Photonic Systems and Devices for Linear Cell Radar
Abstract
:1. Introduction
2. RoF System
3. Photonic Devices for RoF Systems
4. Linear Cell Radar Based on RoF [6,12]
5. Possible Interference in Linear Cell Radars [32]
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qunyu, X.; Huansheng, N.; Weishi, C. Video-based Foreign Object Debris detection. In Proceedings of the 2009 IEEE International Workshop on Imaging Systems and Techniques, Shenzhen, China, 11–12 May 2009. [Google Scholar]
- Galati, G.; Piracci, E.G.; Ferri, M. High resolution, millimeter-wave radar applications to airport safety. In Proceedings of the 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odessa, Ukraine, 5–11 September 2016. [Google Scholar]
- Mehdi, G.; Miao, J. Millimeter wave FMCW radar for Foreign object debris (FOD) detection at airport runways. In Proceedings of the 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 9–12 January 2012. [Google Scholar]
- Wei, L.; Yahai, W.; Liuge, D. FODs detection system based on millimeter wave FMCW radar. In Proceedings of the 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, Harbin, China, 16–19 August 2013. [Google Scholar]
- Marron, J.C.; Schroeder, K.S. Holographic laser radar. Opt. Lett. 1993, 18, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, T.; Kanno, A.; Yamamoto, N. 90-GHz Linear-Cell Systems for Public Transportation Systems. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018. [Google Scholar]
- Kawanishi, T. Millimeter-wave Radars Using Radio-over-fibers. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–2 October 2018. [Google Scholar]
- Yonemoto, N.; Kohmura, A.; Futatsumori, S.; Uebo, T.; Saillard, A. Broad band RF module of millimeter wave radar network for airport FOD detection system. In Proceedings of the Intl. Radar Conf. Surveillance for a Safer World, Bordeaux, France, 12–16 October 2009. [Google Scholar]
- APT Report on “Wired and Wireless Seamless Connections Using Millimeter-Wave Radio over Fiber Technology for Resilient Access Networks”. APT/ASTAP/REPT-11. Available online: https://www.apt.int/aptastap-outcomes (accessed on 6 February 2019).
- Kawanishi, T.; Kanno, A.; Kuri, T.; Yamamoto, N. Transparent waveform transfer for resilient and low-latency links. IEEE Photonics Soc. Newslett. 2014, 28, 4–8. [Google Scholar]
- APT Report on “Characteristics and Requirements of Optical and Electrical Components for Millimiter-Wave Radio on Fiber Systems”. APT/ASTAP/REPT-03 (Rev.4). Available online: https://www.apt.int/aptastap-outcomes (accessed on 6 February 2019).
- Kawanishi, T.; Yamamoto, N.; Umezawa, T.; Akahane, K.; Kanno, A.; Dat, P.T. Electro-optic devices for imaging. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014. [Google Scholar]
- IEC 62803:2016. Transmitting Equipment for Radiocommunication—Frequency Response of Optical-To-Electric Conversion Device in High-Frequency Radio over Fibre Systems—Measurement Method; IEC: Geneva, Switzerland, 2016. [Google Scholar]
- Inagaki, K.; Kawanishi, T.; Izutsu, M. Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator. IEICE Electron. Express 2012, 9, 220–226. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Javan, A.R.M.; Kashani, A.R.M. Confinement loss in hexagonal lattice photonic crystal fibers. Optik Int. J. Light Electron. Opt. 2013, 124, 7049–7052. [Google Scholar] [CrossRef]
- Guo, W.; Kou, J.; Xu, F.; Lu, Y. Ultra-flattened and low dispersion in engineered micro fibers with highly efficient nonlinearity reduction. Opt. Express 2011, 19, 15229–15235. [Google Scholar] [CrossRef] [PubMed]
- Monfared, Y.E.; Mojtahedinia, A.; Javan, A.R.M.; Kashani, A.R.M. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing. Front. Optoelectron. 2013, 6, 297–302. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Ponomarenko, S.A. Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion. Opt. Mater. 2019, 88, 406–411. [Google Scholar] [CrossRef]
- Sintov, Y.; Malka, D.; Zalevsky, Z. Prospects for diode pumped alkali atom based hollow core photonic crystal fiber lasers. Opt. Lett. 2014, 39, 4655–4658. [Google Scholar] [CrossRef] [PubMed]
- Malka, D.; Cohen, E.; Zalevsky, Z. Design of 4 × 1 power beam combined based on multicore photonic crystal fiber. Appl. Sci. 2017, 7, 695. [Google Scholar] [CrossRef]
- Kanno, A.; Kawanishi, T. Optical FM-CW signal generation for millimeter-wave and optical imaging. In Proceedings of the International Topical Meeting on Microwave Photonics (MWP), Alexandria, VA, USA, 28–31 October 2013; pp. 108–111. [Google Scholar]
- Kawanishi, T.; Sakamoto, T.; Izutsu, M. High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect. J. Sel. Top. Quantum Electron. 2007, 13, 79–91. [Google Scholar] [CrossRef]
- Kanno, A.; Kawanishi, T. Optical FM-CW signal generation for millimeter-wave imaging and OFDR applications. In Proceedings of the IEEE Avionics Fiber-Optics and Photonics Conference, San Diego, CA, USA, 1–3 October 2013. [Google Scholar]
- Kanno, A.; Kawanishi, T. 8-GHz-bandwidth FM-CW signal generation based on optical modulation technology for W-band radar system. In Proceedings of the European Radar Conference, Nuremberg, Germany, 9–11 October 2013; pp. 61–64. [Google Scholar]
- Umezawa, T.; Akahane, K.; Kanno, A.; Kawanishi, T. Characterization of APD- PIN photodiodes using InAs/InAlGaAs quantum-dot absorption layer. In Proceedings of the CLEO, San Jose, CA, USA, 9–14 June 2013. [Google Scholar] [CrossRef]
- Umezawa, T.; Akahane, K.; Kanno, A.; Kawanishi, T. Investigation of a 1.5-µm-wavelength InAs-quantum-dot absorption layer for high-speed photodetector. Appl. Phys. Express 2014, 7, 032201. [Google Scholar] [CrossRef]
- Akahane, K.; Yamamoto, N.; Kawanishi, T. Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique. Phys. Status Solid A 2011, 208, 425–428. [Google Scholar] [CrossRef]
- Kawanishi, T.; Yonemoto, N.; Shibagaki, N.; Kashima, K.; Haramoto, R.; Kanno, Y.S.A.; Inagaki, K.; Angkaew, T.; Janpugdee, P. Field trial of radio-over-fiber based high-resolution radar. In Proceedings of the 2015 Thailand-Japan Microwave (TJMW2015), Bangkok, Thailand, 6–8 August 2015. [Google Scholar]
- Kawanishi, T.; Kanno, A.; Yamamoto, N.; Yonemoto, N.; Shibagaki, N.; Kashima, K. Optical fiber network-connected distributed mm-wave radar system. In Proceedings of the 2017 IEEE Photonics Society Summer Topicals, San Juan, Puerto Rico, 10–12 July 2017. [Google Scholar]
- Kawanishi, T.; Kanno, A.; Freire, H.S.C. Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G Networks. IEEE Microw. Mag. 2018, 19, 102–111. [Google Scholar] [CrossRef]
- Kawanishi, T.; Kanno, A.; Dat, P.T.; Yamamoto, N. Radio-over-fibre based high-speed millimetre-wave backhaul system for high-speed trains. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016. [Google Scholar]
- Kawanishi, T.; Akama, K.; Kanno, A.; Yamamoto, N. Linear cell radar system using radio-over-fiber links. In Proceedings of the IEEE Conference on Antenna Measurement and Applications (CAMA), Västerås, Sweden, 3–6 September 2018. [Google Scholar]
- Akama, K.; Kanno, A.; Inagaki, K.; Kawanishi, T. Interference mitigation in linear cell FOD radar by using FMCW signal source with different sweep speed. In Proceedings of the 5th ENRI International Workshop on ATM/CNS (EIWAC 2017), Tokyo, Japan, 14–16 November 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawanishi, T.; Kanno, A.; Tien Dat, P.; Umezawa, T.; Yamamoto, N. Photonic Systems and Devices for Linear Cell Radar. Appl. Sci. 2019, 9, 554. https://doi.org/10.3390/app9030554
Kawanishi T, Kanno A, Tien Dat P, Umezawa T, Yamamoto N. Photonic Systems and Devices for Linear Cell Radar. Applied Sciences. 2019; 9(3):554. https://doi.org/10.3390/app9030554
Chicago/Turabian StyleKawanishi, Tetsuya, Atsushi Kanno, Pham Tien Dat, Toshimasa Umezawa, and Naokatsu Yamamoto. 2019. "Photonic Systems and Devices for Linear Cell Radar" Applied Sciences 9, no. 3: 554. https://doi.org/10.3390/app9030554
APA StyleKawanishi, T., Kanno, A., Tien Dat, P., Umezawa, T., & Yamamoto, N. (2019). Photonic Systems and Devices for Linear Cell Radar. Applied Sciences, 9(3), 554. https://doi.org/10.3390/app9030554