Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Subjects
2.3. Experimental Design
2.4. EEG Recordings
2.5. Fragrance Administration
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liato, V.; Aïder, M. Geosmin as a source of the earthy-musty smell in fruits, vegetables and water: Origins, impact on foods and water, and review of the removing techniques. Chemosphere 2017, 181, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Parinet, J.; Rodriguez, M.; Serodes, J. Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol). Water Res. 2010, 44, 5847–5856. [Google Scholar] [CrossRef] [PubMed]
- Suurnäkki, S.; Gomez-Saez, G.V.; Rantala-Ylinen, A.; Jokela, J.; Fewer, D.P.; Sivonen, K. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Water Res. 2015, 68, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.B.; Ridal, J.; Boyer, G.L. Taste and odour and cyanobacterial toxins: Impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 1779–1796. [Google Scholar] [CrossRef]
- Xie, Y.; He, J.; Huang, J.; Zhang, J.; Yu, Z. Determination of 2-methylisoborneol and geosmin produced by Streptomyces sp. and Anabaena PCC7120. J. Agric. Food Chem. 2007, 55, 6823–6828. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Xu, Y. Determination of the microbial origin of geosmin in Chinese liquor. J. Agric. Food Chem. 2012, 60, 2288–2292. [Google Scholar] [CrossRef] [PubMed]
- Omur-Ozbek, P.; Little, J.; Dietrich, A. Ability of humans to smell geosmin, 2-MIB and nonadienal in indoor air when using contaminated drinking water. Water Sci. Technol. 2007, 55, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Haese, G.; Humeau, P.; De Oliveira, F.; Le Callet, P.; Le Cloirec, P. Tastes and odors of water—quantifying objective analyses: A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2455–2501. [Google Scholar] [CrossRef]
- Zucco, G.M.; Paolini, M.; Schaal, B. Unconscious odour conditioning 25 years later: Revisiting and extending Kirk-Smith, Van Toller and Dodd’. Learn. Motiv. 2009, 40, 364–375. [Google Scholar] [CrossRef]
- Heuberger, E.; Hongratanaworakit, T.; Bohm, C.; Weber, R.; Buchbauer, G. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation. Chem. Senses 2001, 26, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Kim, S. Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Pinto, A.V.; Santos, R.M.; Coutinho, R.A.; Oliveira, L.M.; Santos, G.B.; Alho, A.T.; Leite, R.E.; Farfel, J.M.; Suemoto, C.K.; Grinberg, L.T.; et al. Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males. PLoS ONE 2014, 9, e111733. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Osawa, M.; Nishitani, N.; Iwata, M. Effects of incense on brain function: Evaluation using electroencephalograms and event–related potentials. Neuropsychobiology 2009, 59, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, E.; Fukagawa, M.; Okamoto, T.; Ohnuki, K.; Shimizu, K.; Kondo, R. The essential oil of Abies sibirica (Pinaceae) reduces arousal levels after visual display terminal work. Flavour Fragr. J. 2011, 26, 204–210. [Google Scholar] [CrossRef]
- Lorig, T.S. Beyond self-report: Brain imaging at the threshold of odor perception. Chemosens. Percept. 2012, 5, 46–54. [Google Scholar] [CrossRef]
- Skoric, M.K.; Adamec, I.; Jerbic, A.B.; Gabelic, T.; Hajnšek, S.; Habek, M. Electroencephalographic response to different odors in healthy individuals: A promising tool for objective assessment of olfactory disorders. Clin. EEG Neurosci. 2015, 46, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Cho, H.; Yu, B.; Kim, S. Effect of olfactory stimulation of isomeric aroma compounds, (+)-limonene and terpinolene on human electroencephalographic activity. Eur. J. Integr. Med. 2015, 7, 561–566. [Google Scholar] [CrossRef]
- Angelucci, F.L.; Silva, V.V.; Dal Pizzol, C.; Spir, L.G.; Praes, C.E.; Maibach, H. Physiological effect of olfactory stimuli inhalation in humans: An overview. Int. J. Cosmet. Sci. 2014, 36, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Basar, E. A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012, 86, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Sayorwan, W.; Siripornpanich, V.; Piriyapunyaporn, T.; Hongratanaworakit, T.; Kotchabhakdi, N.; Ruangrungsi, N. The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J. Med. Assoc. Thail. 2012, 95, 598–606. [Google Scholar] [PubMed]
- Lee, B.G.; Lee, B.L.; Chung, W.Y. Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals. Sensors 2014, 14, 17915–17936. [Google Scholar] [CrossRef]
- Edagawa, K.; Kawasaki, M. Beta phase synchronization in the frontal-temporalcerebellar network during auditory-to-motor rhythm learning. Sci. Rep. 2017, 7, 42721. [Google Scholar] [CrossRef] [PubMed]
- Penolazzi, B.; Spironelli, C.; Vio, C.; Angrilli, A. Brain plasticity in developmental dyslexia after phonological treatment: A beta EEG band study. Behav. Brain Res. 2010, 209, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Mueller, H.M. “Too many betas do not spoil the broth”: The role of beta brain oscillations in language processing. Front. Psychol. 2012, 3, 201. [Google Scholar] [CrossRef] [PubMed]
- Sayowan, W.; Siripornpanich, V.; Hongratanaworakit, T.; Kotchabhakdi, N.; Ruangrungsi, N. The effects of jasmine oil inhalation on brain wave activities and emotions. J. Health Res. 2013, 27, 73–77. [Google Scholar]
- Sowndhararajan, K.; Seo, M.; Kim, M.; Kim, H.; Kim, S. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement. Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Hara, C.; Aoki, T.; Sugimoto, N.; Masujima, T. Odor distinctiveness between enantiomers of linalool: Difference in perception and responses elicited by sensory test and forehead surface potential wave measurement. Chem. Senses 2000, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Acuna, B.D.; Eliassen, J.C.; Donoghue, J.P.; Sanes, J.N. Frontal and parietal lobe activation during transitive inference in humans. Cereb. Cortex 2002, 12, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.L.R.; Flindall, J.W. Parietal Lobe. In International Encyclopedia of the Social & Behavioral Sciences; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 506–510. [Google Scholar]
- Cappelletti, M.; Lee, H.L.; Freeman, E.D.; Price, C.J. The role of right and left parietal lobes in the conceptual processing of numbers. J. Cogn. Neurosci. 2010, 22, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Schoenemann, P.T. Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol. 2006, 35, 379–406. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Ramos, J.; Guevara, M.A.; Arce, C.; Gutierrez, S. Gender differences in the EEG during cognitive activity. Int. J. Neurosci. 1993, 72, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Jausovec, N.; Jausovec, K. Resting brain activity: Differences between genders. Neuropsychologia 2010, 48, 3918–3925. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Takizawa, Y.; Jiang, Z.Y.; Yamaguchi, N. Gender differences in quantitative EEG at rest and during photic stimulation in normal young adults. Clin. Electroencephalogr. 1994, 25, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, A.R.; Mujica-Parodi, L.R. Human gender differences in the perception of conspecific alarm chemosensory cues. PLoS ONE 2013, 8, e68485. [Google Scholar] [CrossRef] [PubMed]
- Haehner, A.; Maass, H.; Croy, I.; Hummel, T. Influence of room fragrance on attention, anxiety and mood. Flavour Fragr. J. 2017, 32, 24–28. [Google Scholar] [CrossRef]
- Seo, M.; Sowndhararajan, K.; Kim, S. Influence of binasal and uninasal inhalations of essential oil of Abies koreana twigs on electroencephalographic activity of human. Behav. Neurol. 2016, 2016, 9250935. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Reichert, J.L.; Neuper, C.; Wood, G. Interactive effects of age and gender on EEG power and coherence during a short-term memory task in middle-aged adults. Neurobiol. Aging 2016, 40, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Cameron, E.L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 2009, 97, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.; Doolittle, N.; Breslin, P.A.S. Gender-specific induction of enhanced sensitivity to odors. Nat. Neurosci. 2002, 5, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Robin, O.; Rousmans, S.; Dittmar, A.; Vernet-Maury, E. Gender influence on emotional responses to primary tastes. Physiol. Behav. 2003, 78, 385–393. [Google Scholar] [CrossRef]
- Bailenson, J.N.; Pontikakis, E.D.; Mauss, I.B.; Gross, J.J.; Jabon, M.E.; Hutcherson, C.A.C.; Nass, C.; John, O. Real-time classification of evoked emotions using facial feature tracking and physiological responses. Int. J. Hum. Comput. Stud. 2008, 66, 303–317. [Google Scholar] [CrossRef]
- Touhara, K.; Vosshall, L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 2009, 71, 307–332. [Google Scholar] [CrossRef] [PubMed]
- Simoes de Souza, F.M.; Antunes, G. Biophysics of olfaction. Rep. Prog. Phys. 2007, 70, 451–491. [Google Scholar] [CrossRef]
- Whelton, A.J.; Dietrich, A.M. Relationship between intensity, concentration, and temperature for drinking water odorants. Water Res. 2004, 38, 1604–1614. [Google Scholar] [CrossRef] [PubMed]
- Al-Fahoum, A.S.; Al-Fraiha, A.A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 2014, 730218. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, W.; Zhang, T. Classification of epilepsy EEG signals using DWT-based envelopeanalysis and neural network ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [Google Scholar] [CrossRef]
EEG Indices | Site | Before Inhalation (µV2) | During Inhalation (µV2) | t-Test | p Value * |
---|---|---|---|---|---|
AFA | Cp6 | 4.1374 ± 1.5095 | 1.6438 ± 1.0255 | 2.102 | 0.049 |
AB | Cp6 | 14.7287 ± 8.7909 | 10.4411 ± 8.8256 | 2.243 | 0.037 |
AHB | Cp6 | 7.6548 ± 4.9757 | 5.3986 ± 4.7224 | 2.565 | 0.019 |
ALB | Cp6 | 3.2775 ± 1.7220 | 2.1519 ± 1.5705 | 2.596 | 0.018 |
AG | Cp6 | 9.4893 ± 7.0053 | 7.2170 ± 6.6503 | 2.183 | 0.042 |
RST | Cp6 | 0.3243 ± 0.0671 | 0.2172 ± 0.0506 | 2.171 | 0.043 |
RMT | F3 | 0.3474 ± 0.0930 | 0.2264 ± 0.0630 | 2.229 | 0.038 |
Cp6 | 0.4220 ± 0.0957 | 0.2730 ± 0.0833 | 2.111 | 0.048 | |
RSMT | F3 | 0.7462 ± 0.1598 | 0.4902 ± 0.1312 | 2.219 | 0.039 |
Cp6 | 0.5872 ± 0.1481 | 0.3999 ± 0.1026 | 2.159 | 0.044 | |
SEF50 | T8 | 12.3871 ± 1.2176 | 10.1593 ± 0.8395 | 2.374 | 0.028 |
EEG Indices | Site | Before Inhalation (µV2) | During Inhalation (µV2) | t-Test | p Value * |
---|---|---|---|---|---|
AHB | Cp6 | 14.0263 ± 9.7133 | 10.5390 ± 9.3952 | 2.636 | 0.027 |
ALB | Cp6 | 5.6537 ± 3.3128 | 3.9980 ± 3.1012 | 2.372 | 0.042 |
RST | T8 | 0.5053 ± 0.1354 | 0.3485 ± 0.1156 | 3.304 | 0.009 |
Cp6 | 0.4796 ± 0.1091 | 0.2978 ± 0.0877 | 2.390 | 0.041 | |
P3 | 0.3233 ± 0.0912 | 0.2372 ± 0.0873 | 2.361 | 0.043 | |
RMT | T4 | 0.4222 ± 0.0933 | 0.3111 ± 0.0890 | 2.364 | 0.042 |
P3 | 0.3821 ± 0.0825 | 0.2468 ± 0.0675 | 2.453 | 0.037 | |
RSMT | P3 | 0.7054 ± 0.1484 | 0.4840 ± 0.1505 | 2.836 | 0.020 |
Cp2 | 0.8552 ± 0.1538 | 0.5914 ± 0.1688 | 2.386 | 0.041 | |
SEF50 | F4 | 11.7798 ± 1.4694 | 10.0464 ± 1.5986 | 2.681 | 0.025 |
T4 | 11.5295 ± 1.1366 | 9.5337 ± 1.3479 | 3.302 | 0.009 | |
P3 | 10.8765 ± 0.7135 | 8.8013 ± 0.9192 | 3.328 | 0.009 | |
P4 | 11.3525 ± 0.8768 | 9.6497 ± 1.3301 | 2.290 | 0.048 | |
O1 | 12.2498 ± 1.5447 | 10.3577 ± 1.7093 | 3.198 | 0.011 | |
O2 | 12.1338 ± 1.3258 | 10.3088 ± 1.6092 | 2.981 | 0.015 | |
T8 | 15.8264 ± 1.5940 | 11.1938 ± 1.5220 | 5.191 | 0.001 | |
Cz | 11.6516 ± 1.4254 | 9.7900 ± 1.6372 | 2.688 | 0.025 | |
Cp2 | 11.9202 ± 1.4366 | 9.7839 ± 1.5728 | 3.500 | 0.007 | |
Cp6 | 12.3901 ± 1.3353 | 10.1624 ± 1.5718 | 3.696 | 0.005 | |
SEF90 | Fp1 | 32.0923 ± 1.8613 | 24.8718 ± 3.5291 | 2.685 | 0.025 |
Fp2 | 33.0078 ± 1.6117 | 24.3164 ± 3.2836 | 2.628 | 0.027 | |
F3 | 27.7039 ± 2.1683 | 21.5942 ± 2.9508 | 3.007 | 0.015 | |
F4 | 26.8921 ± 2.6945 | 22.2107 ± 2.9661 | 2.415 | 0.039 | |
P4 | 27.1973 ± 2.3330 | 21.8201 ± 2.7859 | 2.956 | 0.016 | |
T8 | 35.4553 ± 2.7690 | 29.2480 ± 3.5502 | 3.153 | 0.012 | |
Cp2 | 28.4241 ± 2.8740 | 22.2290 ± 2.8799 | 2.846 | 0.019 | |
T7 | 32.9712 ± 2.1259 | 27.1912 ± 3.4314 | 2.641 | 0.027 | |
ASEF | Fc1 | 10.4675 ± 0.1555 | 10.0952 ± 0.1387 | 2.667 | 0.026 |
T8 | 10.4492 ± 0.1373 | 10.0342 ± 0.1520 | 2.449 | 0.037 | |
Af4 | 10.4187 ± 0.1328 | 10.0159 ± 0.1606 | 2.490 | 0.034 | |
Fpz | 10.4187 ± 0.1214 | 10.0281 ± 0.1651 | 2.331 | 0.045 |
EEG Indices | Site | Before Inhalation (µV2) | During Inhalation (µV2) | t-Test | p Value * |
---|---|---|---|---|---|
Both Genders | |||||
RST | Af4 | 0.2598 ± 0.0519 | 0.1882 ± 0.0395 | 2.363 | 0.029 |
Cp5 | 0.2838 ± 0.0674 | 0.2084 ± 0.0461 | 2.231 | 0.038 | |
RMT | Cp5 | 0.3897 ± 0.0969 | 0.2926 ± 0.0750 | 2.143 | 0.045 |
RSMT | Af4 | 0.5810 ± 0.1191 | 0.3760 ± 0.1004 | 2.388 | 0.027 |
Cp5 | 0.6735 ± 0.1557 | 0.5010 ± 0.1165 | 2.448 | 0.024 | |
Women | |||||
RST | Af4 | 0.3588 ± 0.0891 | 0.2453 ± 0.0729 | 2.383 | 0.041 |
Cp5 | 0.4377 ± 0.1140 | 0.2955 ± 0.0838 | 2.627 | 0.027 | |
Cp6 | 0.4045 ± 0.0959 | 0.3210 ± 0.0923 | 2.299 | 0.047 | |
RMT | O2 | 0.6098 ± 0.1883 | 0.4806 ± 0.1747 | 2.569 | 0.030 |
F8 | 0.4973 ± 0.1614 | 0.3731 ± 0.1426 | 2.569 | 0.030 | |
Cz | 0.4589 ± 0.1431 | 0.3278 ± 0.1397 | 2.424 | 0.038 | |
Pz | 0.4835 ± 0.1337 | 0.3313 ± 0.1046 | 3.276 | 0.010 | |
Af4 | 0.4475 ± 0.1200 | 0.3385 ± 0.1129 | 2.399 | 0.040 | |
Fc2 | 0.4240 ± 0.1502 | 0.3252 ± 0.1340 | 2.690 | 0.025 | |
Cp5 | 0.6034 ± 0.1633 | 0.4183 ± 0.1376 | 2.870 | 0.018 | |
Cp6 | 0.5189 ± 0.1448 | 0.3897 ± 0.1414 | 2.463 | 0.036 | |
RSMT | Cz | 0.7992 ± 0.2305 | 0.5826 ± 0.2232 | 2.360 | 0.043 |
Pz | 0.8989 ± 0.2293 | 0.6713 ± 0.2076 | 3.173 | 0.011 | |
Af4 | 0.8063 ± 0.2039 | 0.5838 ± 0.1850 | 2.945 | 0.016 | |
Cp5 | 1.0411 ± 0.2567 | 0.7138 ± 0.2113 | 3.409 | 0.008 | |
Cp6 | 0.9235 ± 0.2356 | 0.7107 ± 0.2265 | 2.829 | 0.020 | |
SEF90 | P8 | 28.6560 ± 3.0302 | 24.8779 ± 3.6371 | 2.595 | 0.029 |
Men | |||||
AA | F8 | 3.5391 ± 2.2358 | 4.6670 ± 2.4059 | −2.452 | 0.037 |
AFA | F8 | 0.4061 ± 0.2292 | 0.7929 ± 0.3517 | −2.411 | 0.039 |
T8 | 0.3116 ± 0.1430 | 0.6550 ± 0.2507 | −2.278 | 0.049 | |
RAHB | Fc6 | 3.7485 ± 0.5245 | 5.4337 ± 0.8513 | −2.513 | 0.033 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Sowndhararajan, K.; Kim, T.; Kim, J.E.; Yang, J.E.; Kim, S. Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol. Appl. Sci. 2017, 7, 876. https://doi.org/10.3390/app7090876
Kim M, Sowndhararajan K, Kim T, Kim JE, Yang JE, Kim S. Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol. Applied Sciences. 2017; 7(9):876. https://doi.org/10.3390/app7090876
Chicago/Turabian StyleKim, Minju, Kandhasamy Sowndhararajan, Taehee Kim, Jai Eun Kim, Jae E. Yang, and Songmun Kim. 2017. "Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol" Applied Sciences 7, no. 9: 876. https://doi.org/10.3390/app7090876
APA StyleKim, M., Sowndhararajan, K., Kim, T., Kim, J. E., Yang, J. E., & Kim, S. (2017). Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol. Applied Sciences, 7(9), 876. https://doi.org/10.3390/app7090876