Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Drawing Intervention
2.3. fNIRS Testing
2.4. Statistical Analysis
2.4.1. Demographic and Clinical Data
2.4.2. fNIRS Processing
3. Results
3.1. Drawing Intervention Enhances Self-Perception in ASD
3.1.1. SPD Analysis
3.1.2. DDS Analysis
3.1.3. GQOL-74 Analysis
- Emotional psychology: Negative and positive emotions, self-esteem, and cognitive functions were significantly improved (p-values all < 0.05), indicating enhanced emotional regulation, self-confidence, and cognitive abilities.
- Social function: Interpersonal communication and work/study abilities were significantly improved (p < 0.05), and social support showed a positive trend but did not reach significance (p = 0.083).
- Physical function: Physical discomfort was significantly improved (p = 0.04), but no significant improvements were observed in sleep, eating, or motor–sensory functions (p > 0.05).
- Other dimensions: Marital and family relationships were significantly improved (p = 0.027), while no significant changes were found in leisure and entertainment (p = 0.254).
3.2. Drawing Intervention Facilitates Visual and Expressive Functions in ASD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009–2017. Pediatrics 2019, 144, e20190811. [Google Scholar] [CrossRef]
- Feldman, J.I.; Dunham, K.; DiCarlo, G.E.; Cassidy, M.; Liu, Y.; Suzman, E.; Williams, Z.J.; Pulliam, G.; Kaiser, S.; Wallace, M.T.; et al. A Randomized Controlled Trial for Audiovisual Multisensory Perception in Autistic Youth. J. Autism Dev. Disord. 2023, 53, 4318–4335. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.; Isaac, C.; Milne, E. A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children. J. Autism Dev. Disord. 2010, 40, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Livengood de Sanabria, M.d.l.Á. Musicoterapia en infantes: Funciones cognitivas y emociones. Rev. Cuba. Pediatría 2022, 94. [Google Scholar]
- Kanareff, R.L. Utilizing Group Art Therapy to Enhance the Social Skills of Children with Autism and Down Syndrome; Ursuline College: Pepper Pike, OH, USA, 2002. [Google Scholar]
- Zhang, W. Multi-Factor Investigation and Analysis of Autistic Children and Intervention of Art Therapy. Master’s Thesis, Shanxi Medical University, Jinzhong, China, 2009. [Google Scholar]
- Cui, J.; Xie, X. Experimental study on art therapy intervention for children with autism. J. Tangshan Norm. Univ. 2013, 35, 127–130. [Google Scholar]
- Liang, Y. Analysis of multi-factor investigation and intervention of art therapy for autistic children. Art Technol. 2016, 29, 9–10. [Google Scholar]
- Shen, W. A Case Study of Art Education Therapy for Emotionally Disturbed Children. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2017. [Google Scholar]
- Yu, S.; Lin, L. Experimental study on the intervention therapy of drawing for children with autism. Art Technol. 2017, 30, 396–409. [Google Scholar]
- López-Hernández, E.; Acosta-Rodas, P.; Cruz-Cárdenas, J.; Ramos-Galarza, C. Intervención musicoterapéutica para mejorar la memoria, atención y lenguaje in niños con dislalia. Rev. Ecuat. Neurol. 2021, 30, 48–56. [Google Scholar] [CrossRef]
- Chaieb, L.; Wilpert, E.C.; Reber, T.P.; Fell, J. Auditory beat stimulation and its effects on cognition and mood States. Front. Psychiatry 2015, 6, 70. [Google Scholar] [CrossRef]
- Han, Y.M.Y.; Chan, M.C.; Chan, M.M.Y.; Yeung, M.K.; Chan, A.S. Effects of working memory load on frontal connectivity in children with autism spectrum disorder: A fNIRS study. Sci. Rep. 2022, 12, 1522. [Google Scholar] [CrossRef] [PubMed]
- D'Amico, M.; Lalonde, C. The Effectiveness of Art Therapy for Teaching Social Skills to Children with Autism Spectrum Disorder. Art Ther. 2017, 34, 176–182. [Google Scholar] [CrossRef]
- Kim, T.H.; Li, E.O.I. Mandala art therapy: Intervention for individual with autism spectrum disorder (ASD). J. Psikol. Malays. 2018, 32. [Google Scholar]
- Harris, C. Portrait Drawing: An Art Therapy Intervention for Adults with Autism Spectrum Disorder. Master’s Thesis, The Florida State University, Tallahassee, FL, USA, 2015. [Google Scholar]
- MacDonald, K.; Marchman, V.A.; Fernald, A.; Frank, M.C. Children flexibly seek visual information to support signed and spoken language comprehension. J. Exp. Psychol. Gen. 2020, 149, 1078–1096. [Google Scholar] [CrossRef]
- Rubio-Fernandez, P.; Mollica, F.; Jara-Ettinger, J. Speakers and listeners exploit word order for communicative efficiency: A cross-linguistic investigation. J. Exp. Psychol. Gen. 2021, 150, 583. [Google Scholar] [CrossRef]
- Jertberg, R.M.; Wienicke, F.J.; Andruszkiewicz, K.; Begeer, S.; Chakrabarti, B.; Geurts, H.M.; de Vries, R.; Van der Burg, E. Differences between autistic and non-autistic individuals in audiovisual speech integration: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 164, 105787. [Google Scholar] [CrossRef]
- Rommelse, N.N.; Franke, B.; Geurts, H.M.; Hartman, C.A.; Buitelaar, J.K. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur. Child Adolesc. Psychiatry 2010, 19, 281–295. [Google Scholar] [CrossRef]
- Burns, R.C.; Kaufman, S.H. Action, Styles, and Symbols in Kinetic Family Drawings KFD; Routledge: London, UK, 2013. [Google Scholar]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Broder-Fingert, S.; Feinberg, E.; Silverstein, M. Music therapy for children with autism spectrum disorder. JAMA 2017, 318, 523–524. [Google Scholar] [CrossRef]
- Martin, N. Assessing portrait drawings created by children and adolescents with autism spectrum disorder. Art Ther. 2008, 25, 15–23. [Google Scholar] [CrossRef]
- Shen, K.-S.; Chen, K.-H.; Liang, C.-C.; Pu, W.-P.; Ma, M.-Y. Measuring the functional and usable appeal of crossover B-Car interiors. Hum. Factors Ergon. Manuf. Serv. Ind. 2012, 25, 106–122. [Google Scholar] [CrossRef]
- Kring, A.M.; Smith, D.A.; Neale, J.M. Individual differences in dispositional expressiveness: Development and validation of the Emotional Expressivity Scale. J. Pers. Soc. Psychol. 1994, 66, 934–949. [Google Scholar] [CrossRef]
- Bernier, A.; Ratcliff, K.; Hilton, C.; Fingerhut, P.; Li, C.Y. Art Interventions for Children With Autism Spectrum Disorder: A Scoping Review. Am. J. Occup. Ther. 2022, 76, 7605205030. [Google Scholar] [CrossRef] [PubMed]
- Baek, D.; Baek, J.; Noh, J.; Oh, Y.; Lim, L. Toward Healthy Underground Spaces: A Review of Underground Environmental Design Factors and Their Impacts on Users’ Physiological and Psychological Health. HERD Health Environ. Res. Des. J. 2024, 17, 411–427. [Google Scholar] [CrossRef]
- Baum, S.H.; Stevenson, R.A.; Wallace, M.T. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog. Neurobiol. 2015, 134, 140–160. [Google Scholar] [CrossRef]
- Noel, J.P.; Lytle, M.; Cascio, C.; Wallace, M.T. Disrupted integration of exteroceptive and interoceptive signaling in autism spectrum disorder. Autism Res. 2018, 11, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Magnotti, J.F.; Beauchamp, M.S. Published estimates of group differences in multisensory integration are inflated. PLoS ONE 2018, 13, e0202908. [Google Scholar] [CrossRef]
- Stevenson, R.A.; Siemann, J.K.; Schneider, B.C.; Eberly, H.E.; Woynaroski, T.G.; Camarata, S.M.; Wallace, M.T. Multisensory temporal integration in autism spectrum disorders. J. Neurosci. 2014, 34, 691–697. [Google Scholar] [CrossRef]
- Brandwein, A.B.; Foxe, J.J.; Butler, J.S.; Russo, N.N.; Altschuler, T.S.; Gomes, H.; Molholm, S. The development of multisensory integration in high-functioning autism: High-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cereb. Cortex 2013, 23, 1329–1341. [Google Scholar] [CrossRef]
- Cascio, C.J.; Woynaroski, T.; Baranek, G.T.; Wallace, M.T. Toward an interdisciplinary approach to understanding sensory function in autism spectrum disorder. Autism Res. 2016, 9, 920–925. [Google Scholar] [CrossRef]
- Uljarevic, M.; Baranek, G.; Vivanti, G.; Hedley, D.; Hudry, K.; Lane, A. Heterogeneity of sensory features in autism spectrum disorder: Challenges and perspectives for future research. Autism Res. 2017, 10, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Chandler, S.; Charman, T.; Simonoff, E.; Baird, G. Brief Report: DSM-5 Sensory Behaviours in Children With and Without an Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 46, 3597–3606. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, Q.; Hu, Y.; Lu, H.; Li, T.; Song, C.; Fang, J.; Chen, L.; Yi, L. Increasing audiovisual speech integration in autism through enhanced attention to mouth. Dev. Sci. 2023, 26, e13348. [Google Scholar] [CrossRef] [PubMed]
- Brignell, A.; Morgan, A.T.; Woolfenden, S.; Klopper, F.; May, T.; Sarkozy, V.; Williams, K. A systematic review and meta-analysis of the prognosis of language outcomes for individuals with autism spectrum disorder. Autism Dev. Lang. Impair. 2018, 3, 2396941518767610. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Y.; He, J.; Xiang, Y.; Wu, C.; Wang, S.; Yuan, Z. McGurk Effect by Individuals with Autism Spectrum Disorder and Typically Developing Controls: A Systematic Review and Meta-analysis. J. Autism Dev. Disord. 2019, 49, 34–43. [Google Scholar] [CrossRef]
- Foxe, J.J.; Molholm, S.; Del Bene, V.A.; Frey, H.P.; Russo, N.N.; Blanco, D.; Saint-Amour, D.; Ross, L.A. Severe multisensory speech integration deficits in high-functioning school-aged children with Autism Spectrum Disorder (ASD) and their resolution during early adolescence. Cereb. Cortex 2015, 25, 298–312. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Eschenlauer, A.; Aman, J.; Folsom, T.D.; Chekouo, T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb. Cortex 2024, 34, 161–171. [Google Scholar] [CrossRef]
- Li, Y.; Ma, S.; Zhang, X.; Gao, L. ASD and ADHD: Divergent activating patterns of prefrontal cortex in executive function tasks? J. Psychiatr. Res. 2024, 172, 187–196. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, J.; Igarashi, K.; Fan, L.; Yang, S.; Li, Y.; Jin, Y. Executive function predicts the visuospatial working memory in autism spectrum disorder and attention-deficit/hyperactivity disorder. Autism Res. 2018, 11, 1148–1156. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Yi, L.; Zhu, C.; Markey, P.S.; Pelowski, M. Assessing autism at its social and developmental roots: A review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. NeuroImage 2019, 185, 955–967. [Google Scholar] [CrossRef]
- Ruiz, M.; Groessing, A.; Guran, A.; Koçan, A.U.; Mikus, N.; Nater, U.M.; Kouwer, K.; Posserud, M.B.; Salomon-Gimmon, M.; Todorova, B.; et al. Music for autism: A protocol for an international randomized crossover trial on music therapy for children with autism. Front. Psychiatry 2023, 14, 1256771. [Google Scholar] [CrossRef] [PubMed]
- Sokhadze, E.M.; El-Baz, A.; Baruth, J.; Mathai, G.; Sears, L.; Casanova, M.F. Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J. Autism Dev. Disord. 2009, 39, 619–634. [Google Scholar] [CrossRef]
- Ameis, S.H.; Blumberger, D.M.; Croarkin, P.E.; Mabbott, D.J.; Lai, M.C.; Desarkar, P.; Szatmari, P.; Daskalakis, Z.J. Treatment of Executive Function Deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimul. 2020, 13, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Ngetich, R.; Zhou, J.; Zhang, J.; Jin, Z.; Li, L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front. Integr. Neurosci. 2020, 14, 35. [Google Scholar] [CrossRef] [PubMed]
Independent-Samples t-Test | Paired-Samples t-Test | ||||||||
(a) SPD | Group (Mean ± SD) | t | p | Paired (Mean ± SD) | Difference | t | p | ||
Control group (n = 30) | Intervention group (n = 30) | ||||||||
Pre-test | 33.03 ± 3.41 | 32.93 ± 3.69 | 0.109 | 0.914 | Post-test | Pre-test | |||
Post-test | 34.13 ± 5.49 | 41.77 ± 6.85 | −4.763 | 0.000 ** | 41.77 ± 6.85 | 32.93 ± 3.69 | 8.83 | 7.387 | 0.000 ** |
(b) DDS | Group (mean ± SD) | t | p | Paired (mean ± SD) | Difference | t | p | ||
Control group (n = 30) | Intervention group (n = 30) | ||||||||
Pre-test | 68.50 ± 9.28 | 67.67 ± 5.02 | 0.433 | 0.667 | Post-test | Pre-test | |||
Post-test | 68.67 ± 9.76 | 75.30 ± 6.88 | −3.041 | 0.004 ** | 75.30 ± 6.88 | 67.67 ± 5.02 | 7.63 | 10.419 | 0.000 ** |
Features | Group | Sample Size | Mean | SD | Standard Error of Mean | t | Significance (Two-Tailed) |
---|---|---|---|---|---|---|---|
Health satisfaction | Control | 30 | 3.13 | 1.042 | 0.19 | −1.758 | 0.084 |
Intervention | 30 | 3.57 | 0.858 | 0.157 | |||
Life satisfaction | Control | 30 | 3 | 0.695 | 0.127 | −2.454 | 0.017 |
Intervention | 30 | 3.47 | 0.776 | 0.142 | |||
Health status | Control | 30 | 3.1 | 0.759 | 0.139 | −2.909 | 0.005 |
Intervention | 30 | 3.7 | 0.837 | 0.153 | |||
Sleep and energy | Control | 30 | 15.93 | 5.356 | 0.978 | −1.294 | 0.201 |
Intervention | 30 | 17.5 | 3.911 | 0.714 | |||
Physical discomfort | Control | 30 | 13.1 | 4.326 | 0.79 | −2.108 | 0.039 |
Intervention | 30 | 15.03 | 2.553 | 0.466 | |||
Eating function | Control | 30 | 9.3 | 3.659 | 0.668 | −0.895 | 0.375 |
Intervention | 30 | 10 | 2.228 | 0.407 | |||
Motor and sensory functions | Control | 30 | 15.63 | 5.493 | 1.003 | −1.584 | 0.12 |
Intervention | 30 | 17.53 | 3.608 | 0.659 | |||
Mental stress | Control | 30 | 12.77 | 3.803 | 0.694 | −1.545 | 0.128 |
Intervention | 30 | 14.1 | 2.808 | 0.513 | |||
Negative emotions | Control | 30 | 11.97 | 3.846 | 0.702 | −2.552 | 0.013 |
Intervention | 30 | 14.23 | 2.979 | 0.544 | |||
Positive emotion | Control | 30 | 9.17 | 3.26 | 0.595 | −2.252 | 0.028 |
Intervention | 30 | 10.87 | 2.543 | 0.464 | |||
Cognitive function | Control | 30 | 16 | 4.749 | 0.867 | −2.902 | 0.005 |
Intervention | 30 | 19.1 | 3.418 | 0.624 |
No. | Anatomical Label | Percentage of Overlap |
---|---|---|
CH01: 47 | Inferior prefrontal gyrus | 0.97627 |
CH02: 10 | Frontopolar area | 0.97308 |
CH03: 46 | Dorsolateral prefrontal cortex | 0.74909 |
CH04: 47 | Inferior prefrontal gyrus | 0.67742 |
CH05: 45 | Dorsolateral prefrontal cortex | 0.66782 |
CH06: 45 | Pars triangularis Broca’s area | 0.45424 |
CH07: 10 | Frontopolar area | 1 |
CH08: 10 | Frontopolar area | 0.46637 |
CH09: 9 | Dorsolateral prefrontal cortex | 0.62996 |
CH10: 8 | Includes frontal eye fields | 0.50193 |
CH11: 8 | Includes frontal eye fields | 0.6009 |
CH12: 8 | Includes frontal eye fields | 1 |
CH13: 45 | Pars triangularis Broca’s area | 0.64762 |
CH14: 10 | Frontopolar area | 0.55056 |
CH15: 46 | Dorsolateral prefrontal cortex | 0.98901 |
CH16: 44 | Pars opercularis, part of Broca’s area | 0.59091 |
CH17: 9 | Dorsolateral prefrontal cortex | 0.57143 |
CH18: 6 | Pre-motor and supplementary motor cortex | 0.51449 |
CH19: 10 | Frontopolar area | 0.89831 |
CH20: 9 | Dorsolateral prefrontal cortex | 0.72093 |
CH21: 8 | Includes frontal eye fields | 0.67886 |
CH22: 6 | Pre-motor and supplementary motor cortex | 0.43952 |
CH23: 8 | Includes frontal eye fields | 0.91915 |
CH24: 8 | Includes frontal eye fields | 0.80242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wei, D.; Lyu, Z.; Xing, Y.; Li, Y.; Song, W. Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study. Brain Sci. 2025, 15, 438. https://doi.org/10.3390/brainsci15050438
Li G, Wei D, Lyu Z, Xing Y, Li Y, Song W. Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study. Brain Sciences. 2025; 15(5):438. https://doi.org/10.3390/brainsci15050438
Chicago/Turabian StyleLi, Guanghui, Daren Wei, Ze Lyu, Yalong Xing, Yan Li, and Wu Song. 2025. "Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study" Brain Sciences 15, no. 5: 438. https://doi.org/10.3390/brainsci15050438
APA StyleLi, G., Wei, D., Lyu, Z., Xing, Y., Li, Y., & Song, W. (2025). Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study. Brain Sciences, 15(5), 438. https://doi.org/10.3390/brainsci15050438