The Role of Mental Imagery in Parkinson’s Disease Rehabilitation
Abstract
:1. Introduction
2. Gait as an Example of Motor Dysfunction in PD
3. Postural Instability as an Example of Sensorimotor Dysfunction in PD
4. Pain as an Example of Sensory Dysfunction in PD
5. Distorted Body Schema as a Target for Rehabilitation Using Mental Imagery
6. Mental Imagery: Background
7. The Suitability of Mental Imagery for PD Rehabilitation
8. Mental Imagery to Address Gait in PD
9. Mental Imagery to Address Balance in PD
10. Mental Imagery to Address Pain in PD
11. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Kosslyn, S.M.; Thompson, W.L.; Ganis, G. The Case for Mental Imagery, 1st ed; Oxford Psychology Series; Oxford University Press: New York, NY, USA, 2006; ISBN 978-0-19-517908-8. [Google Scholar]
- Harris, J.; Hebert, A. Utilization of motor imagery in upper limb rehabilitation: A systematic scoping review. Clin. Rehabil. 2015, 29, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Prim. 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Shulman, L.M.; Gruber-Baldini, A.L.; Anderson, K.E.; Vaughan, C.G.; Reich, S.G.; Fishman, P.S.; Weiner, W.J. The evolution of disability in Parkinson disease. Mov. Disord. 2008, 23, 790–796. [Google Scholar] [CrossRef]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Raccagni, C.; Nonnekes, J.; Bloem, B.R.; Peball, M.; Boehme, C.; Seppi, K.; Wenning, G.K. Gait and postural disorders in parkinsonism: A clinical approach. J. Neurol. 2019, 267, 3169–3176. [Google Scholar] [CrossRef] [Green Version]
- Gilat, M.; Dijkstra, B.W.; D’Cruz, N.; Nieuwboer, A.; Lewis, S.J.G. Functional MRI to Study Gait Impairment in Parkinson’s Disease: A Systematic Review and Exploratory ALE Meta-Analysis. Curr. Neurol. Neurosci. Rep. 2019, 19, 49. [Google Scholar] [CrossRef]
- Müller, M.L.T.M.; Marusic, U.; van Emde Boas, M.; Weiss, D.; Bohnen, N.I. Treatment options for postural instability and gait difficulties in Parkinson’s disease. Expert Rev. Neurother. 2019, 19, 1229–1251. [Google Scholar] [CrossRef]
- Konczak, J.; Corcos, D.M.; Horak, F.; Poizner, H.; Shapiro, M.; Tuite, P.; Volkmann, J.; Maschke, M. Proprioception and Motor Control in Parkinson’s Disease. J. Mot. Behav. 2009, 41, 543–552. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B. Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson’s disease. Neuroscience 2006, 141, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.G.; Gurfinkel, V.S.; King, L.A.; Nutt, J.G.; Cordo, P.J.; Horak, F.B. Axial kinesthesia is impaired in Parkinson’s disease: Effects of levodopa. Exp. Neurol. 2010, 225, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, E.; Inzelberg, R.; Flash, T. Altered Perceptual Sensitivity to Kinematic Invariants in Parkinson’s Disease. PLoS ONE 2012, 7, e30369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maschke, M.; Gomez, C.M.; Tuite, P.J.; Konczak, J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 2003, 126, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Schindlbeck, K.A.; Naumann, W.; Maier, A.; Ehlen, F.; Marzinzik, F.; Klostermann, F. Disturbance of verticality perception and postural dysfunction in Parkinson’s disease. Acta Neurol. Scand. 2018, 137, 212–217. [Google Scholar] [CrossRef]
- Halperin, O.; Israeli-Korn, S.; Yakubovich, S.; Hassin-Baer, S.; Zaidel, A. Self-motion perception in Parkinson’s disease. Eur. J. Neurosci. 2020. [Google Scholar] [CrossRef]
- Snider, S.R.; Fahn, S.; Isgreen, W.P.; Cote, L.J. Primary sensory symptoms in parkinsonism. Neurology 1976, 26, 423. [Google Scholar] [CrossRef]
- Abbruzzese, G.; Berardelli, A. Sensorimotor integration in movement disorders. Mov. Disord. 2003, 18, 231–240. [Google Scholar] [CrossRef]
- Rinalduzzi, S.; Trompetto, C.; Marinelli, L.; Alibardi, A.; Missori, P.; Fattapposta, F.; Pierelli, F.; Currà, A. Balance Dysfunction in Parkinson’s Disease. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Wood, B.H. Incidence and prediction of falls in Parkinson’s disease: A prospective multidisciplinary study. J. Neurol. Neurosurg. Psychiatry 2002, 72, 721–725. [Google Scholar] [CrossRef] [Green Version]
- Adkin, A.L.; Frank, J.S.; Jog, M.S. Fear of falling and postural control in Parkinson’s disease. Mov. Disord. 2003, 18, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Benatru, I.; Vaugoyeau, M.; Azulay, J.-P. Postural disorders in Parkinson’s disease. Neurophysiol. Clin. Clin. Neurophysiol. 2008, 38, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Nutt, J.G.; Nashner, L.M. Postural inflexibility in parkinsonian subjects. J. Neurol. Sci. 1992, 111, 46–58. [Google Scholar] [CrossRef]
- Horak, F.B.; Frank, J.; Nutt, J. Effects of dopamine on postural control in parkinsonian subjects: Scaling, set, and tone. J. Neurophysiol. 1996, 75, 2380–2396. [Google Scholar] [CrossRef]
- Mellone, S.; Mancini, M.; King, L.A.; Horak, F.B.; Chiari, L. The quality of turning in Parkinson’s disease: A compensatory strategy to prevent postural instability? J. NeuroEng. Rehabil. 2016, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Israeli-Korn, S.D.; Barliya, A.; Paquette, C.; Franzén, E.; Inzelberg, R.; Horak, F.B.; Flash, T. Intersegmental coordination patterns are differently affected in Parkinson’s disease and cerebellar ataxia. J. Neurophysiol. 2019, 121, 672–689. [Google Scholar] [CrossRef]
- Valkovič, P.; Krafczyk, S.; Bötzel, K. Postural reactions to soleus muscle vibration in Parkinson’s disease: Scaling deteriorates as disease progresses. Neurosci. Lett. 2006, 401, 92–96. [Google Scholar] [CrossRef]
- Kesayan, T.; Lamb, D.G.; Falchook, A.D.; Williamson, J.B.; Salazar, L.; Malaty, I.A.; McFarland, N.R.; Okun, M.S.; Shukla, A.W.; Heilman, K.M. Abnormal tactile pressure perception in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 2015, 37, 808–815. [Google Scholar] [CrossRef]
- Vaugoyeau, M.; Viel, S.; Assaiante, C.; Amblard, B.; Azulay, J.P. Impaired vertical postural control and proprioceptive integration deficits in Parkinson’s disease. Neuroscience 2007, 146, 852–863. [Google Scholar] [CrossRef]
- Zia, S.; Cody, F.; O’Boyle, D. Joint position sense is impaired by Parkinson’s disease. Ann. Neurol. 2000, 47, 218–228. [Google Scholar] [CrossRef]
- Rodríguez-Ferreiro, J.; Cuetos, F.; Herrera, E.; Menéndez, M.; Ribacoba, R. Cognitive impairment in Parkinson’s disease without dementia. Mov. Disord. 2010, 25, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Baston, C.; Mancini, M.; Schoneburg, B.; Horak, F.; Rocchi, L. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects. Gait Posture 2014, 40, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, R.K.Y.; Jones, C.L.; Horak, F.B. Postural Set for Balance Control is Normal in Alzheimer’s but not in Parkinson’s Disease. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 1999, 54, M129–M135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, R.K.Y.; Horak, F.B.; Woollacott, M.H. Parkinson’s disease impairs the ability to change set quickly. J. Neurol. Sci. 2000, 175, 57–70. [Google Scholar] [CrossRef]
- Halperin, O.; Karni, R.; Israeli-Korn, S.; Hassin-Baer, S.; Zaidel, A. Overconfidence in visual perception in parkinson’s disease. Eur. J. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, A.M.; Hood, J.D.; Gresty, M.A.; Panagi, C. Visual Control of Balance in Cerebellar and Parkinsonian Syndromes. Brain 1990, 113, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Yakubovich, S.; Israeli-Korn, S.; Halperin, O.; Yahalom, G.; Hassin-Baer, S.; Zaidel, A. Visual self-motion cues are impaired yet overweighted during visual–vestibular integration in Parkinson’s disease. Brain Commun. 2020, 2, fcaa035. [Google Scholar]
- Mahlknecht, P.; Limousin, P.; Foltynie, T. Deep brain stimulation for movement disorders: Update on recent discoveries and outlook on future developments. J. Neurol. 2015, 262, 2583–2595. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Peball, M.; Mair, K.; Werkmann, M.; Nocker, M.; Wolf, E.; Eisner, W.; Bajaj, S.; Quirbach, S.; Peralta, C.; et al. Has Deep Brain Stimulation Changed the Very Long-Term Outcome of Parkinson’s Disease? A Controlled Longitudinal Study. Mov. Disord. Clin. Pract. 2020, 7, 782–787. [Google Scholar] [CrossRef]
- Keus, S.H.J.; Bloem, B.R.; Hendriks, E.J.M.; Bredero-Cohen, A.B.; Munneke, M. Practice Recommendations Development Group Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research. Mov. Disord. 2007, 22, 451–460. [Google Scholar] [CrossRef]
- Earhart, G.M. Dance as therapy for individuals with Parkinson disease. Eur. J. Phys. Rehabil. Med. 2009, 45, 231–238. [Google Scholar] [PubMed]
- Yang, Y.; Li, X.-Y.; Gong, L.; Zhu, Y.-L.; Hao, Y.-L. Tai Chi for Improvement of Motor Function, Balance and Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e102942. [Google Scholar] [CrossRef] [PubMed]
- De Dreu, M.J.; van der Wilk, A.S.D.; Poppe, E.; Kwakkel, G.; van Wegen, E.E.H. Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: A meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Park. Relat. Disord. 2012, 18, S114–S119. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
- Dibble, L.E.; Addison, O.; Papa, E. The Effects of Exercise on Balance in Persons with Parkinsonʼs Disease: A Systematic Review Across the Disability Spectrum. J. Neurol. Phys. Ther. 2009, 33, 14–26. [Google Scholar] [CrossRef]
- Bek, J.; Arakaki, A.I.; Lawrence, A.; Sullivan, M.; Ganapathy, G.; Poliakoff, E. Dance and Parkinson’s: A review and exploration of the role of cognitive representations of action. Neurosci. Biobehav. Rev. 2020, 109, 16–28. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Broen, M.P.G.; Braaksma, M.M.; Patijn, J.; Weber, W.E.J. Prevalence of pain in Parkinson’s disease: A systematic review using the modified QUADAS tool. Mov. Disord. 2012, 27, 480–484. [Google Scholar] [CrossRef]
- O’Sullivan, S.S.; Williams, D.R.; Gallagher, D.A.; Massey, L.A.; Silveira-Moriyama, L.; Lees, A.J. Nonmotor symptoms as presenting complaints in Parkinson’s disease: A clinicopathological study. Mov. Disord. 2008, 23, 101–106. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wu, R.-M.; Chang, H.-Y.; Chiang, Y.-T.; Lin, H.-H. Preceding pain symptoms and Parkinson’s disease: A nationwide population-based cohort study. Eur. J. Neurol. 2013, 20, 1398–1404. [Google Scholar]
- Skogar, O.; Lokk, J. Pain management in patients with Parkinson’s disease: Challenges and solutions. J. Multidiscip. Healthc. 2016, 9, 469–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schestatsky, P.; Kumru, H.; Valls-Solé, J.; Valldeoriola, F.; Marti, M.J.; Tolosa, E.; Chaves, M.L. Neurophysiologic study of central pain in patients with Parkinson disease. Neurology 2007, 69, 2162–2169. [Google Scholar] [CrossRef] [PubMed]
- Djaldetti, R.; Shifrin, A.; Rogowski, Z.; Sprecher, E.; Melamed, E.; Yarnitsky, D. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 2004, 62, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Tinazzi, M.; Recchia, S.; Simonetto, S.; Tamburin, S.; Defazio, G.; Fiaschi, A.; Moretto, G.; Valeriani, M. Muscular pain in Parkinson’s disease and nociceptive processing assessed with CO2 laser-evoked potentials. Mov. Disord. 2010, 25, 213–220. [Google Scholar] [CrossRef]
- Scherder, E.; Wolters, E.; Polman, C.; Sergeant, J.; Swaab, D. Pain in Parkinson’s disease and multiple sclerosis: Its relation to the medial and lateral pain systems. Neurosci. Biobehav. Rev. 2005, 29, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Dellapina, E.; Pellaprat, J.; Adel, D.; Llido, J.; Harroch, E.; Martini, J.B.; Kas, A.; Salabert, A.S.; Ory-Magne, F.; Payoux, P.; et al. Dopaminergic denervation using [123I]-FPCIT and pain in Parkinson’s disease: A correlation study. J. Neural. Transm. 2019, 126, 279–287. [Google Scholar] [CrossRef]
- Nebe, A.; Ebersbach, G. Pain intensity on and off levodopa in patients with Parkinson’s disease. Mov. Disord. 2009, 24, 1233–1237. [Google Scholar] [CrossRef]
- Pellaprat, J.; Ory-Magne, F.; Canivet, C.; Simonetta-Moreau, M.; Lotterie, J.-A.; Radji, F.; Arbus, C.; Gerdelat, A.; Chaynes, P.; Brefel-Courbon, C. Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson’s disease. Park. Relat. Disord. 2014, 20, 662–664. [Google Scholar] [CrossRef]
- Ford, B. Pain in Parkinson’s disease. Mov. Disord. 2010, 25 (Suppl. 1), S98–S103. [Google Scholar] [CrossRef]
- Silveira Barezani, A.L.; de Figueiredo Feital, A.M.B.; Gonçalves, B.M.; Christo, P.P.; Scalzo, P.L. Low back pain in Parkinson’s disease: A cross-sectional study of its prevalence, and implications on functional capacity and quality of life. Clin. Neurol. Neurosurg. 2020, 194, 105787. [Google Scholar] [CrossRef]
- Buhmann, C.; Wrobel, N.; Grashorn, W.; Fruendt, O.; Wesemann, K.; Diedrich, S.; Bingel, U. Pain in Parkinson disease: A cross-sectional survey of its prevalence, specifics, and therapy. J. Neurol. 2017, 264, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.P.; Van Dillen, L.R.; Garbutt, J.M.; Earhart, G.M.; Perlmutter, J.S. Low Back Pain--Related Disability in Parkinson Disease: Impact on Functional Mobility, Physical Activity, and Quality of Life. Phys. Ther. 2019, 99, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Desmurget, M.; Sirigu, A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn. Sci. 2009, 13, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Tsay, A.; Allen, T.J.; Proske, U.; Giummarra, M.J. Sensing the body in chronic pain: A review of psychophysical studies implicating altered body representation. Neurosci. Biobehav. Rev. 2015, 52, 221–232. [Google Scholar] [CrossRef]
- Wulf, G. Attentional focus and motor learning: A review of 15 years. Int. Rev. Sport Exerc. Psychol. 2013, 6, 77–104. [Google Scholar] [CrossRef]
- Bray, H.; Moseley, G.L. Disrupted working body schema of the trunk in people with back pain. Br. J. Sports Med. 2011, 45, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Moseley, G.L.; Zalucki, N.; Birklein, F.; Marinus, J.; van Hilten, J.J.; Luomajoki, H. Thinking about movement hurts: The effect of motor imagery on pain and swelling in people with chronic arm pain. Arthritis Rheum. 2008, 59, 623–631. [Google Scholar] [CrossRef]
- Artusi, C.A.; Montanaro, E.; Tuttobene, S.; Romagnolo, A.; Zibetti, M.; Lopiano, L. Pisa Syndrome in Parkinson’s Disease Is Associated With Specific Cognitive Alterations. Front. Neurol. 2019, 10, 577. [Google Scholar] [CrossRef]
- Bong, S.M.; McKay, J.L.; Factor, S.A.; Ting, L.H. Perception of whole-body motion during balance perturbations is impaired in Parkinson’s disease and is associated with balance impairment. Gait Posture 2020, 76, 44–50. [Google Scholar] [CrossRef]
- Harrison, E.C.; Horin, A.P.; Earhart, G.M. Internal cueing improves gait more than external cueing in healthy adults and people with Parkinson disease. Sci. Rep. 2018, 8, 15525. [Google Scholar] [CrossRef]
- Leritz, E.; Loftis, C.; Crucian, G.; Friedman, W.; Bowers, D. Self-Awareness of Deficits in Parkinson Disease. Clin. Neuropsychol. 2004, 18, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Takahata, K.; Yamakado, H.; Sawamoto, N.; Saito, S.; Takahashi, R.; Murai, T.; Takahashi, H. Altered awareness of action in Parkinson’s disease: Evaluations by explicit and implicit measures. Sci. Rep. 2017, 7, 8019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpina, F.; Cau, N.; Cimolin, V.; Galli, M.; Priano, L.; Mauro, A. Defective Tool Embodiment in Body Representation of Individuals Affected by Parkinson’s Disease: A Preliminary Study. Front. Psychol. 2019, 9, 2489. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Magnani, F.G.; Tagini, S.; Priano, L.; Mauro, A.; Sedda, A. Mental representation of the body in action in Parkinson’s disease. Exp. Brain Res. 2019, 237, 2505–2521. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, M.; Ferrigno, G.; Horak, F. Effects of Parkinson’s disease on proprioceptive control of posture and reaching while standing. Neuroscience 2009, 158, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Zantedeschi, M. Plasticity and Awareness of Bodily Distortion. Neural Plasticity 2016, 2016, 9834340. [Google Scholar] [CrossRef] [Green Version]
- Poliakoff, E. Introduction to special issue on body representation: Feeling, seeing, moving and observing. Exp. Brain Res. 2010, 204, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Morasso, P.; Casadio, M.; Mohan, V.; Rea, F.; Zenzeri, J. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics. Front. Hum. Neurosci. 2015, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Schwoebel, J.; Coslett, H.B. Evidence for Multiple, Distinct Representations of the Human Body. J. Cogn. Neurosci. 2005, 17, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Wright, G.N.; Morrison, M.W.; Hart, A.; Dickstein, R.; Hackney, M.E. Psychometric properties of clock and pelvic drawings in Parkinson’s disease: A validity and cross-sectional study. Physiother. Res. Int. 2019, 24, e1781. [Google Scholar] [CrossRef]
- Sandyk, R. Reversal of a body image disorder (Macrosomatognosia) in parkinson’s disease by treatment with ac pulsed electromagnetic fields. Int. J. Neurosci. 1998, 93, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Berardelli, A. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2001, 124, 2131–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieruccini-Faria, F.; Ehgoetz Martens, K.A.; Silveira, C.R.; Jones, J.A.; Almeida, Q.J. Interactions between cognitive and sensory load while planning and controlling complex gait adaptations in Parkinson’s disease. BMC Neurol. 2014, 14, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geroin, C.; Smania, N.; Schena, F.; Dimitrova, E.; Verzini, E.; Bombieri, F.; Nardello, F.; Tinazzi, M.; Gandolfi, M. Does the Pisa syndrome affect postural control, balance, and gait in patients with Parkinson’s disease? An observational cross-sectional study. Park. Relat. Disord. 2015, 21, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.K.; Smith, J.S.; Shaffrey, C.I.; Lafage, V.; Schwab, F.; Ames, C.P.; Matsumoto, M.; Baik, J.S.; Ha, Y. Sagittal Spinopelvic Malalignment in Parkinson Disease: Prevalence and Associations With Disease Severity. Spine 2014, 39, E833–E841. [Google Scholar] [CrossRef]
- Mylius, V.; Engau, I.; Teepker, M.; Stiasny-Kolster, K.; Schepelmann, K.; Oertel, W.H.; Lautenbacher, S.; Moller, J.C. Pain sensitivity and descending inhibition of pain in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2009, 80, 24–28. [Google Scholar]
- Charles, K.-A.; Naudet, F.; Bouali-Benazzouz, R.; Landry, M.; De Deurwaerdère, P.; Fossat, P.; Benazzouz, A. Alteration of nociceptive integration in the spinal cord of a rat model of Parkinson’s disease: Pain in Parkinson’s Disease. Mov. Disord. 2018, 33, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Bissolotti, L.; Isacco-Grassi, F.; Orizio, C.; Gobbo, M.; Berjano, P.; Villafañe, J.H.; Negrini, S. Spinopelvic balance and body image perception in Parkinson’s disease: Analysis of correlation. Eur. Spine J. 2015, 24, 898–905. [Google Scholar] [CrossRef]
- Heremans, E.; Feys, P.; Nieuwboer, A.; Vercruysse, S.; Vandenberghe, W.; Sharma, N.; Helsen, W. Motor Imagery Ability in Patients With Early- and Mid-Stage Parkinson Disease. Neurorehabil. Neural Repair 2011, 25, 168–177. [Google Scholar] [CrossRef]
- Kleinfeld, D.; Ahissar, E.; Diamond, M.E. Active sensation: Insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 2006, 16, 435–444. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Lee, T.D. Motor Control and Learning: A Behavioral Emphasis, 5th ed.; Human Kinetics: Champaign, IL, USA, 2011; ISBN 978-0-7360-7961-7. [Google Scholar]
- Alberts, J.L.; Linder, S.M.; Penko, A.L.; Lowe, M.J.; Phillips, M. It Is Not About the Bike, It Is About the Pedaling: Forced Exercise and Parkinson’s Disease. Exerc. Sport Sci. Rev. 2011, 39, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Shenton, J.T.; Schwoebel, J.; Coslett, H.B. Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neurosci. Lett. 2004, 370, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Sethi, K. Levodopa unresponsive symptoms in Parkinson disease: L -Dopa Unresponsive Symptoms in PD. Mov. Disord. 2008, 23, S521–S533. [Google Scholar] [CrossRef] [PubMed]
- Nombela, C.; Hughes, L.E.; Owen, A.M.; Grahn, J.A. Into the groove: Can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef] [Green Version]
- Abbruzzese, G.; Marchese, R.; Avanzino, L.; Pelosin, E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Park. Relat. Disord. 2016, 22, S60–S64. [Google Scholar] [CrossRef]
- Ekker, M.S.; Janssen, S.; Nonnekes, J.; Bloem, B.R.; de Vries, N.M. Neurorehabilitation for Parkinson’s disease: Future perspectives for behavioural adaptation. Park. Relat. Disord. 2016, 22, S73–S77. [Google Scholar]
- Mirelman, A.; Maidan, I.; Deutsch, J.E. Virtual reality and motor imagery: Promising tools for assessment and therapy in Parkinson’s disease: Virtual Reality and Motor Imagery for PD. Mov. Disord. 2013, 28, 1597–1608. [Google Scholar] [CrossRef]
- Morris, M.E.; Martin, C.L.; Schenkman, M.L. Striding Out With Parkinson Disease: Evidence-Based Physical Therapy for Gait Disorders. Phys. Ther. 2010, 90, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Nonnekes, J.; Nieuwboer, A. Towards Personalized Rehabilitation for Gait Impairments in Parkinson’s Disease. JPD 2018, 8, S101–S106. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.; Guillot, A.; MacIntyre, T.; Collet, C. Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology: Re-imagining motor imagery. Br. J. Psychol. 2012, 103, 224–247. [Google Scholar] [CrossRef]
- Guillot, A.; Collet, C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res. Rev. 2005, 50, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Munzert, J.; Lorey, B.; Zentgraf, K. Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Res. Rev. 2009, 60, 306–326. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Franklin, E.; Stecco, C.; Schleip, R. Integrating mental imagery and fascial tissue: A conceptualization for research into movement and cognition. Complement. Ther. Clin. Pract. 2020, 40, 101193. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Gose, R.; Schindler, R.; Nelson, B.H.; Hackney, M.E. Dynamic Neuro-Cognitive Imagery (DNITM) Improves Developpé Performance, Kinematics, and Mental Imagery Ability in University-Level Dance Students. Front. Psychol. 2019, 10, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, A.; Hart, A.; Dickstein, R.; Hackney, M.E. “Will you draw me a pelvis?” Dynamic neuro-cognitive imagery improves pelvic schema and graphic-metric representation in people with Parkinsonʼs Disease: A randomized controlled trial. Complement. Ther. Med. 2019, 43, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Fusco, A.; Iasevoli, L.; Iosa, M.; Gallotta, M.C.; Padua, L.; Tucci, L.; Antonucci, G.; Baldari, C.; Guidetti, L. Dynamic motor imagery mentally simulates uncommon real locomotion better than static motor imagery both in young adults and elderly. PLoS ONE 2019, 14, e0218378. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Moschberger, K.; Collet, C. Coupling movement with imagery as a new perspective for motor imagery practice. Behav. Brain Funct. 2013, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Bek, J.; Gowen, E.; Vogt, S.; Crawford, T.J.; Poliakoff, E. Combined action observation and motor imagery influences hand movement amplitude in Parkinson’s disease. Park. Relat. Disord. 2019, 61, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Eaves, D.L.; Riach, M.; Holmes, P.S.; Wright, D.J. Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities. Front. Neurosci. 2016, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Borst, G.; Kosslyn, S.M. Visual mental imagery and visual perception: Structural equivalence revealed by scanning processes. Mem. Cogn. 2008, 36, 849–862. [Google Scholar] [CrossRef]
- Kosslyn, S.M.; Ganis, G.; Thompson, W.L. Neural foundations of imagery. Nat. Rev. Neurosci. 2001, 2, 635–642. [Google Scholar] [CrossRef]
- Karklinsky, M.; Flash, T. Timing of continuous motor imagery: The two-thirds power law originates in trajectory planning. J. Neurophysiol. 2015, 113, 2490–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotze, M.; Halsband, U. Motor imagery. J. Physiol. Paris 2006, 99, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Avanzino, L.; Giannini, A.; Tacchino, A.; Pelosin, E.; Ruggeri, P.; Bove, M. Motor imagery influences the execution of repetitive finger opposition movements. Neurosci. Lett. 2009, 466, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Lim, V.K.; Polych, M.A.; Holländer, A.; Byblow, W.D.; Kirk, I.J.; Hamm, J.P. Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson’s disease. Clin. Neurophysiol. 2006, 117, 2308–2314. [Google Scholar] [CrossRef] [PubMed]
- Magill, R.A.; Anderson, D. Motor Learning and Control: Concepts and Applications, 11th ed.; McGraw-Hill Education: New York, NY, USA, 2017; ISBN 978-1-259-82399-2. [Google Scholar]
- Yap, B.W.D.; Lim, E.C.W. The Effects of Motor Imagery on Pain and Range of Motion in Musculoskeletal Disorders: A Systematic Review Using Meta-Analysis. Clin. J. Pain 2019, 35, 87–99. [Google Scholar] [CrossRef]
- Paivio, A. Cognitive and motivational functions of imagery in human performance. Can. J. Appl. Sport Sci. 1985, 10, 22S–28S. [Google Scholar]
- Au, K.L.; Giacobbe, A.; Dinh, E.; Nguyen, O.; Moore, K.; Zamora, A.R.; Okun, M.; De Almeida, L.B. Underserved Patient Access to Multidisciplinary Rehabilitation for Movement Disorders in a Single Tertiary Academic Referral Center. (2830). Neurology 2020, 94, 2830. [Google Scholar]
- Dorsey, E.R.; Vlaanderen, F.P.; Engelen, L.J.; Kieburtz, K.; Zhu, W.; Biglan, K.M.; Faber, M.J.; Bloem, B.R. Moving Parkinson care to the home: Moving Parkinson Care To The Home. Mov. Disord. 2016, 31, 1258–1262. [Google Scholar]
- Isernia, S.; Di Tella, S.; Pagliari, C.; Jonsdottir, J.; Castiglioni, C.; Gindri, P.; Salza, M.; Gramigna, C.; Palumbo, G.; Molteni, F.; et al. Effects of an Innovative Telerehabilitation Intervention for People With Parkinson’s Disease on Quality of Life, Motor, and Non-motor Abilities. Front. Neurol. 2020, 11, 846. [Google Scholar] [CrossRef]
- Decety, J. The neurophysiological basis of motor imagery. Behav. Brain Res. 1996, 77, 45–52. [Google Scholar] [CrossRef]
- Stevens, J.A. Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition 2005, 95, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.; Cole, K.J. Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. J. Neurophysiol. 1992, 67, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, C.E.; Wilson, D.A.; Radman, T.; Scharfman, H.; Lakatos, P. Dynamics of Active Sensing and perceptual selection. Curr. Opin. Neurobiol. 2010, 20, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Porro, C.A.; Francescato, M.P.; Cettolo, V.; Diamond, M.E.; Baraldi, P.; Zuiani, C.; Bazzocchi, M.; di Prampero, P.E. Primary Motor and Sensory Cortex Activation during Motor Performance and Motor Imagery: A Functional Magnetic Resonance Imaging Study. J. Neurosci. 1996, 16, 7688–7698. [Google Scholar] [CrossRef] [Green Version]
- McCormick, K.; Zalucki, N.; Hudson, M.L.; Lorimer Moseley, G. Faulty proprioceptive information disrupts motor imagery: An experimental study. Aust. J. Physiother. 2007, 53, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Hart, A.; Andrade, I.; Hackney, M.E. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease. Neural Plast. 2018, 2018, 6168507. [Google Scholar] [CrossRef]
- Bek, J.; Webb, J.; Gowen, E.; Vogt, S.; Crawford, T.J.; Sullivan, M.S.; Poliakoff, E. Patients’ Views on a Combined Action Observation and Motor Imagery Intervention for Parkinson’s Disease. Park. Dis. 2016, 2016, 7047910. [Google Scholar] [CrossRef] [Green Version]
- Jeannerod, M. Mental imagery in the motor context. Neuropsychologia 1995, 33, 1419–1432. [Google Scholar] [CrossRef]
- Franklin, E.N. Dynamic Alignment through Imagery, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2012; ISBN 978-0-7360-6789-8. [Google Scholar]
- Franklin, E.N. Dance Imagery for Technique and Performance, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2014; ISBN 978-0-7360-6788-1. [Google Scholar]
- Conson, M.; Mazzarella, E.; Trojano, L. Self-touch affects motor imagery: A study on posture interference effect. Exp. Brain Res. 2011, 215, 115–122. [Google Scholar] [CrossRef]
- Theodorakis, Y.; Weinberg, R.; Natsis, P.; Douma, I.; Kazakas, P. The Effects of Motivational versus Instructional Self-Talk on Improving Motor Performance. Sport Psychol. 2000, 14, 253–271. [Google Scholar] [CrossRef]
- Bovend’Eerdt, T.J.; Dawes, H.; Sackley, C.; Izadi, H.; Wade, D.T. An Integrated Motor Imagery Program to Improve Functional Task Performance in Neurorehabilitation: A Single-Blind Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2010, 91, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, R.; Deutsch, J.E. Motor Imagery in Physical Therapist Practice. Phys. Ther. 2007, 87, 942–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbruzzese, G.; Avanzino, L.; Marchese, R.; Pelosin, E. Action Observation and Motor Imagery: Innovative Cognitive Tools in the Rehabilitation of Parkinson’s Disease. Park. Dis. 2015, 2015, 124214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caligiore, D.; Mustile, M.; Spalletta, G.; Baldassarre, G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: A systematic review and an integrative hypothesis. Neurosci. Biobehav. Rev. 2017, 72, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Tamir, R.; Dickstein, R.; Huberman, M. Integration of Motor Imagery and Physical Practice in Group Treatment Applied to Subjects With Parkinson’s Disease. Neurorehabil. Neural Repair 2007, 21, 68–75. [Google Scholar] [CrossRef]
- Annett, J. Motor imagery: Perception or action? Neuropsychologia 1995, 33, 1395–1417. [Google Scholar] [CrossRef]
- Ferraye, M.U.; Debû, B.; Heil, L.; Carpenter, M.; Bloem, B.R.; Toni, I. Using Motor Imagery to Study the Neural Substrates of Dynamic Balance. PLoS ONE 2014, 9, e91183. [Google Scholar] [CrossRef] [Green Version]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.-P.; Eugène, F.; Michon, P.-E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef]
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [Green Version]
- Feller, K.J.; Peterka, R.J.; Horak, F.B. Sensory Re-weighting for Postural Control in Parkinson’s Disease. Front. Hum. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Mahboobin, A.; Loughlin, P.J.; Redfern, M.S.; Sparto, P.J. Sensory re-weighting in human postural control during moving-scene perturbations. Exp. Brain Res. 2005, 167, 260–267. [Google Scholar] [CrossRef]
- Pickett, K.A.; Peterson, D.S.; Earhart, G.M. Motor imagery of gait tasks in individuals with Parkinson disease. J. Park. Dis. 2012, 2, 19–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heremans, E.; Nieuwboer, A.; Feys, P.; Vercruysse, S.; Vandenberghe, W.; Sharma, N.; Helsen, W.F. External Cueing Improves Motor Imagery Quality in Patients With Parkinson Disease. Neurorehabil. Neural Repair 2012, 26, 27–35. [Google Scholar] [CrossRef]
- Nonnekes, J.; Ružicka, E.; Nieuwboer, A.; Hallett, M.; Fasano, A.; Bloem, B.R. Compensation Strategies for Gait Impairments in Parkinson Disease: A Review. JAMA Neurol. 2019, 76, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.S.; Pickett, K.A.; Duncan, R.P.; Perlmutter, J.S.; Earhart, G.M. Brain activity during complex imagined gait tasks in Parkinson disease. Clin. Neurophysiol. 2014, 125, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Myers, P.S.; McNeely, M.E.; Pickett, K.A.; Duncan, R.P.; Earhart, G.M. Effects of exercise on gait and motor imagery in people with Parkinson disease and freezing of gait. Park. Relat. Disord. 2018, 53, 89–95. [Google Scholar] [CrossRef]
- Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.; Bloem, B.R.; Toni, I. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 2011, 134, 59–72. [Google Scholar] [CrossRef]
- Peterson, D.S.; Pickett, K.A.; Duncan, R.; Perlmutter, J.; Earhart, G.M. Gait-related brain activity in people with Parkinson disease with freezing of gait. PLoS ONE 2014, 9, e90634. [Google Scholar] [CrossRef]
- Cohen, R.G.; Chao, A.; Nutt, J.G.; Horak, F.B. Freezing of gait is associated with a mismatch between motor imagery and motor execution in narrow doorways, not with failure to judge doorway passability. Neuropsychologia 2011, 49, 3981–3988. [Google Scholar] [CrossRef] [Green Version]
- Lim, I.; van Wegen, E.; de Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Amundsen Huffmaster, S.L.; Tuite, P.J.; Vachon, J.M.; MacKinnon, C.D. Effect of Cue Timing and Modality on Gait Initiation in Parkinson Disease With Freezing of Gait. Arch. Phys. Med. Rehabil. 2017, 98, 1291–1299.e1. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.M.D.M.; de Oliveira, D.A.; de Macêdo Ferreira, L.G.L.; de Brito Pinto, H.Y.; Spaniol, A.P.; de Lucena Trigueiro, L.C.; Ribeiro, T.S.; de Sousa, A.V.C.; Piemonte, M.E.P.; Lindquist, A.R.R. Immediate effects of adding mental practice to physical practice on the gait of individuals with Parkinson’s disease: Randomized clinical trial. NRE 2015, 37, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Beurskens, A.; Kleynen, M.; Schols, J.; Wade, D. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: A multicentre randomised trial. J. Physiother. 2011, 57, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Tosserams, A.; Nijkrake, M.J.; Sturkenboom, I.H.W.M.; Bloem, B.R.; Nonnekes, J. Perceptions of Compensation Strategies for Gait Impairments in Parkinson’s Disease: A Survey Among 320 Healthcare Professionals. J. Park. Dis. 2020, 10, 1775–1778. [Google Scholar] [CrossRef]
- Myers, A.M.; Powell, L.E.; Maki, B.E.; Holliday, P.J.; Brawley, L.R.; Sherk, W. Psychological Indicators of Balance Confidence: Relationship to Actual and Perceived Abilities. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51A, M37–M43. [Google Scholar] [CrossRef] [Green Version]
- Benda, B.J.; Riley, P.O.; Krebs, D.E. Biomechanical relationship between center of gravity and center of pressure during standing. IEEE Trans. Rehab. Eng. 1994, 2, 3–10. [Google Scholar] [CrossRef]
- Le Huec, J.C.; Saddiki, R.; Franke, J.; Rigal, J.; Aunoble, S. Equilibrium of the human body and the gravity line: The basics. Eur. Spine J. 2011, 20, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Zangrando, F.; Piccinini, G.; Pelliccioni, A.; Saraceni, V.M.; Paolucci, T. Neurocognitive Rehabilitation in Parkinson’s Disease with Motor Imagery: A Rehabilitative Experience in a Case Report. Case Rep. Med. 2015, 2015, 670385. [Google Scholar] [CrossRef]
- Gillanders, D.; Potter, L.; Morris, P.G. Pain related-visual imagery is associated with distress in chronic pain sufferers. Behav. Cogn. Psychother. 2012, 40, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Volz, M.S.; Suarez-Contreras, V.; Portilla, A.L.S.; Fregni, F. Mental imagery-induced attention modulates pain perception and cortical excitability. BMC Neurosci. 2015, 16, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maravita, A.; Spence, C.; Driver, J. Multisensory integration and the body schema: Close to hand and within reach. Curr. Biol. 2003, 13, R531–R539. [Google Scholar] [CrossRef] [Green Version]
- Shafer, R.L.; Newell, K.M.; Lewis, M.H.; Bodfish, J.W. A Cohesive Framework for Motor Stereotypy in Typical and Atypical Development: The Role of Sensorimotor Integration. Front. Integr. Neurosci. 2017, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, D.S.; Pickett, K.A.; Earhart, G.M. Effects of Levodopa on Vividness of Motor Imagery in Parkinson Disease. J. Park. Dis. 2012, 2, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraham, A.; Duncan, R.P.; Earhart, G.M. The Role of Mental Imagery in Parkinson’s Disease Rehabilitation. Brain Sci. 2021, 11, 185. https://doi.org/10.3390/brainsci11020185
Abraham A, Duncan RP, Earhart GM. The Role of Mental Imagery in Parkinson’s Disease Rehabilitation. Brain Sciences. 2021; 11(2):185. https://doi.org/10.3390/brainsci11020185
Chicago/Turabian StyleAbraham, Amit, Ryan P. Duncan, and Gammon M. Earhart. 2021. "The Role of Mental Imagery in Parkinson’s Disease Rehabilitation" Brain Sciences 11, no. 2: 185. https://doi.org/10.3390/brainsci11020185