Predicting the Failure of Dental Implants Using Supervised Learning Techniques
Abstract
:1. Introduction
- The X-ray film shows no signs of radiolucency in the alveolar bone around the fixture.
- Alveolar bone resorption around the fixture does not exceed 1 mm within the first year after the dental implant.
- The annual bone loss around the fixture does not exceed 0.2 mm.
- Pain and shakiness during occlusion.
- Bone loss does not exceed half the fixture length under X-ray.
- Uncontrollable exudation around the implant.
- The implant is no longer in the mouth.
2. Materials and Methods
2.1. Data
2.2. Variable
2.3. Statistical Analysis Tools
3. Results
3.1. Descriptive Statistics
3.2. Experimental Results for the Prediction Model
4. Discussion
5. Conclusions
- Comparing the prediction performance of the three tested supervised learning techniques, the results revealed that DT is the optimal model for forecasting dental implant failure.
- Fixture width, implant system, betel nut chewing, ridge augmentation, fixture length, and alcohol consumption are the top five most influential independent variables on dental implant failure prediction.
- This study not only demonstrates the influencing factors for dental implant failure, but also extends to clinical practice for the benefit of the public. However, there are still areas in which future study can advance our understanding. The retrospective data collection adopted in this study led to a considerable lack of information, which could have affected the analysis results; prospective research methods should be adopted in future work to collect more complete information, enabling the correctness of the analysis results to be closer to actual clinical results.
Author Contributions
Conflicts of Interest
References
- Brånemark, P.I.; Breine, U.; Adell, R.; Hansson, B.; Lindström, J.; Ohlsson, Å. Intra-osseous anchorage of dental prostheses: I. experimental studies. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Albrektsson, T.; Worthington, M.D.; Eriksson, D. The Long-Term Efficacy of Currently Used Dental Implants: A Review and Proposed Criteria of Success. Int. J. Oral Maxillofac. Implants 1986, 1, 11–25. [Google Scholar] [PubMed]
- Misch, C.E.; Perel, M.L.; Wang, H.L.; Sammartino, G.; Galindo-Moreno, P.; Trisi, P.; Schwartz-Arad, D. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) pisa consensus conference. Implant Dent. 2008, 17, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, P.L.; Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002, 29 (Suppl. 3), 197–212. [Google Scholar] [CrossRef] [PubMed]
- Eckert, S.E.; Wollan, P.C. Retrospective review of 1170 endosseous implants placed in partially edentulous jaws. J. Prosthet. Dent. 1998, 79, 415–421. [Google Scholar] [CrossRef]
- Aguirrebeitia, J.; Müftü, S.; Abasolo, M.; Vallejo, J. Experimental study of the removal force in tapered implant-abutment interfaces: A pilot study. J. Prosthet. Dent. 2014, 111, 293–300. [Google Scholar] [CrossRef] [PubMed]
- López de Lacalle, L.N.; Rodriguez, A.; Lamikiz, A.; Celaya, A.; Alberdi, R. Five-axis machining and burnishing of complex parts for the improvement of surface roughness. Mater. Manuf. Process. 2011, 26, 997–1003. [Google Scholar] [CrossRef]
- Kronstrom, M.; McGrath, L.; Chaytor, D. Implant dentistry in the undergraduate dental education program at Dalhousie University. Part 1: Clinical outcomes. Int. J. Prosthodont. 2007, 21, 124–128. [Google Scholar]
- Tosches, N.; Brägger, U.; Lang, N. Marginal fit of cemented and screw-retained crowns incorporated on the Straumann (ITI)® Dental Implant System: An in vitro study. Clin. Oral Implants Res. 2009, 20, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.F.; Hsieh, C.Y.; Kao Yang, Y.H.; Lin, H.J.; Chen, C.H.; Chen, Y.W.; Hu, Y.H. Developing a stroke severity index based on administrative data was feasible using data mining techniques. J. Clin. Epidemiol. 2015, 68, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.E.; Lo, C.L.; Hu, Y.H. Improvement of adequate use of warfarin for the elderly using decision tree-based approaches. Methods Inf. Med. 2014, 53, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.F.; Chen, K.; Wu, D.P.; Hung, L.C.; Su, Y.H.; Hu, Y.H. Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. Int. J. Med. Inform. 2018, 112, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, P.; Renouard, F.; Bourgeois, D.; Fromentin, O.; Jeanneret, M.; Beresniak, A. Cost-effectiveness modeling of dental implant vs. bridge. Clin. Oral Implants Res. 2009, 20, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.J.; Tseng, C.C.; Torng, C.C. A retrospective analysis of prognostic indicators in dental implant therapy using the C5.0 decision tree algorithm. J. Dent. Sci. 2013, 8, 248–255. [Google Scholar] [CrossRef]
- Vazquez Alvarez, R.; Perez Sayans, M.; Gayoso Diz, P.; Garcia Garcia, A. Factors affecting peri-implant bone loss: A post-five-year retrospective study. Clin. Oral Implants Res. 2015, 26, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Su, Z.Y.; Lo, C.L.; Chiu, C.H.; Hu, Y.H.; Shieh, T.Y. An empirical study on the factors influencing the turnover intention of dentists in hospitals in Taiwan. J. Dent. Sci. 2014, 9, 332–344. [Google Scholar] [CrossRef]
- Whalen, S.; Pandey, G. A comparative analysis of ensemble classifiers: Case studies in genomics. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 807–816. [Google Scholar]
- Nanni, L.; Brahnam, S.; Ghidoni, S.; Lumini, A. Toward a general-purpose heterogeneous ensemble for pattern classification. Comput. Intell. Neurosci. 2015, 2015, 85. [Google Scholar] [CrossRef] [PubMed]
- Sesmero, M.P.; Ledezma, A.I.; Sanchis, A. Generating ensembles of heterogeneous classifiers using stacked generalization. Wires Data Min. Knowl. 2015, 5, 21–34. [Google Scholar] [CrossRef]
- Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J. Intell. Manuf. 2018, 29, 333–351. [Google Scholar] [CrossRef]
- Allum, S.R.; Tomlinson, R.A.; Joshi, R. The impact of loads on standard diameter, small diameter and mini implants: A comparative laboratory study. Clin. Oral Implants Res. 2008, 19, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.T.; Beck-Broichsitter, B.E.; Rossmann, C.M.; Behrens, E.; Jochens, A.; Wiltfang, J. Long-term Survival of Straumann Dental Implants with TPS Surfaces: A Retrospective Study with a Follow-up of 12 to 23 Years. Clin. Implant Dent. Relat. Res. 2016, 18, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, S.; Dittmer, M.P.; Kohorst, P.; Jendras, M.; Borchers, L.; Stiesch, M. Effect of implant–abutment connection design on load bearing capacity and failure mode of implants. J. Prosthodont. 2011, 20, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Theoharidou, A.; Petridis, H.P.; Tzannas, K.; Garefis, P. Abutment screw loosening in single-implant restorations: A systematic review. Int. J. Oral Maxillofac. Implants 2008, 23, 681–690. [Google Scholar] [PubMed]
- Lindhe, J.; Meyle, J. Group D of European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol. 2008, 35 (Suppl. 8), 282–285. [Google Scholar] [CrossRef] [PubMed]
- Sham, A.; Cheung, L.; Jin, L.; Corbet, E. The effects of tobacco use on oral health. Hong Kong Med. J. 2003, 9, 271–277. [Google Scholar] [PubMed]
- Ling, L.J.; Hung, S.L.; Tseng, S.C.; Chen, Y.T.; Chi, L.Y.; Wu, K.M.; Lai, Y.L. Association between betel quid chewing, periodontal status and periodontal pathogens. Oral Microbiol. Immunol. 2001, 16, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Moreno, P.; Fauri, M.; Ávila-Ortiz, G.; Fernández-Barbero, J.E.; Cabrera-León, A.; Sánchez-Fernández, E. Influence of alcohol and tobacco habits on peri-implant marginal bone loss: A prospective study. Clin. Oral Implants Res. 2005, 16, 579–586. [Google Scholar] [CrossRef] [PubMed]
- McDermott, N.E.; Chuang, S.K.; Woo, V.V.; Dodson, T.B. Complications of dental implants: Identification, frequency, and associated risk factors. Int. J. Oral Maxillofac. Implants 2003, 18, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Parein, A.M.; Eckert, S.E.; Wollan, P.C.; Keller, E.E. Implant reconstruction in the posterior mandible: A long-term retrospective study. J. Prosthet. Dent. 1997, 78, 34–42. [Google Scholar] [CrossRef]
- Moy, P.K.; Medina, D.; Shetty, V.; Aghaloo, T.L. Dental implant failure rates and associated risk factors. Int. J. Oral Maxillofac. Implants 2005, 20, 569–577. [Google Scholar] [PubMed]
- Manor, Y.; Oubaid, S.; Mardinger, O.; Chaushu, G.; Nissan, J. Characteristics of Early Versus Late Implant Failure: A Retrospective Study. J. Oral Maxillofac. Surg. 2009, 67, 2649–2652. [Google Scholar] [CrossRef] [PubMed]
Group | Independent Variables | Definition and Code |
---|---|---|
Demographics | Age | Ratio scale |
Gender | 0: Female 1: Male | |
Physical condition | Systemic disease | 0: Healthy 1: Cardiovascular disorder 2: Diabetes 3: Osteoporosis 4: Radiotherapy 5: Others |
Factors of missing | 0: Congenital missing 1: Caries 2: Periodontitis 3: Fracture 4: Root resorption 5: Failure of endodontic treatment | |
Lifestyle | Tobacco smoking | 0: Never 1: Smoking 2: Stopped smoking |
Betel nut chewing | 0: Never 1: Chewing betel nut 2: Stopped chewing betel nut | |
Alcohol consumption | 0: Never 1: Drinking 2: Stopped drinking | |
Surgeon Background | Departments | 0: General practice 1: Periodontics 2: Oral-Maxillary surgery |
Surgeon experience | Ratio scale | |
Anatomic Condition | Location of implant | 0: Maxillary anterior teeth 1: Maxillary premolars 2: Maxillary molars 3: Mandibular anterior teeth 4: Mandibular premolars 5: Mandibular molars |
Bone density | 1: Type I 2: Type II 3: Type III 4: Type IV | |
Surgical Information | Timing of implant placement | 1: Immediate implant placement 2: Early implant placement 3: Staged implant placement |
Ridge augmentation | 0: None 1:Guided bone regeneration 2: Ridge splitting | |
Maxillary sinus augmentation | 0: None 1: Lateral window technique 2: Osteotome technique | |
Implant attributes | Implant system | 0: Straumann® 1: Ankylos® 2: XIVE® 3: Nobeactive® 4: Branemark® 5: Lifecore® |
Fixture length | Ratio scale | |
Fixture width | Ratio scale | |
Prosthetics attributed | Types of prosthesis | 0: Fixed denture 1: Overdenture |
Angle of abutment | 0: Without angle 1: With angle | |
Prosthesis fixation | 0: Cement-retained 1: Screw-reained |
Predicted Classes | Dental ImplantFailure | Dental ImplantSuccess | |
---|---|---|---|
Actual Classes | |||
Dental implantfailure | TP | FN | |
Dental implantsuccess | FP | TN |
Variable | Success n = 630 (84.3%) | Failure n = 117 (15.7%) | p Value | ||
---|---|---|---|---|---|
Num. | % | Num. | % | ||
Gender | 0.573 | ||||
0 | 334 | 44.7% | 52 | 7.0% | |
1 | 296 | 39.6% | 65 | 8.2% | |
Systemic disease | 0.165 | ||||
0 | 434 | 58.1% | 82 | 11.0% | |
1 | 124 | 16.6% | 21 | 2.8% | |
2 | 20 | 2.7% | 7 | 0.9% | |
3 | 5 | 0.7% | 1 | 0.1 | |
4 | 0 | 0% | 0 | 0% | |
5 | 47 | 6.3% | 6 | 0.8% | |
Factors of missing | 0.541 | ||||
0 | 0 | 0 | 1 | 0.1% | |
1 | 174 | 23.5% | 26 | 3.5% | |
2 | 290 | 39.1% | 68 | 9.2% | |
3 | 144 | 19.4% | 20 | 2.7% | |
4 | 1 | 0.1% | 1 | 0.1% | |
5 | 15 | 2.0% | 1 | 0.1% | |
Tobacco smoking | 0.362 | ||||
0 | 497 | 70.6% | 96 | 13.1% | |
1 | 73 | 8.2% | 12 | 1.5% | |
2 | 36 | 5.9% | 5 | 0.7% | |
Alcohol consumption | 0.106 | ||||
0 | 541 | 76.8% | 105 | 14.4% | |
1 | 52 | 6.5% | 3 | 0.4% | |
2 | 13 | 1.4% | 5 | 0.5% | |
Betel nut chewing | 0.014 * | ||||
0 | 582 | 79.9% | 108 | 14.5% | |
1 | 12 | 1.4% | 5 | 0.6% | |
2 | 12 | 3.5% | 0 | 0.02% | |
Departments | 0.389 | ||||
0 | 188 | 18.6% | 43 | 4.2% | |
1 | 353 | 34.8% | 63 | 6.2% | |
2 | 317 | 31.3% | 49 | 4.8% | |
Location of implant | 0.004 ** | ||||
0 | 106 | 12.0% | 35 | 1.9% | |
1 | 141 | 14.6% | 14 | 0.8% | |
2 | 164 | 18.0% | 26 | 0.9% | |
3 | 53 | 5.4% | 11 | 0.8% | |
4 | 91 | 9.6% | 19 | 1.4% | |
5 | 303 | 32.2% | 50 | 2.3% | |
Bone density | 0.96 | ||||
1 | 1 | 0.1% | 0 | 0% | |
2 | 238 | 32.0% | 40 | 5.4% | |
3 | 345 | 46.4% | 60 | 8.1% | |
4 | 46 | 6.2% | 13 | 1.7% | |
Timing of implant placement | 0.289 | ||||
1 | 17 | 2.3% | 1 | 0.1% | |
2 | 553 | 74.7% | 100 | 13.5% | |
3 | 53 | 7.2% | 16 | 2.2% | |
Ridge augmentation | 0.000 *** | ||||
0 | 397 | 54.2% | 48 | 6.6% | |
1 | 213 | 29.1% | 62 | 8.5% | |
2 | 12 | 1.6% | 0 | 0% | |
Maxillary sinus augmentation | 0.336 | ||||
0 | 529 | 72.3% | 101 | 13.8% | |
1 | 39 | 5.3% | 1 | 0.1% | |
2 | 54 | 7.4% | 8 | 1.1% | |
Implant system | 0.000 *** | ||||
0 | 394 | 52.7% | 44 | 5.9% | |
1 | 155 | 20.7% | 52 | 7.0% | |
2 | 27 | 3.6% | 8 | 1.1% | |
3 | 17 | 2.3% | 10 | 1.3% | |
4 | 18 | 2.4% | 1 | 0.1% | |
5 | 19 | 2.5% | 2 | 0.3% | |
Types of prosthesis | 0.019 * | ||||
0 | 585 | 78.7% | 106 | 14.2% | |
1 | 42 | 5.6% | 10 | 1.3% | |
Angle of abutment | 0.858 | ||||
0 | 548 | 73.8% | 91 | 12.2% | |
1 | 78 | 10.5% | 21 | 2.8% | |
Prosthesis fixation | 0.027 * | ||||
0 | 525 | 70.9% | 88 | 11.9% | |
1 | 102 | 13.8% | 26 | 3.5% |
Classifier | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
DT | 0.679 | 0.590 | 0.768 | 0.670 |
LGR | 0.624 | 0.607 | 0.641 | 0.644 |
SVM | 0.628 | 0.581 | 0.675 | 0.628 |
Bagging + DT | 0.702 | 0.581 | 0.822 | 0.741 |
Bagging + LGR | 0.625 | 0.573 | 0.678 | 0.674 |
Bagging + SVM | 0.619 | 0.598 | 0.640 | 0.670 |
Adaboost + DT | 0.671 | 0.470 | 0.871 | 0.741 |
Adaboost + LGR | 0.600 | 0.513 | 0.687 | 0.655 |
Adaboost + SVM | 0.633 | 0.513 | 0.754 | 0.654 |
Rank | Variables | Importance |
---|---|---|
1 | Fixture width | 0.02446 |
2 | Implant system | 0.02091 |
3 | Chewing betel nut | 0.01907 |
4 | Ridge augmentation | 0.01817 |
5 | Fixture length | 0.01519 |
6 | Alcohol consumption | 0.01234 |
7 | Sinus augmentation | 0.00965 |
8 | Location of implant | 0.00768 |
9 | Timing of implant placement | 0.00708 |
10 | Factors of missing | 0.00688 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Lin, C.-J.; Hu, Y.-H.; You, Z.-H. Predicting the Failure of Dental Implants Using Supervised Learning Techniques. Appl. Sci. 2018, 8, 698. https://doi.org/10.3390/app8050698
Liu C-H, Lin C-J, Hu Y-H, You Z-H. Predicting the Failure of Dental Implants Using Supervised Learning Techniques. Applied Sciences. 2018; 8(5):698. https://doi.org/10.3390/app8050698
Chicago/Turabian StyleLiu, Chia-Hui, Cheng-Jyun Lin, Ya-Han Hu, and Zi-Hung You. 2018. "Predicting the Failure of Dental Implants Using Supervised Learning Techniques" Applied Sciences 8, no. 5: 698. https://doi.org/10.3390/app8050698
APA StyleLiu, C.-H., Lin, C.-J., Hu, Y.-H., & You, Z.-H. (2018). Predicting the Failure of Dental Implants Using Supervised Learning Techniques. Applied Sciences, 8(5), 698. https://doi.org/10.3390/app8050698