Biochar as a Stimulator for Germination Capacity in Seeds of Virginia Mallow (Sida hermaphrodita (L.) Rusby)
Abstract
:1. Introduction
- -
- hydro-conditioning involves direct seed humidification with water, without a medium;
- -
- matri-conditioning involves water carried by a solid inorganic substance with high negative water potential; and
- -
- osmo-conditioning involves water carried by osmotically active substances with low osmotic potential.
2. Materials and Methods
2.1. Preparation and Characterisation of Biochars
2.2. Plant Sample Collection
2.3. Experimental Design
2.4. Examination of Samples
2.5. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grzesik, M.; Janas, R.; Górnik, K.; Romanowska-Duda, Z. Biological and physical methods of seed production and processing. J. Res. Appl. Agric. Eng. 2012, 57, 147–152. [Google Scholar]
- Tworkowski, J.; Szczukowski, S.; Stolarski, M.J.; Kwiatkowski, J.; Graban, Ł. Productivity and properties of virginia fanpetals biomass as fuel depending on the propagule and plant density. Fragm. Agron. 2014, 31, 115–125. [Google Scholar]
- Podleśny, J.; Sowiński, M. The effect of seeds stimulation by magnetic field on growth, development and dynamics of biomass accumulation in pea (Pisum sativum L.). Agric. Eng. 2005, 9, 103–110. [Google Scholar]
- Duczmal, K.; Tucholska, H. Nasiennictwo [Seed Production]; PWRiL: Poznań, Poland, 2000; Volume 1, pp. 205–234. [Google Scholar]
- Cavallaro, V.; Barbera, A.C.; Maucieri, C.; Gimma, G.; Scalisi, C.; Patanè, C. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 2016, 95, 557–566. [Google Scholar] [CrossRef]
- Ciupak, A.; Szczurowska, I.; Gładyszewska, B.; Pietruszewski, S. Impact of laser light and magnetic field stimulation on the process of buckwheat seed germination. Tech. Sci. 2007, 10, 1–10. [Google Scholar] [CrossRef]
- Karthikeyanb, N.; Prasannaa, R.; Nainb, L.; Kaushik, B.D. Evaluating the potential of plant growth promoting Cyanobacteria as inoculants for wheat. Eur. J. Soil Biol. 2007, 43, 23–30. [Google Scholar] [CrossRef]
- Górnik, K. The effect of temperature treatments during ‘Wielkopolski’ sunflower seed imbibition and storage on plant tolerance to chilling. Folia Hortic. 2011, 23, 83–88. [Google Scholar] [CrossRef]
- Grzesik, M.; Janas, R. Effects of hydropriming on metabolic activity, seed germination and seedling emergence of carrot. J. Res. Appl. Agric. Eng. 2011, 56, 127–132. [Google Scholar]
- Badek, B.; van Duijn, B.; Grzesik, M. Effects of water supply methods and incubation on germination of China aster (Callistephus chinensis) seeds. Seed Sci. Technol. 2007, 35, 569–576. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef]
- Błażewicz-Woźniak, M. Effect of no-tillage and mulching with cover crops on yield of parsley. Folia Hortic. 2005, 17, 3–10. [Google Scholar]
- Górnik, K.; Grzesik, M. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant. 2002, 24, 378–383. [Google Scholar] [CrossRef]
- Janas, R. Effect of tytanit on yield and quality of onion seeds. Postępy Nauk Rol. 2009, 541, 133–139. [Google Scholar]
- Janas, R.; Grzesik, M. Pro-ecological methods of improving horticultural plant seeds quality. Adv. Agric. Sci. Probl. Issues 2006, 510, 213–221. [Google Scholar]
- Grzesik, M.; Romanowska-Duda, Z.B. Technologia hydrokondycjonowania nasion ślazowca pensylwańskiego (Sida hermaphrodita) w aspekcie zmian klimatycznych [Technology for hydro-conditioning of Virginia mallow (Sida hermaphrodita) seeds in view of climate changes]. Prod. Biomasy Wybrane Probl. 2009, VII, 63–69. [Google Scholar]
- Grzesik, M.; Romanowska-Duda, Z.B. New Technologies of the energy plant production in the predicted climate changed conditions. Bjuleten Djerżawnowo Nikitsk. Bot. Sada. Ukr. Akad. Agrar. Nauk 2009, 99, 65–68. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, B.; Puchalski, C. Biochar as a Multifunctional Component of the Environment—A Review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef]
- Saletnik, B.; Bajcar, M.; Zaguła, G.; Czernicka, M.; Puchalski, C. Influence of biochar and biomass ash applied as soil amendment on germination rate of Virginia mallow seeds (Sida hermaphrodita R.). Econtechmod Int. Q. J. 2016, 5, 71–76. [Google Scholar]
- Lehman, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Malińska, K. Biochar - a response to current environmental issues. Eng. Prot. Environ. 2012, 15, 387–403. [Google Scholar]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biotechnol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am. Eur. J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Karhu, K.; Mattila, T.; Bergstrom, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Lehman, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; Volume 2, pp. 13–30. [Google Scholar]
- Polish Committee for Standardization. Soil Quality—Determination of Ph; Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Absorbable Phosphorus in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Potassium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Magnesium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2004.
- British Standards Institution. Solid Biofuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Methods; British Standards Institution: London, UK, 2011. [Google Scholar]
- Milestone. SK-10 High Pressure Rotor; HPR-PE-19 Carbon Black; Milestone: Shelton, CT, USA, 2019. [Google Scholar]
- Milestone. SK-10 High Pressure Rotor; HPR-AG-02 Dried Plant Tissue; Milestone: Shelton, CT, USA, 2019. [Google Scholar]
- Woodstock, L.W. Seed imbibition: A critical period for successful germination. J. Seed Technol. 1988, 12, 1–15. [Google Scholar]
- Doliński, R. Influence of treatment with hot water, chemical scarification and storage time on germination of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) seeds. Biul. Inst. Hod. Aklim. Roślin 2009, 257, 293–303. [Google Scholar]
- Grzesik, M.; Janas, R.; Romanowska-Duda, Z. Stimulation of growth and metabolic processes in Virginia mallow (Sida hermaphrodita L. Rusby) by seed hydroconditioning. Probl. Agric. Eng. 2011, 4, 81–89. [Google Scholar]
- Grzesik, M.; Janas, R. Effect of conditioning on dill (Anethum graveolens L.) seed germination and plant emergence. J. Res. Appl. Agric. Eng. 2013, 58, 188–192. [Google Scholar]
- Grzesik, M.; Janas, R. Physiological method for improving seed germination and seedling emergence of root parsley in organic systems. J. Res. Appl. Agric. Eng. 2014, 59, 80–86. [Google Scholar]
- Mendonça, S.R.; Silva Pereira, J.C.; Teles da Cruz, A. Emergence of carrot seeds cv. Brasília submitted to hydro-conditioning. Ipê Agron. J. 2018, 2, 18–25. [Google Scholar]
- Xavier, F.M.; Brunes, A.P.; Cavalcante, J.A.; Meneghello, G.E.; Radke, A.K.; Noguez Martins, A.B.; Winke Dias, L.; Revers Meneguzzo, M.R. Germination of Allium cepa L. seeds subjected to physiological conditioning and drying. Rev. Ciênc. Agrár. 2017, 40, 1–10. [Google Scholar]
- Imani, A.F.; Salehi Sardoei, A.; Shahdadneghad, M. Effect of H2SO4 on Seed Germination and Viability of Canna indica L. Ornamental Plant. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 223–229. [Google Scholar]
- Rostami, A.A.; Shasavar, A. Effects of Seed Scarification on Seed Germination and Early Growth of Olive Seedlings. J. Biol. Sci. 2009, 9, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Kheloufi, A.; Mansouri, L.M.; Boukhatem, F.Z. Application and use of sulphuric acid pretreatment to improve seed germination of three acacia species. Reforesta 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Zare, S.; Tavili, A.; Darini, M.J. Effects of different treatments on seed germination and breaking seed dormancy of Prosopis koelziana and Prosopis Juliflora. J. For. Res. 2011, 22, 35–38. [Google Scholar] [CrossRef]
- Tanaka-Oda, A.; Kenzo, T.; Fukuda, K. Optimal germination condition by sulfuric acid pretreatment to improve seed germination of Sabina vulgaris. J. For. Res. 2009, 14, 251–256. [Google Scholar] [CrossRef]
- Saied, A.S.; Gebauer, J.; Buerkert, A. Effects of different scarification methods on germination of Ziziphus spina-christi seeds. Seed Sci. Technol. 2008, 36, 201–205. [Google Scholar] [CrossRef]
- Doliński, R.; Kociuba, W.; Kramek, A. Influence of short treatment with hot water, chemical scarification and gibberellic acid on germination of Virginia mallow (Sida hermaphrodita (L.) Rusby) seeds. Adv. Agric. Sci. Probl. Issues 2007, 517, 139–147. [Google Scholar]
- Mackay, W.A.; Davis, T.D.; Sankhla, D. Influence of scarification and temperature treatments on seed germination of Lupinus havardiiv. Seed Sci. Technol. 1995, 23, 815–821. [Google Scholar]
- Martin, I.; De la Caudra, C. Evaluation of different scarification methods to remove hard-seediness in Trifolium subterraneum and Medicago polimorpha accessions of the Spanish base genebank. Seed Sci. Technol. 2004, 32, 671–681. [Google Scholar] [CrossRef]
- Pietruszewski, S.; Kania, K. Effect of magnetic field on germination and yield of wheat. Int. Agrophys. 2010, 24, 297–302. [Google Scholar]
- Komarzyński, K.; Pietruszewski, S. Influence of alternating magnetic field on the germination of seeds with low germination capacity. Acta Agrophys. 2008, 11, 429–435. [Google Scholar]
- Sharma, S.; Naithani, R.; Vargtrese, B.; Keshavkant, S.; Naithani, S.C. Effect of hot-water treatment on seed germination of some fast growing tropical tree species. J. Trop. For. 2008, 24, 49–53. [Google Scholar]
- Tworkowski, J.; Szczukowski, S.; Jakubiuk, P. Skaryfikacja a wartość siewna nasion rutwicy wschodniej (Galega orientalis Lam.) [Scarification versus viability of galega (Galega orientalis Lam.) seeds]. Adv. Agric. Sci. Probl. Issues 1999, 468, 233–240. [Google Scholar]
- Rogovska, N.; Laird, D.; Cruse, R.M.; Trabue, S.; Heaton, E. Germination Tests for Biochar Quality. J. Environ. Qual. 2012, 41, 1014–1022. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Murphy, D.V.; Abbot, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Shamim, M.; Saha, N.; Hye, F.B. Effect of biochar on seed germination, early growth of Oryza sativa L. and soil nutrients. Trop. Plant Res. 2018, 5, 336–342. [Google Scholar] [CrossRef]
- Kamara, A.; Kamara, A.; Mansaray, M.; Sawyerr, P. Effects of biochar derived from maize stover and rice straw on the germination of their seeds. Am. J. Agric. For. 2014, 2, 246–249. [Google Scholar] [CrossRef]
- Robertson, S.J.; Rutherford, P.M.; Lo’ pez-Gutie´rrez, J.C.; Massicotte, H.B. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can. J. Soil Sci. 2012, 92, 329–340. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions–A meta-analysis of literature data. Plant Soil. 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2013, 123, 45–51. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato. Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems–A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Maucieri, C.; Liu, S.; Zou, J. Annual nitric and nitrous oxide emissions response to biochar amendment from an intensive greenhouse vegetable system in southeast China. Sci. Hortic. 2019, 246, 879–886. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Maucieri, C.; Zhang, Y.; McDaniel, M.D.; Borin, M.; Adams, M.A. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 2017, 307, 267–276. [Google Scholar] [CrossRef]
- Szweykowska, A. Plant Physiology; Wydawnictwo Naukowe: Poznań, Poland, 1999; pp. 67–78. [Google Scholar]
- Krzywy, E. Fertilization of Soils and Plants; Akademia Rolnicza: Szczecin, Poland, 2000; p. 177. [Google Scholar]
- Wińska-Krysiak, M. Calcium transporting proteins in plants. Acta Agrophysica 2006, 7, 751–762. [Google Scholar]
- Bezak-Mazur, E.; Stoińska, R. The importance of phosphorus in the environment—Review article. Arch. Waste Manag. Environ. Prot. 2013, 15, 33–42. [Google Scholar]
pH (KCl) | Carbon | Nitrogen | P2O5 | K2O | Mg |
% | mg kg−1 | ||||
x ± SD | |||||
6.59 ± 0.21 | 74.35 ± 0.24 | 0.93 ± 0.07 | 1382 ± 41 | 5752 ± 63 | 645 ± 22 |
Al | As | Ca | Cd | Cr | Cu | Mn |
mg kg−1 | ||||||
x ± SD | ||||||
<0.01 | <0.01 | 1852 ± 21 | <0.01 | <0.01 | 10 ± 0.8 | 240 ± 2.5 |
Mo | Na | Ni | Pb | S | Sr | Zn |
mg kg−1 | ||||||
x ± SD | ||||||
<0.01 | <0.01 | <0.01 | <0.01 | 880 ± 12 | <0.01 | 130 ± 11.5 |
Item | Parameter | Research Method |
---|---|---|
1. | pH in KCl | PN-ISO 10390:1997 [27] |
2. | Content of absorbable forms of phosphorus (P2O5) | PN-R-04023:1996 [28] |
3. | Content of absorbable forms of potassium (K2O) | PN-R-04022:1996/Az1:2002 [29] |
4. | Content of absorbable form of magnesium (Mg) | PN-R-04020:1996/Az1:2004 [30] |
5. | Content of carbon and nitrogen | PN-EN 15104:2011 [31] |
6. | Total content of selected macro- and microelements | Method using atomic emission spectrometry with excitation in argon plasma (ICP-OES) |
Material | Acid | Temperature and Time | Power | Application Note |
---|---|---|---|---|
Biochar | 7 mL HNO3 65% 1 mL H2O2 30% |
| 1500 W | HPR-PE-19 [32] |
Plants | 6 mL HNO3 65% 2 mL H2O2 30% | HPR-AG-02 [33] |
Al | As | Ca | Cd | Cr | Cu | K | |
mg 100 g−1 | |||||||
x ± SD | |||||||
Control sample | 2.26 b ± 0.06 | <0.01 | 32.7 b ± 0.64 | <0.01 | <0.01 | 0.17 b ± 0.01 | 303.57 c ± 3.75 |
Conditioning | 0.14 a ± 0.06 | <0.01 | 30.84 a ± 0.70 | <0.01 | <0.01 | 0.18 b ± 0.01 | 264.34 b ± 4.83 |
Conditioning with biochar | <0.01 | <0.01 | 29.90 a ± 0.70 | <0.01 | <0.01 | 0.07 a ± 0.01 | 208.20 a ± 3.56 |
Mg | Mn | Na | Ni | P | Pb | S | |
mg 100 g−1 | |||||||
x ± SD | |||||||
Control sample | 38.52 c ± 0.56 | 0.21 b ± 0.02 | 35.80 c ± 0.29 | <0.01 | 66.00 b± 0.34 | <0.01 | 33.41 c ± 0.21 |
Conditioning | 25.36 b ± 0.55 | 0.12 a ± 0.03 | 32.07 b ± 0.83 | <0.01 | 72.24 c ± 0.48 | <0.01 | 30.21 b ± 0.18 |
Conditioning with biochar | 18.27 a ± 0.34 | 0.11 a ± 0.01 | 7.71 a ± 0.29 | <0.01 | 55.73 a ± 0.57 | <0.01 | 23.77 a ± 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saletnik, B.; Bajcar, M.; Zaguła, G.; Saletnik, A.; Tarapatskyy, M.; Puchalski, C. Biochar as a Stimulator for Germination Capacity in Seeds of Virginia Mallow (Sida hermaphrodita (L.) Rusby). Appl. Sci. 2019, 9, 3213. https://doi.org/10.3390/app9163213
Saletnik B, Bajcar M, Zaguła G, Saletnik A, Tarapatskyy M, Puchalski C. Biochar as a Stimulator for Germination Capacity in Seeds of Virginia Mallow (Sida hermaphrodita (L.) Rusby). Applied Sciences. 2019; 9(16):3213. https://doi.org/10.3390/app9163213
Chicago/Turabian StyleSaletnik, Bogdan, Marcin Bajcar, Grzegorz Zaguła, Aneta Saletnik, Maria Tarapatskyy, and Czesław Puchalski. 2019. "Biochar as a Stimulator for Germination Capacity in Seeds of Virginia Mallow (Sida hermaphrodita (L.) Rusby)" Applied Sciences 9, no. 16: 3213. https://doi.org/10.3390/app9163213
APA StyleSaletnik, B., Bajcar, M., Zaguła, G., Saletnik, A., Tarapatskyy, M., & Puchalski, C. (2019). Biochar as a Stimulator for Germination Capacity in Seeds of Virginia Mallow (Sida hermaphrodita (L.) Rusby). Applied Sciences, 9(16), 3213. https://doi.org/10.3390/app9163213