Production
2.6. Statistical Methods
3. Results and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gutarowska, B.; Borowski, S.; Durka, K.; Korczyński, M.; Kołacz, R. Screening of microorganisms capable to remove odorous compounds from poultry manure. Przem. Chem. 2009, 5, 2–7. (In Polish) [Google Scholar]
- Matusiak, K.; Oleksy, M.; Borowski, S.; Nowak, A.; Korczyński, M.; Dobrzański, Z.; Gutarowska, B. The use of Yucca schidigera and microbial preparation for poultry manure deodorization and hygienization. J. Environ. Manag. 2016, 170, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Borowski, S.; Matusiak, K.; Powałowski, S.; Pielech-Przybylska, K.; Makowski, K.; Nowak, A.; Rosowski, M.; Komorowski, P.; Gutarowska, B. A novel microbial-mineral preparation for the removal of offensive odors from poultry manure. Int. Biodeter. Biodegr. 2017, 119, 299–308. [Google Scholar] [CrossRef]
- Czitrom, V. One factor at a time versus designed experiments. Am. Stat. Assoc. 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Wahid, Z.; Nadir, N. Improvement of one factor at a time through design of experiments. World Appl. Sci. J. 2013, 21, 56–61. [Google Scholar]
- Connors, N.C. Culture medium optimization and scale-up for microbial fermentations. In Handbook of Industrial Cell Culture, 1st ed.; Vinci, V.A., Parekh, S.R., Eds.; Humana Press: New Delhi, India, 2003; pp. 171–193. ISBN 978-1-59259-346-0. [Google Scholar]
- Panda, B.P.; Ali, M.; Javed, S. Fermentation process optimization. Res. J. Microbiol. 2007, 2, 201–208. [Google Scholar]
- Jian, Z.; Nian-fa, G. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation. J. Zhejiang. Univ. Sci. B 2007, 8, 98–104. [Google Scholar]
- Kaur, B.; Kaur, R. Application of response surface methodology for optimizing arginine deiminase production medium for Enterococcus faecium sp. GR7. Sci. World J. 2013, 2013, 892587. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, P.; Arun, A.; Al-Dhabi, N.A.; Gnana, S.; Vincent, P.; Arasu, M.V.; Choi, K.C. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation. Biotechnol. Biofuels 2016, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Polak-Berecka, M.; Waśko, A.; Kordowska-Wiater, M.; Podleśny, M.; Targoński, Z.; Kubik-Komar, A. Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology. Polish J. Microbiol. 2010, 59, 113–118. [Google Scholar]
- Sen, R.; Babu, K.S. Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochem. 2005, 40, 2531–2538. [Google Scholar] [CrossRef]
- Kiviharju, K.; Leisola, M.; Eerikäinen, T. Optimization of a Bifidobacterium longum production process. J. Biotechnol. 2005, 117, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Jong-Min, J.; Thangamani, R.; Song, E.; Lee, H.; Lee, H.; Yang, Y. Media optimization of Corynebacterium glutamicum for succinate production under oxygen-deprived condition. J. Microbiol. Biotechnol. 2013, 23, 211–217. [Google Scholar]
- Sarria-Alfonso, V.; Sánchez-Sierra, J.; Aguirre-Morales, M.; Gutiérrez-Rojas, I.; Moreno-Sarmiento, N.; Poutou-Piñales, R.A. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation. Indian J. Microbiol. 2013, 53, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhong, J.; Yang, J.; Ren, Y.; Xu, T.; Xiao, S.; Zhou, J.; Tan, H. The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: Application to the production of iturin A. Microb. Cell Fact. 2014, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, M.; Yu, X.; Zhang, Y.; Lyu, S. Optimization of medium composition for two-step fermentation of vitamin C based on artificial neural network–genetic algorithm techniques. Biotechnol. Biotechnol. Equip. 2015, 29, 1128–1134. [Google Scholar] [CrossRef]
- Velazco, E.E.; Bendell, A.; Disney, J.; Pridmore, W.A. Taguchi methods: Applications in world industry. Interfaces (Providence) 1991, 21, 99–101. [Google Scholar]
- Venil, C.K.; Lakshmanaperumalsamy, P. Taguchi experimental design for medium optimization for enhanced protease production by Bacillus subtilis HB04. E-J. Sci. Technol. 2001, 4, 1–10. [Google Scholar]
- Prasad, K.K.; Mohan, S.V.; Rao, R.S.; Pati, B.R.; Sarma, P.N. Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology. Biochem. Eng. J. 2005, 24, 17–26. [Google Scholar] [CrossRef]
- Gutarowska, B.; Matusiak, K.; Borowski, S.; Rajkowska, A.; Brycki, B. Removal of odorous compounds from poultry manure by microorganisms on perlite—Bentonite carrier. J. Environ. Manag. 2014, 141, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.F.; Chang, J.H.; Houng, J.Y.; Tsai, C.C.; Lin, C.K.; Tsen, H.Y. Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnol. Bioprocess Eng. 2012, 17, 827–834. [Google Scholar] [CrossRef]
- Gu, W.; Chen, S.W.; Chen, G.P.; Ji, Z.X. Enhacement of Haemophilus parasuis serovar 5 yields by medium optimization. Lett. Appl. Microbiol. 2015, 61, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Szymanowska-Powałowska, D.; Białas, W. Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhen, Q.; Qiu, N.; Liu, Z.; Wang, B.; Shao, Z.; Yu, Z. Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a’ using response surface methodology. Bioresour. Technol. 2009, 100, 5922–5927. [Google Scholar] [CrossRef] [PubMed]
#Exp | Levels (Percent Concentration) | ||
---|---|---|---|
Sucrose/Glucose (X1) | SPC (X2) | KH2PO4 (X3) | |
(1) | 2% | 2% | 0.2% |
(2) | 2% | 4% | 0.4% |
(3) | 2% | 6% | 0.8% |
(4) | 5% | 2% | 0.4% |
(5) | 5% | 4% | 0.8% |
(6) | 5% | 6% | 0.2% |
(7) | 8% | 2% | 0.8% |
(8) | 8% | 4% | 0.2% |
(9) | 8% | 6% | 0.4% |
Run | Strains | ||||||
---|---|---|---|---|---|---|---|
Bacillus megaterium | Bacillus subtilis | Pseudomonas fluorescens | Enterococcus faecium | Lactobacillus plantarum | Leuconostoc mesenteroides | ||
TSB | 147.4 ± 10.0e | 134.7 ± 12.2cd | 220.1 ± 22.1g | 37.2 ± 5.1a | 29.2 ± 7.8a | 30.0 ± 4.0a | |
3TSB | 323.8 ± 4.6k | 303.6 ± 10.8hi | 380.6 ± 14.4j | 43.2 ± 3.0a | 30.6 ± 7.1a | 38.1 ± 7.4a | |
G | (1) | 151.4 ± 18.2e | 258.6 ± 17.9g | 141.2 ± 10.5e | 148.7 ± 3.9f | 130.0 ± 6.4f | 168.1 ± 3.1fg |
(2) | 176.0 ± 23.9f | 171.2 ± 16.8e | 267.1 ± 6.2h | 187.1 ± 1.7h | 152.5 ± 3.6g | 209.3 ± 2.4i | |
(3) | 61.8 ± 12.0b | 294.8 ± 7.3h | 329.8 ± 1.2i | 267.5 ± 3.3j | 244.4 ± 10.8j | 256.1 ± 2.5j | |
(4) | 100.7 ± 7.7c | 116.3 ± 6.6bc | 111.8 ± 11.0d | 94.4 ± 5.2de | 96.6 ± 5.1de | 107.4 ± 2.0d | |
(5) | 13.8 ± 5.6a | 46.5 ± 26.7a | 139.3 ± 3.4e | 166.8 ± 8.8g | 64.2 ± 9.8b | 190.8 ± 6.6h | |
(6) | 262.0 ± 22.0i | 365.6 ± 22.1j | 400.0 ± 4.2fj | 371.2 ± 7.3k | 289.4 ± 7.1k | 310.8 ± 5.8m | |
(7) | 106.4 ± 20.5d | 132.3 ± 10.3cd | 75.1 ± 10.8bf | 68.0 ± 3.3c | 33.8 ± 3.1a | 66.7 ± 6.7b | |
(8) | 125.4 ± 15.9d | 315.9 ± 11.3hi | 196.1 ± 12.9k | 203.2 ± 3.0i | 179.2 ± 8.8h | 331.2 ± 2.1n | |
(9) | 84.0 ± 10.6cd | 322.9 ± 18.1i | 187.2 ± 9.1f | 272.4 ± 16.4j | 186.1 ± 4.9h | 330.7 ± 6.7n | |
S | (1) | 108.1 ± 4.3d | 115.4 ± 12.1bc | 80.4 ± 17.5bc | 89.0 ± 4.8d | 88.4 ± 2.5cd | 175.8 ± 6.0g |
(2) | 199.9 ± 2.7g | 154.5 ± 7.5de | 143.5 ± 21.6e | 64.2 ± 8.0c | 150.9 ± 4.0g | 275.7 ± 9.4k | |
(3) | 238.2 ± 24.8h | 107.8 ± 17.9b | 103.0 ± 3.1d | 44.1 ± 4.0a | 109.0 ± 8.7e | 157.3 ± 2.4e | |
(4) | 252.3 ± 7.5hi | 295.0 ± 18.6h | 72.4 ± 12.6ab | 104.1 ± 1.9e | 74.9 ± 4.4bc | 164.7 ± 2.8ef | |
(5) | 299.2 ± 0.9j | 205.1 ± 8.5f | 53.6 ± 18.9a | 93.1 ± 5.7d | 69.4 ± 3.4b | 276.0 ± 7.6k | |
(6) | 260.1 ± 6.6i | 317.1 ± 11.1hi | 193.1 ± 10.4k | 143.6 ± 4.2f | 202.6 ± 21.1i | 96.9 ± 2.8c | |
(7) | 293.6 ± 7.8j | 208.9 ± 7.5f | 64.8 ± 18.0ab | 54.5 ± 2.1b | 35.4 ± 2.5a | 199.7 ± 2.4hi | |
(8) | 314.6 ± 5.5jk | 256.7 ± 11.5g | 145.6 ± 2.1e | 172.0 ± 6.7g | 126.2 ± 10.9f | 297.1 ± 4.4l | |
(9) | 305.6 ± 14.2jk | 261.6 ± 14.1g | 100.1 ± 10.0cd | 194.0 ± 3.0hi | 174.9 ± 7.3h | 330.7 ± 6.7n |
Microbial Strain | Concentration of Media Components (%) | ||
---|---|---|---|
Glucose (X1) | SPC (X2) | KH2PO4 (X3) | |
B. megaterium | 5 | 4 | 0.4 |
B. subtilis | 5 | 6 | 0.2 |
P. fluorescens | 2 | 6 | 0.8 |
E. faecium | 5 | 2 | 0.4 |
L. plantarum | 2 | 6 | 0.2 |
L. mesenteroides | 2 | 6 | 0.2 |
Sucrose (X1) | SPC (X2) | KH2PO4 (X3) | |
B. megaterium | 5 | 4 | 0.2 |
B. subtilis | 8 | 2 | 0.4 |
P. fluorescens | 5 | 6 | 0.2 |
E. faecium | 8 | 4 | 0.4 |
L. plantarum | 2 | 6 | 0.8 |
L. mesenteroides | 8 | 2 | 0.2 |
Strain | 0.5 L | 7 L | 42 L * | 300 L ** |
---|---|---|---|---|
B. megaterium | 2.6 × 109 ± 2.0 × 109 a | 1.8 × 109 ± 2.2 × 109 a | 6.1 × 108 ± 5.5 × 108 a | 1.1 × 109 ± 7.9 × 107 a |
B. subtilis | 7.7 × 109 ± 6.1 × 109 a | 1.8 × 109 ± 9.0 × 108 ab | 1.7 × 109 ± 7.7 × 108 ab | 1.5 × 109 ± 3.0 × 108 b |
P. fluorescens | 1.8 × 1010 ± 1.6 × 1010 a | 2.1 × 109 ± 5.0 × 108 ab | 2.2 × 109 ± 1.3 × 108 ab | 2.1 × 109 ± 9.5 × 107 b |
E. faecium | 2.2 × 109 ± 1.1 × 109 a | 2.0 × 109 ± 1.7 × 108 a | 2.5 × 109 ± 8.0 × 108 a | 2.7 × 109 ± 2.8 × 108 a |
L. plantarum | 4.4 × 109 ± 3.2 × 109 a | 1.0 × 109 ± 1.7 × 108 b | 1.1 × 109 ± 6.6 × 108 ab | 9.1 × 108 ± 4.0 × 108 b |
L. mesenteroides | 2.6 × 109 ± 2.5 × 109 a | 1.9 × 109 ± 3.2 × 108 a | 2.4 × 109 ± 1.7 × 109 a | 1.47 × 109 ± 1.06 × 108 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowski, K.; Matusiak, K.; Borowski, S.; Bielnicki, J.; Tarazewicz, A.; Maroszyńska, M.; Leszczewicz, M.; Powałowski, S.; Gutarowska, B. Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal. Appl. Sci. 2017, 7, 756. https://doi.org/10.3390/app7080756
Makowski K, Matusiak K, Borowski S, Bielnicki J, Tarazewicz A, Maroszyńska M, Leszczewicz M, Powałowski S, Gutarowska B. Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal. Applied Sciences. 2017; 7(8):756. https://doi.org/10.3390/app7080756
Chicago/Turabian StyleMakowski, Krzysztof, Katarzyna Matusiak, Sebastian Borowski, Jakub Bielnicki, Alicja Tarazewicz, Marta Maroszyńska, Martyna Leszczewicz, Szymon Powałowski, and Beata Gutarowska. 2017. "Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal" Applied Sciences 7, no. 8: 756. https://doi.org/10.3390/app7080756
APA StyleMakowski, K., Matusiak, K., Borowski, S., Bielnicki, J., Tarazewicz, A., Maroszyńska, M., Leszczewicz, M., Powałowski, S., & Gutarowska, B. (2017). Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal. Applied Sciences, 7(8), 756. https://doi.org/10.3390/app7080756