Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber
Abstract
:1. Introduction
2. Preparation and Properties of Rhenium Diselenide
3. The Passively Q-Switched Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, L.J.; Zhang, H.T.; Qin, J.P.; Lu, Y.; Xu, C.; Li, S.S.; Shen, Y.J.; Yang, W.L.; Yang, Y.Q.; Yu, X.Y. Passively Q-switched operation of a Tm, Ho:LuVO4 laser with a graphene saturable absorber. Appl. Sci. 2018, 8, 954. [Google Scholar] [CrossRef]
- Sobon, G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: Graphene and topological insulators. Photonics Res. 2015, 3, A56–A63. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.F.; Wang, Y.G.; Li, L.; Yang, G.W.; Li, J.P. Watt-level high-power passively Q-switched laser based on a black phosphorus solution saturable absorber. Chin. Opt. Lett. 2017, 15, 011402. [Google Scholar] [CrossRef]
- Chen, H.; Yin, J.D.; Yang, J.W.; Zhang, X.J.; Liu, M.L.; Jiang, Z.K.; Wang, J.Z.; Sun, Z.P.; Guo, T.; Liu, W.J.; Yan, P.G. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett. 2017, 42, 4279–4282. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.I.; Kelleher, E.J.R. 2D saturable absorbers for fibre lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.I.; Howe, R.C.T.; Hu, G.; Torrisi, F.; Zhang, M.; Hasan, T.; Kelleher, E.J.R. Few-layer MoS2 saturable absorbers for short-pulse laser technology: Current status and future perspectives. Photonics Res. 2015, 3, A30–A42. [Google Scholar] [CrossRef]
- Janisch, C.; Mehta, N.; Ma, D.; Elías, A.L.; Perea-López, N.; Terrones, M.; Liu, Z.W. Ultrashort optical pulse characterization using WS2 monolayers. Opt. Lett. 2014, 39, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef]
- Huang, Y.; Sutter, E.; Sadowski, J.T.; Cotlet, M.; Monti, O.L.A.; Racke, D.A.; Neupane, M.R.; Wickramaratne, D.; Lake, R.K.; Parkinson, B.A.; Sutter, P. Tin disulfide; an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.X.; Gao, S.Y.; Shi, J.J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438. [Google Scholar] [CrossRef]
- Hafeez, M.; Gan, L.; Li, H.Q.; Ma, Y.; Zhai, T.Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301. [Google Scholar] [CrossRef] [PubMed]
- Su, X.C.; Nie, H.K.; Wang, Y.R.; Li, G.R.; Yan, B.Z.; Zhang, B.T.; Yang, K.J.; He, J.L. Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser. Opt. Lett. 2017, 42, 3502–3505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.Z.; Wang, P.; Li, Z.; Wang, H.F.; Song, C.Y.; Huang, C.; Chen, Z.G.; Yang, L.; Zhang, K.T.; Lu, S.H.; et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077. [Google Scholar] [CrossRef] [PubMed]
- Wolverson, D.; Crampin, S.; Kazemi, A.S.; Ilie, A.; Bending, S.J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, M.; Shi, C.G.; Li, T.; Shi, S.E.; Li, T.H.; Liu, L.Z. Magnetism induced by cationic defect in monolayer ReSe2 controlled by strain engineering. Appl. Surf. Sci. 2017, 425, 696–701. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, H.A.; Wang, H. Novel electronic and photonic properties of low-symmetry two-dimensional materials. In Proceedings of the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 3–5 August 2016; pp. 234–238. [Google Scholar]
- Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752–2760. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.B.; Tongay, S. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.F.; Li, X.B.; Feng, Q.L.; Yin, J.B.; Zhou, L.; Liu, D.Y.; Liu, K.Q.; He, X.X.; Liang, X.; Liu, S.Z.; et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742. [Google Scholar] [CrossRef]
- Qi, F.; Wang, X.Q.; Zheng, B.J.; Chen, Y.F.; Yu, B.; Zhou, J.H.; He, J.R.; Li, P.J.; Zhang, W.L.; Li, Y.R. Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 224, 593–599. [Google Scholar] [CrossRef]
- Ho, C.H.; Huang, C.E. Optical property of the near band-edge transitions in rhenium disulfide and diselenide. J. Alloy. Compd. 2004, 383, 74–79. [Google Scholar] [CrossRef]
- Ho, C.H.; Liao, P.C.; Huang, Y.S.; Yang, T.R.; Tiong, K.K. Optical Absorption of ReS2 and ReSe2 Single Crystals. J. Appl. Phys. 1997, 81, 6380–6383. [Google Scholar] [CrossRef]
- Jian, Y.C.; Lin, D.Y.; Wu, J.S.; Huang, Y.S. Optical and electrical properties of Au- and Ag-doped ReSe2. Jpn. J. Appl. Phys. 2013, 52, 04CH06. [Google Scholar] [CrossRef]
- Ho, C.H.; Huang, Y.S.; Tiong, K.K.; Liao, P.C. Absorption-edge anisotropy in ReS2 and ReSe2 layered semiconductors. Phys. Rev. B 1998, 58, 16130–16135. [Google Scholar] [CrossRef]
- Liu, H.; Luo, A.P.; Wang, F.Z.; Tang, R.; Liu, M.; Luo, Z.C.; Xu, W.C.; Zhao, C.J.; Zhang, H. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt. Lett. 2014, 39, 4591–4594. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zou, X.; Li, C.; Li, W.K.; Liu, Z.Z.; Liu, Y.Q.; Leng, Y.X. Picosecond pulse generation in a mono-layer MoS2 mode-locked Ytterbium-doped thin disk laser. Chin. Opt. Lett. 2017, 15, 041401. [Google Scholar]
- Cheng, C.; Li, Z.Q.; Dong, N.N.; Wang, J.; Chen, F. Tin diselenide as a new saturable absorber for generation of laser pulses at 1 μm. Opt. Express 2017, 25, 6132–6140. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.D.; Chen, Q.Y.; Sun, R.Y.; Man, B.Y.; Zhang, H.N. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt. Mater. Express 2017, 7, 3934–3943. [Google Scholar] [CrossRef]
- Du, L.; Jiang, G.B.; Miao, L.L.; Huang, B.; Yi, J.; Zhao, C.J.; Wen, S.C. Few-layer rhenium diselenide: An ambient-stable nonlinear optical modulator. Opt. Mater. Express 2018, 8, 926–935. [Google Scholar] [CrossRef]
- Jiang, S.L.; Zhang, Z.P.; Zhang, N.; Huan, Y.H.; Gong, Y.; Sun, M.X.; Shi, J.P.; Xie, C.Y.; Yang, P.F.; Fang, Q.Y.; et al. Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018, 11, 1787–1797. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, S.Z.; Li, T.; Yang, K.J.; Luan, C.; Xu, X.D.; Xu, J. Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber. Opt. Commun. 2018, 406, 249–253. [Google Scholar] [CrossRef]
- Wang, G.J.; Song, Q.; Zhang, B.Y.; Gao, Y.J.; Wang, W.J.; Wang, M.H. Passively Q-switched Nd:YVO4 laser using molybdenum disulfide (MoS2) as a saturable absorber. Optik-Int. J. Light Electron. Opt. 2016, 127, 3021–3023. [Google Scholar] [CrossRef]
- Wang, S.X.; Yu, H.H.; Zhang, H.J.; Wang, A.Z.; Zhao, M.W.; Chen, Y.X.; Mei, L.M.; Wang, J.Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Sun, H.; Wang, X.; Mao, D.; Wang, Y.G.; Li, L.; Duan, L.N. Passively Q-switched Nd:YAG laser with a MoS2 solution saturable absorber. Laser Phys. 2015, 25, 125805. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Li, J.P.; Wang, Y.G. 1.5-MHz repetition rate passively Q-switched Nd:YVO4 laser based on WS2 saturable absorber. Chin. Phys. B 2017, 26, 044203. [Google Scholar] [CrossRef]
- Li, M.X.; Jin, G.Y.; Li, Y. Diode-pumped passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide nanosheets saturable absorber at 1066 nm. Infrared Phys. Techn. 2018, 90, 195–198. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.G.; Duan, L.N.; Li, L.; Sun, H. Passively Q-switched nd:YAG laser via a WS2 saturable absorber. Opt. Commun. 2016, 367, 234–238. [Google Scholar] [CrossRef]
Sa | Gain Medium | Pulse Width (ns) | Repetition Rate (kHz) | Output Power (mW) | Slope (%) | Ref. |
---|---|---|---|---|---|---|
MoS2 | Nd:LuAG | 280 | 210 | 290 | 5.2 | [33] |
Nd:YVO4 | 327 | 5 | 199 | 9 | [34] | |
Nd:GdVO4 | 970 | 732 | 227 | - | [35] | |
Nd:YAG | 2800 | 20.8 | 23.5 | - | [36] | |
WS2 | Nd:YVO4 | 153 | 1578 | 1190 | 30 | [37] |
Nd:GdTaO4 | 560 | 70 | 309 | 6.87 | [38] | |
608 | 61.2 | 356 | 7.91 | [38] | ||
Nd:YAG | 922 | 52.48 | 42.6 | - | [39] | |
1030 | 47.05 | 46 | - | [39] | ||
1280 | 45.25 | 54 | - | [39] | ||
ReSe2 | Nd:YVO4 | 682 | 84.16 | 125 | 17.27 | Our |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Leng, Y.; Huo, J. Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber. Appl. Sci. 2018, 8, 1753. https://doi.org/10.3390/app8101753
Li C, Leng Y, Huo J. Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber. Applied Sciences. 2018; 8(10):1753. https://doi.org/10.3390/app8101753
Chicago/Turabian StyleLi, Chun, Yuxin Leng, and Jinjin Huo. 2018. "Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber" Applied Sciences 8, no. 10: 1753. https://doi.org/10.3390/app8101753
APA StyleLi, C., Leng, Y., & Huo, J. (2018). Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber. Applied Sciences, 8(10), 1753. https://doi.org/10.3390/app8101753