Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Social Interaction
2.3. Drug Treatment and Experimental Groups
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binder, J.; Albus, M.; Hubmann, W.; Scherer, J.; Sobizack, N.; Franz, U.; Mohr, F.; Hecht, S. Neuropsychological impairment and psychopathology in first-episode schizophrenic patients related to the early course of illness. Eur. Arch. Psychiatry Clin. Neurosci. 1998, 248, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.; Guimaraes, A.; Wozniak, J.; Anjum, A.; Schulz, S.C.; White, T. Trajectories of social withdrawal and cognitive decline in the schizophrenia prodrome. Clin. Schizophr. Relat. Psychoses 2011, 4, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberg, D.R.; Cannon, T.D.; O’Donovan, M.; Correl, C.U.; Kane, J.M.; van Os, J.I.T. Schizophrenia. Nat. Rev. Dis. Prim. 2015, 1, 15067. [Google Scholar] [CrossRef] [PubMed]
- Marder, S.R.; Cannon, T.D. Schizophrenia. N. Engl. J. Med. 2019, 381, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Marder, S.R.; Galderisi, S. The current conceptualization of negative symptoms in schizophrenia. World Psychiatry 2017, 16, 14–24. [Google Scholar] [CrossRef]
- Mitra, S.; Mahintamani, T.; Kavoor, A.; Nizamie, S.H. Negative symptoms in schizophrenia. Ind. Psychiatry J. 2016, 25, 135. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia-An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef]
- Simpson, E.H.; Kellendonk, C.; Kandel, E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 2010, 65, 585–596. [Google Scholar] [CrossRef]
- Rung, J.P.; Carlsson, A.; Markinhuhta, K.R.; Carlsson, M.L. (+)-MK-801 induced social withdrawal in rats: A model for negative symptoms of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 827–832. [Google Scholar] [CrossRef]
- Rung, J.P.; Carlsson, A.; Rydén Markinhuhta, K.; Carlsson, M.L. The dopaminergic stabilizers (À)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats. Biol. Psychiatry 2005, 29, 833–839. [Google Scholar] [CrossRef]
- Neill, J.C.; Barnes, S.; Cook, S.; Grayson, B.; Idris, N.F.; McLean, S.L.; Snigdha, S.; Rajagopal, L.; Harte, M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: Focus on NMDA receptor antagonism. Pharmacol. Ther. 2010, 128, 419–432. [Google Scholar] [CrossRef]
- Deiana, S.; Watanabe, A.; Yamasaki, Y.; Amada, N.; Kikuchi, T.; Stott, C.; Riedel, G. MK-801-induced deficits in social recognition in rats: Reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav. Pharmacol. 2015, 26, 748–765. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef]
- Vales, K.; Holubova, K. Minireview: Animal model of schizophrenia from the perspective of behavioral pharmacology: Effect of treatment on cognitive functions. Neurosci. Lett. 2021, 761, 136098. [Google Scholar] [CrossRef] [PubMed]
- Gururajan, A.; Taylor, D.A.; Malone, D.T. Current pharmacological models of social withdrawal in rats. Behav. Pharmacol. 2010, 21, 690–709. [Google Scholar] [CrossRef] [PubMed]
- Neill, J.C.; Harte, M.K.; Haddad, P.M.; Lydall, E.S.; Dwyer, D.M. Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: A translational link to humans. Eur. Neuropsychopharmacol. 2014, 24, 822–835. [Google Scholar] [CrossRef]
- Winship, I.R.; Dursun, S.M.; Baker, G.B.; Balista, P.A.; Kandratavicius, L.; Maia-de-Oliveira, J.P.; Hallak, J.; Howland, J.G. An overview of animal models related to schizophrenia. Can. J. Psychiatry 2019, 64, 5–17. [Google Scholar] [CrossRef]
- Abdul-Monim, Z.; Reynolds, G.P.; Neill, J.C. The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J. Psychopharmacol. 2003, 17, 57–65. [Google Scholar] [CrossRef]
- Gururajan, A.; Taylor, D.A.; Malone, D.T. Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague–Dawley rats. J. Psychopharmacol. 2012, 26, 1317–1332. [Google Scholar] [CrossRef]
- MacDonald, K.; Feifel, D. Oxytocin in schizophrenia: A review of evidence for its therapeutic effects. Acta Neuropsychiatr. 2012, 24, 130–146. [Google Scholar] [CrossRef]
- Feifel, D.; Shilling, P.D.; Hillman, J.; Maisel, M.; Winfield, J.; Melendez, G. Peripherally administered oxytocin modulates latent inhibition in a manner consistent with antipsychotic drugs. Behav. Brain Res. 2015, 278, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Shilling, P.D.; Feifel, D. Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 2016, 30, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, U.; Hurlemann, R.; Chan, R.C.K. Oxytocin and Schizophrenia Spectrum Disorders. Curr. Top. Behav. Neurosci. 2018, 35, 515–527. [Google Scholar] [CrossRef]
- Kohli, S.; King, M.V.; Williams, S.; Edwards, A.; Ballard, T.M.; Steward, L.J.; Alberati, D.; Fone, K.C.F. Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats. Neuropsychopharmacology 2019, 44, 295–305. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.H.; Lane, H.Y. Oxytocin in schizophrenia: Pathophysiology and implications for future treatment. Int. J. Mol. Sci. 2021, 22, 2146. [Google Scholar] [CrossRef]
- Zimmermann, F.F.; Gaspary, K.V.; Siebel, A.M.; Bonan, C.D. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav. Brain Res. 2016, 311, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.R.; Brady, D.L.; Shapiro, R.A.; Dorsa, D.M.; Koenig, J.I. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 2005, 30, 1883–1894. [Google Scholar] [CrossRef]
- Cochran, D.M.; Fallon, D.; Hill, M.; Frazier, J.A. The role of oxytocin in psychiatric disorders: A review of biological and therapeutic research findings. Harv. Rev. Psychiatry 2013, 21, 219–247. [Google Scholar] [CrossRef] [PubMed]
- Feifel, D.; MacDonald, K.; Nguyen, A.; Cobb, P.; Warlan, H.; Galangue, B.; Minassian, A.; Becker, O.; Cooper, J.; Perry, W.; et al. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry 2010, 68, 678–680. [Google Scholar] [CrossRef]
- Fischer-Shofty, M.; Brüne, M.; Ebert, A.; Shefet, D.; Levkovitz, Y.; Shamay-Tsoory, S.G. Improving social perception in schizophrenia: The role of oxytocin. Schizophr. Res. 2013, 146, 357–362. [Google Scholar] [CrossRef]
- Pedersen, C.A.; Gibson, C.M.; Rau, S.W.; Salimi, K.; Smedley, K.L.; Casey, R.L.; Leserman, J.; Jarskog, L.F.; Penn, D.L. Intranasal oxytocin reduces psychotic symptoms and improves Theory of mind and social perception in schizophrenia. Schizophr. Res. 2011, 132, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Woolley, J.D.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.P.; Mathalon, D.H.; Vinogradov, S. Oxytocin administration enhances controlled social cognition in patients with schizophrenia. Psychoneuroendocrinology 2014, 47, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Teruel, A.; Oliveras, I.; Cañete, T.; Rio-Álamos, C.; Tapias-Espinosa, C.; Sampedro-Viana, D.; Sánchez-González, A.; Sanna, F.; Torrubia, R.; González-Maeso, J.; et al. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci. Biobehav. Reviews. 2021, 131, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, O.; Corda, M.G.; Fernández-Teruel, A. A genetic model of impulsivity, vulnerability to drug abuse and schizophrenia-relevant symptoms with translational potential: The Roman high- vs. low-avoidance rats. Front. Behav. Neurosci. 2019, 13, 145. [Google Scholar] [CrossRef]
- Oliveras, I.; Cañete, T.; Sampedro-Viana, D.; Río-Álamos, C.; Tobeña, A.; Corda, M.G.; Giorgi, O.; Fernández-Teruel, A. Neurobehavioral profiles of six genetically-based rat models of schizophrenia related symptoms. Curr. Neuropharmacol. 2023, 21, 1934–1952. [Google Scholar] [CrossRef]
- Tapias-Espinosa, C.; Río-Álamos, C.; Sampedro-Viana, D.; Gerbolés, C.; Oliveras, I.; Sánchez-González, A.; Tobeña, A.; Fernández-Teruel, A. Increased exploratory activity in rats with deficient sensorimotor gating: A study of schizophrenia-relevant symptoms with genetically heterogeneous NIH-HS and Roman rat strains. Behav. Process. 2018, 151, 96–103. [Google Scholar] [CrossRef]
- Esnal, A.; Sánchez-González, A.; Río-Álamos, C.; Oliveras, I.; Cañete, T.; Blázquez, G.; Tobeña, A.; Fernández-Teruel, A. Prepulse inhibition and latent inhibition deficits in Roman high-avoidance vs. Roman low-avoidance rats: Modeling schizophrenia-related features. Physiol. Behavior. 2016, 163, 267–273. [Google Scholar] [CrossRef]
- Fernández-Teruel, A.; Blázquez, G.; Pérez, M.; Aguilar, R.; Cañete, T.; Guitart, M.; Giménez-Llort, L.; Tobeña, A. Latent inhibition threshold in Roman high-avoidance rats: A psychogenetic model of abnormalities in attentional filter? Actas Españolas Psiquiatr. 2006, 34, 257–263. [Google Scholar]
- Oliveras, I.; Río-Álamos, C.; Cañete, T.; Blázquez, G.; Martínez-Membrives, E.; Giorgi, O.; Corda, M.G.; Tobeña, A.; Fernández-Teruel, A. Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: Relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front. Behav. Neurosci. 2015, 9, 213. [Google Scholar] [CrossRef]
- Oliveras, I.; Soria-Ruiz, O.J.; Sampedro-Viana, D.; Cañete, T.; Río-Álamos, C.; Tobeña, A.; Fernández-Teruel, A. Different maturation patterns for sensorimotor gating and startle habituation deficits in male and female RHA vs RLA rats. Behav. Brain Res. 2022, 434, 114021. [Google Scholar] [CrossRef]
- Río-Álamos, C.; Piludu, M.A.; Gerbolés, C.; Barroso, D.; Oliveras, I.; Sánchez-González, A.; Cañete, T.; Tapias-Espinosa, C.; Sampedro-Viana, D.; Torrubia, R.; et al. Volumetric brain differences between the Roman rat strains: Neonatal handling effects, sensorimotor gating and working memory. Behav. Brain Res. 2019, 361, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Tapias-Espinosa, C.; Río-Álamos, C.; Sánchez-González, A.; Oliveras, I.; Sampedro-Viana, D.; Castillo-Ruiz, M.M.; Cañete, T.; Tobeña, A.; Fernández-Teruel, A. Schizophrenia-like reduced sensorimotor gating in intact inbred and outbred rats is associated with decreased medial prefrontal cortex activity and volume. Neuropsychopharmacology 2019, 44, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- del Río, C.; Oliveras, I.; Cañete, T.; Blázquez, G.; Tobeña, A.; Fernández-Teruel, A. Genetic rat models of schizophrenia-relevant symptoms. World J. Neurosci. 2014, 4, 261–278. [Google Scholar] [CrossRef]
- Sampedro-Viana, D.; Cañete, T.; Sanna, F.; Soley, B.; Giorgi, O.; Corda, M.G.; Torrecilla, P.; Oliveras, I.; Tapias-Espinosa, C.; Río-Álamos, C.; et al. Decreased social interaction in the RHA rat model of schizophrenia-relevant features: Modulation by neonatal handling. Behav. Process. 2021, 188, 104387. [Google Scholar] [CrossRef] [PubMed]
- Oliveras, I.; Soria-Ruiz, O.J.; Sampedro-Viana, D.; Cañete, T.; Tobeña, A.; Fernández-Teruel, A. Social preference in Roman rats: Age and sex variations relevance for modeling negative schizophrenia-like features. Physiol. Behav. 2022, 247, 113722. [Google Scholar] [CrossRef]
- Tapias-Espinosa, C.; Cañete, T.; Sampedro-Viana, D.; Brudek, T.; Kaihøj, A.; Oliveras, I.; Tobeña, A.; Aznar, S.; Fernández-Teruel, A. Oxytocin attenuates schizophrenia-like reduced sensorimotor gating in outbred and inbred rats in line with strain differences in CD38 gene expression. Physiol. Behav. 2021, 240, 113547. [Google Scholar] [CrossRef]
- Sampedro-Viana, D.; Cañete, T.; Sanna, F.; Oliveras, I.; Lavín, V.; Torrecilla, P.; Río-Álamos, C.; Tapias-Espinosa, C.; Sánchez-González, A.; Tobeña, A.; et al. Atypical antipsychotics attenuate MK801-induced social withdrawal and hyperlocomotion in the RHA rat model of schizophrenia-relevant features. Psychopharmacology 2023, 240, 1931–1945. [Google Scholar] [CrossRef]
- Deak, T.; Arakawa, H.; Bekkedal, M.Y.; Panksepp, J. Validation of a novel social investigation task that may dissociate social motivation from exploratory activity. Behav. Brain Res. 2009, 199, 326–333. [Google Scholar] [CrossRef]
- Oliveras, I.; Sánchez-González, A.; Sampedro-Viana, D.; Piludu, M.A.; Río-Alamos, C.; Giorgi, O.; Corda, M.G.; Aznar, S.; González-Maeso, J.; Gerbolés, C.; et al. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high-(RHA) and low-avoidance (RLA) rats. Psychopharmacology 2017, 234, 957–975. [Google Scholar] [CrossRef]
- Feifel, D.; Shilling, P.D.; MacDonald, K. A Review of Oxytocin’s Effects on the Positive, Negative, and Cognitive Domains of Schizophrenia. Biol. Psychiatry 2016, 79, 222–233. [Google Scholar] [CrossRef]
- Ramos, L.; Hicks, C.; Caminer, A.; Couto, K.; Narlawar, R.; Kassiou, M.; McGregor, I.S. MDMA (‘Ecstasy’), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors. Pharmacol. Biochem. Behav. 2016, 150–151, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Runyan, A.; Lengel, D.; Huh, J.W.; Barson, J.R.; Raghupathi, R. Intranasal administration of oxytocin attenuates social recognition deficits and increases prefrontal cortex inhibitory postsynaptic currents following traumatic brain injury. eNeuro 2021, 8, ENEURO.0061-21.2021. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Lin, C.C.; Tzeng, N.S.; Tung, C.S.; Liu, Y.P. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 2019, 26, 26. [Google Scholar] [CrossRef] [PubMed]
- Feifel, D.; Reza, T. Oxytocin modulates psychotomimetic-induced deficits in sensorimotor gating. Psychopharmacology 1999, 141, 93–98. [Google Scholar] [CrossRef]
- Qi, J.; Han, W.Y.; Yang, J.Y.; Wang, L.H.; Dong, Y.X.; Wang, F.; Song, M.; Wu, C.F. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain. Addict. Biol. 2012, 17, 758–769. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, W.L.; Young, A.B.; Lee, K.; McGinty, J.F.; See, R.E. Oxytocin reduces cocaine seeking and reverses chronic cocaine-induced changes in glutamate receptor function. Int. J. Neuropsychopharmacol. 2015, 18, pyu009. [Google Scholar] [CrossRef]
- Klein, A.B.; Ultved, L.; Adamsen, D.; Santini, M.A.; Tobeña, A.; Fernandez-Teruel, A.; Flores, P.; Moreno, M.; Cardona, D.; Knudsen, G.M.; et al. 5-HT2A and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman low- (RLA) and high- (RHA) avoidance rat strains. Neuroscience 2014, 263, 36–45. [Google Scholar] [CrossRef]
- Fomsgaard, L.; Moreno, J.L.; de la Fuente Revenga, M.; Brudek, T.; Adamsen, D.; Rio-Alamos, C.; Saunders, J.; Klein, A.B.; Oliveras, I.; Cañete, T.; et al. Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the Roman low- (RLA-I) and high- (RHA-I) avoidance rat strains. Mol. Neurobiol. 2018, 55, 1998–2012. [Google Scholar] [CrossRef]
- Elfving, B.; Müller, H.K.; Oliveras, I.; Østerbøg, T.B.; Rio-Alamos, C.; Sanchez-Gonzalez, A.; Tobeña, A.; Fernandez-Teruel, A.; Aznar, S. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109669. [Google Scholar] [CrossRef]
- Sønderstrup, M.; Batiuk, M.Y.; Mantas, P.; Tapias-Espinosa, C.; Oliveras, I.; Cañete, T.; Sampedro-Viana, D.; Brudek, T.; Rydbirk, R.; Khodosevich, K.; et al. A maturational shift in the frontal cortex synaptic transcriptional landscape underlies schizophrenia-relevant behavioural traits: A congenital rat model. Eur. Neuropsychopharmacol. 2023, 74, 32–46. [Google Scholar] [CrossRef]
- Wood, C.M.; Nicolas, C.S.; Choi, S.-L.; Roman, E.; Nylander, I.; Fernández-Teruel, A.; Kiianmaa, K.; Bienkowski, P.; de Jong, T.R.; Colombo, G.; et al. Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology 2017, 115, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Krzystanek, M.; Pałasz, A. NMDA receptor model of antipsychotic drug-induced hypofrontality. Int. J. Mol. Sci. 2019, 20, 1442. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampedro-Viana, D.; Cañete, T.; Ancil-Gascón, P.; Cisci, S.; Tobeña, A.; Fernández-Teruel, A. Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features. Brain Sci. 2024, 14, 920. https://doi.org/10.3390/brainsci14090920
Sampedro-Viana D, Cañete T, Ancil-Gascón P, Cisci S, Tobeña A, Fernández-Teruel A. Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features. Brain Sciences. 2024; 14(9):920. https://doi.org/10.3390/brainsci14090920
Chicago/Turabian StyleSampedro-Viana, Daniel, Toni Cañete, Paula Ancil-Gascón, Sonia Cisci, Adolf Tobeña, and Alberto Fernández-Teruel. 2024. "Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features" Brain Sciences 14, no. 9: 920. https://doi.org/10.3390/brainsci14090920
APA StyleSampedro-Viana, D., Cañete, T., Ancil-Gascón, P., Cisci, S., Tobeña, A., & Fernández-Teruel, A. (2024). Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features. Brain Sciences, 14(9), 920. https://doi.org/10.3390/brainsci14090920