A Controlled Clinical Trial on the Effects of Aquatic Exercise on Cognitive Functions in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size, Blinding, and Randomization
2.2. Outcomes
2.3. Therapeutic Protocol
2.4. Statistical Analysis
3. Results
3.1. Raven’s Progressive Matrices
3.2. Wisconsin Card Sorting Test
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tetzlaff, F.; Sauerberg, M.; Grigoriev, P.; Tetzlaff, J.; Mühlichen, M.; Baumert, J.; Michalski, N.; Wengler, A.; Nowossadeck, E.; Hoebel, J. Age-specific and cause-specific mortality contributions to the socioeconomic gap in life expectancy in Germany, 2003–2021: An ecological study. Lancet Public Health 2024, 9, e295–e305. [Google Scholar] [CrossRef]
- Woods, T.; Manson Brown, S.; Page, B. Living Longer Better. Plast. Reconstr. Surg. 2021, 148, 7S–13S. [Google Scholar] [CrossRef]
- Shotton, L. The role of older people in our communities. Nurs. Ethics 2003, 10, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Ospina, J.; Steger, M.F.; Orsi, R. Understanding work enjoyment among older workers: The significance of flexible work options and age discrimination in the workplace. J. Gerontol. Soc. Work 2018, 61, 867–886. [Google Scholar] [CrossRef] [PubMed]
- Ozamiz-Etxebarria, N.; Jiménez-Etxebarria, E.; Picaza, M.; Idoiaga, N. Calidad de vida y personalidad en las personas mayores que estudian en la universidad. Rev. Esp. Salud. Publica 2022, 96, e202209070. [Google Scholar]
- Takase, M.; Takahashi, K.; Ogino, R.; Nitanai, R.; Tanaka, T.; Saisho, S.; Goto, J.; Iijima, K. Functional capacity in community-dwelling older adults maintained by a higher friend network than family network: Implications from a two-year longitudinal study. BMC Res. Notes 2022, 15, 319. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, E.; Calvani, R.; Marzetti, E.; Cesari, M. Physical Functional Assessment in Older Adults. J. Frailty Aging 2021, 10, 141–149. [Google Scholar] [CrossRef]
- Scarmagnan, G.S.; Mello, S.C.M.; Lino, T.B.; Barbieri, F.A.; Christofoletti, G. Negative effect of task complexity on the balance and mobility of healthy older adults. Rev. Bras. Geriatr. Gerontol. 2021, 24, e200120. [Google Scholar] [CrossRef]
- Ord, A.S.; Slogar, S.M.; Sautter, S.W. Lifestyle Factors, Cognitive Functioning, and Functional Capacity in Older Adults. Int. J. Aging Hum. Dev. 2022, 94, 387–414. [Google Scholar] [CrossRef]
- Juan, S.M.A.; Adlard, P.A. Ageing and Cognition. Subcell. Biochem. 2019, 91, 107–122. [Google Scholar]
- Pettigrew, C.; Soldan, A. Defining Cognitive Reserve and Implications for Cognitive Aging. Curr. Neurol. Neurosci. Rep. 2019, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, I.; Cohen-Zimerman, S.; Grafman, J. Executive functions. Handb. Clin. Neurol. 2019, 163, 197–219. [Google Scholar] [PubMed]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Hiser, J.; Koenigs, M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol. Psychiatry 2018, 83, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Teffer, K.; Semendeferi, K. Human prefrontal cortex: Evolution, development, and pathology. Prog. Brain Res. 2012, 195, 191–218. [Google Scholar] [PubMed]
- Lisman, J.; Buzsáki, G.; Eichenbaum, H.; Nadel, L.; Ranganath, C.; Redish, A.D. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 2017, 20, 1434–1447. [Google Scholar] [CrossRef] [PubMed]
- Levinson, S.C. Gesture, spatial cognition and the evolution of language. Philos. Trans. R Soc. Lond. B Biol. Sci. 2023, 378, 20210481. [Google Scholar] [CrossRef] [PubMed]
- Tomás, D.J.; Nascimento Alves, P.; Vânia Silva-Nunes, M. Spatial orientation: A relationship with inferential memory. Brain Cogn. 2023, 170, 106059. [Google Scholar] [CrossRef] [PubMed]
- Bliss, E.S.; Wong, R.H.; Howe, P.R.; Mills, D.E. Benefits of exercise training on cerebrovascular and cognitive function in ageing. J. Cereb. Blood Flow Metab. 2021, 41, 447–470. [Google Scholar] [CrossRef]
- Karssemeijer, E.G.A.; Aaronson, J.A.; Bossers, W.J.; Smits, T.; Olde Rikkert, M.G.M.; Kessels, R.P.C. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res. Rev. 2017, 40, 75–83. [Google Scholar] [CrossRef]
- Scarmagnan, G.S.; Lino, T.B.; Pimentel, D.E.; Silva, A.V.B.; da Silva Ramos, I.M.; Christofoletti, G. Benefits of a Dual-Task Training on Motor and Cognitive Functions in Community-Dwelling Older Adults: A Controlled Clinical Trial. Am. J. Phys. Med. Rehabil. 2024, 103, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, T.J.; Swanson, C. A Runner’s High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Wu, Y.; Xu, M.; Jones, O.D.; Ma, J.; Xu, X. Physical exercise: Bulking up neurogenesis in human adults. Cell Biosci. 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Jaberi, S.; Fahnestock, M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer’s Disease. Biomolecules 2023, 13, 1577. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, B.; Maurya, N.; Lee, S.D.; Bharath Kumar, V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 5895. [Google Scholar] [CrossRef]
- Bugge Kambestad, O.; Sirevåg, K.; Mrdalj, J.; Hovland, A.; Bruun Endal, T.; Andersson, E.; Sjøbø, T.; Haukenes Stavestrand, S. Physical Exercise and Serum BDNF Levels: Accounting for the Val66Met Polymorphism in Older Adults. Cogn. Behav. Neurol. 2023, 36, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Moss, G.A. Water and health: A forgotten connection? Perspect. Public Health 2010, 130, 227–232. [Google Scholar] [CrossRef]
- Gueita-Rodriguez, J.; Hoyas-Avila, S.; Palacios-Cena, D.; Molina-Rueda, F. Efectos de la inmersión vertical en el agua sobre el sistema nervioso: Revisión sistemática. Rev. Neurol. 2019, 68, 181–189. [Google Scholar] [CrossRef]
- Pieniążek, M.; Mańko, G.; Spieszny, M.; Bilski, J.; Kurzydło, W.; Ambroży, T.; Jaszczur-Nowicki, J. Body balance and physiotherapy in the aquatic environment and at a gym. BioMed Res. Int. 2021, 2021, 9925802. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, L.; Yin, M.; Yu, Y.; Zhou, X.; Wang, H.; Yan, H. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: A randomized controlled trial. Clin. Rehabil. 2016, 30, 587–593. [Google Scholar] [CrossRef]
- Campos, D.M.; Ferreira, D.L.; Gonçalves, G.H.; Farche, A.C.S.; de Oliveira, J.C.; Ansai, J.H. Effects of aquatic physical exercise on neuropsychological factors in older people: A systematic review. Arch. Gerontol. Geriatr. 2021, 96, 104435. [Google Scholar] [CrossRef] [PubMed]
- Farrukh, S.; Habib, S.; Rafaqat, A.; Sarfraz, A.; Sarfraz, Z.; Tariq, H. Association of exercise, brain-derived neurotrophic factor, and cognition among older women: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 114, 105068. [Google Scholar] [CrossRef] [PubMed]
- Häfele, M.S.; Alberton, C.L.; Häfele, V.; Schaun, G.Z.; Nunes, G.N.; Calonego, C.; Castro, T.F.; Andrade, L.S.; Pinto, S.S. Water-Based Training Programs Improve Functional Capacity, Cognitive and Hemodynamic Outcomes? The ACTIVE Randomized Clinical Trial. Res. Q. Exerc. Sport 2023, 94, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.B.; Delgadillo, M.; Lazzeroni, L.C.; Louras, P.N.; Myers, J.; Yesavage, J.; Fairchild, J.K. Cognitive Improvement Following Physical Exercise and Cognitive Training Intervention for Older Adults with MCI. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Butcher, N.J.; Monsour, A.; Mew, E.J.; Chan, A.W.; Moher, D.; Mayo-Wilson, E.; Terwee, C.B.; Chee-A-Tow, A.; Baba, A.; Gavin, F.; et al. Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA 2022, 328, 2252–2264. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Brucki, S.M.; Nitrini, R.; Caramelli, P.; Bertolucci, P.H.; Okamoto, I.H. Suggestions for utilization of the mini-mental state examination in Brazil. Arq. Neuropsiquiatr. 2003, 61, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Kim, D.Y. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp. Gerontol. 2018, 104, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Efird, J. Blocked randomization with randomly selected block sizes. Int. J. Environ. Res. Public Health 2011, 8, 15–20. [Google Scholar] [CrossRef]
- Raven, J.; Raven, J.C.; Court, J.H. Manual for Raven’s Progressive Matrices and Vocabulary Scales; Oxford Psychologists Press: Oxford, UK, 1996. [Google Scholar]
- Berg, E.A. A simple objective test for measuring flexibility in thinking. J. Gen. Psychol. 1948, 39, 15–22. [Google Scholar] [CrossRef]
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, W.; Maes, J.H.R. Associations Between Self- and Informant-Reported Abilities of Instrumental Activities of Daily Living and Cognitive Functions in Older Adults With Mild Cognitive Impairment. Arch. Clin. Neuropsychol. 2021, 36, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Dziechciaż, M.; Filip, R. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. Ann. Agric. Environ. Med. 2014, 21, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A.; Ostrosky, F. What do neuropsychological tests assess? Appl. Neuropsychol. Adult 2022, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clare, L.; Wu, Y.T.; Teale, J.C.; MacLeod, C.; Matthews, F.; Brayne, C.; Woods, B.; CFAS-Wales Study Team. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017, 14, e1002259. [Google Scholar] [CrossRef] [PubMed]
- Mortamais, M.; Ash, J.A.; Harrison, J.; Kaye, J.; Kramer, J.; Randolph, C.; Pose, C.; Albala, B.; Ropacki, M.; Ritchie, C.W.; et al. Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimers Dement. 2017, 13, 468–492. [Google Scholar] [CrossRef]
- Murphy, P.; Foley, J.; Mole, J.; Van Harskamp, N.; Cipolotti, L. Lifespan normative data (18–89 years) for Raven’s Advanced Progressive Matrices Set I. J. Neuropsychol. 2023, 17, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Teubner-Rhodes, S.; Vaden, K.I., Jr.; Dubno, J.R.; Eckert, M.A. Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test. Neuropsychologia 2017, 102, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Faber, D.; Grosse, G.M.; Klietz, M.; Petri, S.; Schwenkenbecher, P.; Sühs, K.W.; Kopp, B. Towards the Validation of Executive Functioning Assessments: A Clinical Study. J. Clin. Med. 2022, 11, 7138. [Google Scholar] [CrossRef]
- de Oliveira, R.T.; Felippe, L.A.; Bucken Gobbi, L.T.; Barbieri, F.A.; Christofoletti, G. Benefits of Exercise on the Executive Functions in People with Parkinson Disease: A Controlled Clinical Trial. Am. J. Phys. Med. Rehabil. 2017, 96, 301–306. [Google Scholar] [CrossRef]
- Moreira, N.B.; da Silva, L.P.; Rodacki, A.L.F. Aquatic exercise improves functional capacity, perceptual aspects, and quality of life in older adults with musculoskeletal disorders and risk of falling: A randomized controlled trial. Exp. Gerontol. 2020, 142, 111135. [Google Scholar] [CrossRef] [PubMed]
- Palladino, L.; Ruotolo, I.; Berardi, A.; Carlizza, A.; Galeoto, G. Efficacy of aquatic therapy in people with spinal cord injury: A systematic review and meta-analysis. Spinal Cord 2023, 61, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zeng, M.; Cui, Y.; Fu, J.; Li, Y.; Yao, Y.; Shen, F.; Sun, Y.; Wang, Z.; Deng, D. Aquatic strength training improves postural stability and walking function in stroke patients. Physiother. Theory Pract. 2023, 39, 1626–1635. [Google Scholar] [CrossRef]
- Ye, J.Y.; Chen, R.; Chu, H.; Lin, H.C.; Liu, D.; Jen, H.J.; Banda, K.J.; Kustanti, C.Y.; Chou, K.R. Dual-task training in older adults with cognitive impairment: A meta-analysis and trial sequential analysis of randomized controlled trials. Int. J. Nurs. Stud. 2024, 155, 104776. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.E.; Hyeon, S.J.; Kim, M.; Cho, H.Y.; Hahm, S.C. Effects of dual-task resistance exercise on cognition, mood, depression, functional fitness, and activities of daily living in older adults with cognitive impairment: A single-blinded, randomized controlled trial. BMC Geriatr. 2024, 24, 369. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jung, J.; Kim, H.; Lee, S. Comparison of the Influence of Dual-Task Activities on Prefrontal Activation and Gait Variables in Older Adults with Mild Cognitive Impairment during Straight and Curved Walking. Medicina 2024, 60, 235. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.L.; Cheng, L.J.; Feng, R.C.; Goh, J.; Gyanwali, B.; Itoh, S.; Tam, W.S.W.; Wu, X.V. Effect of physio-cognitive dual-task training on cognition in pre-ageing and older adults with neurocognitive disorders: A meta-analysis and meta-regression of randomized controlled trial. Arch. Gerontol. Geriatr. 2024, 116, 105161. [Google Scholar] [CrossRef]
- Warne, R.T. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists. Pract. Assess. Res. Eval. 2014, 19, 17. [Google Scholar]
- Jackson, M.; Kang, M.; Furness, J.; Kemp-Smith, K. Aquatic exercise and mental health: A scoping review. Complement. Ther. Med. 2022, 66, 102820. [Google Scholar] [CrossRef]
- Raichlen, D.A.; Bharadwaj, P.K.; Nguyen, L.A.; Franchetti, M.K.; Zigman, E.K.; Solorio, A.R.; Alexander, G.E. Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: Results from a pilot randomized controlled trial. BMC Geriatr. 2020, 20, 83. [Google Scholar] [CrossRef]
- Chen, Y.L.; Tseng, C.H.; Lin, H.T.; Wu, P.Y.; Chao, H.C. Dual-task multicomponent exercise-cognitive intervention improved cognitive function and functional fitness in older adults. Aging Clin. Exp. Res. 2023, 35, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, E.; Vaezmosavi, M.; Gerber, M.; Pühse, U.; Brand, S. Dual-task training on cognition and resistance training improved both balance and working memory in older people. Phys. Sportsmed. 2019, 47, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.C.; Machado, D.R.L.; Abdalla, P.P.; Santos, C.V.; Lopes, S.; Martins, A.C.; Mota, J.; Mesquita, C. Otago Exercise Program Plus Cognitive Dual-task can Reduce Fall Risk, Improve Cognition and Functioning in Older Adults. Curr. Aging Sci. 2023, 16, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.J.; Foley, S. Clinician’s Guide to Understanding Effect Size, Alpha Level, Power, and Sample Size. Nutr. Clin. Pract. 2021, 36, 598–605. [Google Scholar] [CrossRef] [PubMed]
Variables | Groups | tvalue | p | |
---|---|---|---|---|
Experimental | Control | |||
Sample size, n | 16 | 15 | - | 0.857 |
Age, n | 67.2 (4.4) | 69.1 (6.4) | −0.952 | 0.349 |
Mini-Mental State Examination, pts | 26.4 (2.5) | 27.0 (2.7) | −0.590 | 0.560 |
Raven’s Progressive Matrices, pts | 22.5 (8.0) | 20.7 (8.5) | 0.895 | 0.557 |
Number of trials, n | 113.6 (12.5) | 112.2 (20.1) | 0.408 | 0.687 |
Number of correct answers, n | 76.1 (6.4) | 73.1 (7.9) | 1.212 | 0.235 |
Number of perseverative answers, n | 32.4 (9.8) | 35.7 (12.8) | −0.821 | 0.418 |
Number of errors, n | 37.5 (14.8) | 38.7 (19.4) | 0.306 | 0.762 |
Number of perseverative errors, n | 18.9 (7.2) | 22.3 (10.9) | −0.994 | 0.330 |
Number of non-perseverative errors, n | 17.7 (11.0) | 16.1 (9.3) | 0.654 | 0.518 |
Variable | Groups | Assessment | ANOVA Main Effect | |||
---|---|---|---|---|---|---|
Initial | Final | Group | Time | Interaction | ||
Raven’s Progressive Matrices, pts | Experimental | 22.5 (8.0) | 25.7 (5.1) | Fvalue = 1.904 p = 0.178 | Fvalue = 4.742 p = 0.038 η2p = 0.141 | Fvalue = 4.361 p = 0.046 η2p = 0.131 |
Control | 20.7 (8.5) | 20.8 (5.9) |
Variable | Groups | Assessment | ANOVA Main Effect | |||
---|---|---|---|---|---|---|
Initial | Final | Group | Time | Interaction | ||
Number of trials, n | Experimental | 113.6 (12.5) | 102.5 (12.1) | Fvalue = 1.932 p = 0.175 | Fvalue = 0.458 p = 0.504 | Fvalue = 26.530 p = 0.001 η2p = 0.478 |
Control | 112.2 (20.1) | 120.3 (14.4) | ||||
Number of correct answers, n | Experimental | 76.1 (6.4) | 73.6 (3.7) | Fvalue = 6.454 p = 0.170 | Fvalue = 4.957 p = 0.034 η2p = 0.146 | Fvalue = 1.108 p = 0.301 |
Control | 73.1 (7.9) | 67.3 (10.7) | ||||
Number of perseverative answers, n | Experimental | 32.4 (9.8) | 31.4 (7.7) | Fvalue = 3.001 p = 0.094 | Fvalue = 2.587 p = 0.119 | Fvalue = 3.202 p = 0.084 |
Control | 35.7 (12.8) | 48.8 (11.3) | ||||
Number of errors, n | Experimental | 37.5 (14.8) | 29.0 (10.9) | Fvalue = 2.996 p = 0.094 | Fvalue = 1.447 p = 0.239 | Fvalue = 24.511 p = 0.001 η2p = 0.458 |
Control | 38.7 (19.4) | 52.9 (18.8) | ||||
Number of perseverative errors, n | Experimental | 18.9 (7.2) | 16.7 (5.9) | Fvalue = 0.042 p = 0.839 | Fvalue = 8.102 p = 0.008 η2p = 0.218 | Fvalue = 1.478 p = 0.234 |
Control | 22.2 (10.9) | 29.1 (9.9) | ||||
Number of non-perseverative errors, n | Experimental | 17.7 (11.0) | 12.3 (6.6) | Fvalue = 1.164 p = 0.290 | Fvalue = 0.1001 p = 0.754 | Fvalue = 12.519 p = 0.001 η2p = 0.302 |
Control | 6.1 (9.3) | 22.1 (9.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terra de Oliveira, R.; Lino, T.B.; Scarmagnan, G.S.; Miziara Barbosa, S.R.; de Souza Pegorare, A.B.G.; Christofoletti, G. A Controlled Clinical Trial on the Effects of Aquatic Exercise on Cognitive Functions in Community-Dwelling Older Adults. Brain Sci. 2024, 14, 703. https://doi.org/10.3390/brainsci14070703
Terra de Oliveira R, Lino TB, Scarmagnan GS, Miziara Barbosa SR, de Souza Pegorare ABG, Christofoletti G. A Controlled Clinical Trial on the Effects of Aquatic Exercise on Cognitive Functions in Community-Dwelling Older Adults. Brain Sciences. 2024; 14(7):703. https://doi.org/10.3390/brainsci14070703
Chicago/Turabian StyleTerra de Oliveira, Renata, Tayla Borges Lino, Gabriella Simões Scarmagnan, Suzi Rosa Miziara Barbosa, Ana Beatriz Gomes de Souza Pegorare, and Gustavo Christofoletti. 2024. "A Controlled Clinical Trial on the Effects of Aquatic Exercise on Cognitive Functions in Community-Dwelling Older Adults" Brain Sciences 14, no. 7: 703. https://doi.org/10.3390/brainsci14070703