Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Interventions and Compliance
2.3. Outcome Variable Measurements
2.3.1. Biomarkers of Oxidative Stress
2.3.2. Plasma and Skin Carotenoids Status
2.3.3. Anthropometrics and Body Composition
2.4. Power Calculation and Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Assessment and Compliance
3.3. Oxidative Stress and Carotenoids Status
3.4. Associations between Changes in Oxidative Stress and Carotenoids Status
3.5. Anthropometrics and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Visit | Wolfberry Group (n = 22) Mean (SD) | Control Group (n = 18) Mean (SD) | p | |||
---|---|---|---|---|---|---|
Week 0 1 | Time 2 | Intervention × Time 2 | ||||
Plasma total carotenoids (µmol/L) | Week 0 | 2.02 (0.90) | 2.75 (0.95) | 0.018 | 0.002 | 0.005 |
Week 8 | 2.45 (0.99) * | 2.14 (0.85) | ||||
Week 16 | 1.92 (1.03) | 1.68 (0.89) | ||||
Plasma β-carotene (µmol/L) | Week 0 | 0.43 (0.30) | 0.65 (0.40) | 0.06 | 0.008 | 0.049 |
Week 8 | 0.54 (0.39) * | 0.50 (0.34) | ||||
Week 16 | 0.39 (0.29) | 0.37 (0.27) | ||||
Plasma α-carotene (µmol/L) | Week 0 | 0.26 (0.12) | 0.33 (0.12) | 0.05 | 0.005 | 0.030 |
Week 8 | 0.32 (0.16) * | 0.28 (0.13) | ||||
Week 16 | 0.24 (0.14) | 0.23 (0.11) | ||||
Plasma β-cryptoxanthin (µmol/L) | Week 0 | 0.45 (0.05) | 0.67 (0.41) | 0.05 | <0.001 | 0.014 |
Week 8 | 0.52 (0.36) | 0.52 (0.29) | ||||
Week 16 | 0.40 (0.31) | 0.41 (0.27) * | ||||
Plasma lutein (µmol/L) | Week 0 | 0.39 (0.21) | 0.37 (0.10) | 0.70 | 0.005 | 0.10 |
Week 8 | 0.50 (0.21) | 0.35 (0.12) | ||||
Week 16 | 0.37 (0.18) | 0.29 (0.14) | ||||
Plasma zeaxanthin (µmol/L) | Week 0 | 0.16 (0.05) | 0.15 (0.03) | 0.47 | <0.001 | <0.001 |
Week 8 | 0.34 (0.10) * | 0.16 (0.03) | ||||
Week 16 | 0.25 (0.13) *# | 0.12 (0.04) | ||||
Plasma lycopene (µmol/L) | Week 0 | 0.33 (0.22) | 0.58 (0.45) | 0.027 | 0.026 | 0.12 |
Week 8 | 0.24 (0.10) | 0.33 (0.19) | ||||
Week 16 | 0.27 (0.21) | 0.26 (0.33) * |
Dietary Factors | Study Visit | Wolfberry Group (n = 21) Mean (SD) | Control Group (n = 17) Mean (SD) | p |
---|---|---|---|---|
Fruits (servings/d) | Week 0 | 1.7 (1.3) | 2.7 (1.7) | 0.06 |
Week 8 | 3.2 (1.5) | 2.5 (1.3) | 0.13 | |
Week 16 | 3.4 (1.4) | 2.4 (1.2) | 0.0282 | |
Vegetables (servings/d) | Week 0 | 2.2 (1.8) | 2.0 (1.2) | 0.66 |
Week 8 | 2.3 (0.9) | 2.2 (1.4) | 0.77 | |
Week 16 | 2.9 (1.4) | 2.8 (1.5) | 0.96 | |
Wholegrains (servings/d) | Week 0 | 0.3 (0.4) | 1.0 (0.8) | 0.001 |
Week 8 | 1.6 (1.1) | 1.6 (1.0) | 0.89 | |
Week 16 | 2.2 (2.3) | 1.8 (1.0) | 0.64 | |
Meats and alternatives (servings/d) | Week 0 | 2.6 (0.8) | 2.5 (1.0) | 0.67 |
Week 8 | 2.4 (0.7) | 3.0 (1.0) | 0.016 | |
Week 16 | 2.7 (1.3) | 2.7 (1.2) | 0.74 | |
Total carotenoids (mg/d) | Week 0 | 8.63 (7.50) | 11.09 (7.04) | 0.31 |
Week 8 | 9.35 (6.53) | 8.94 (6.46) | 0.71 | |
Week 16 | 10.51 (5.06) | 12.83 (7.38) | 0.34 | |
β-carotene (mg/d) | Week 0 | 3.46 (3.09) | 4.34 (3.12) | 0.39 |
Week 8 | 3.51 (2.65) | 3.96 (3.00) | 0.84 | |
Week 16 | 3.89 (2.38) | 6.30 (4.75) | 0.08 | |
α-carotene (mg/d) | Week 0 | 0.42 (0.82) | 0.59 (1.04) | 0.59 |
Week 8 | 0.47 (0.65) | 0.62 (0.79) | 0.69 | |
Week 16 | 0.54 (0.63) | 0.80 (1.17) | 0.49 | |
β-cryptoxanthin (mg/d) | Week 0 | 0.11 (0.16) | 0.18 (0.30) | 0.43 |
Week 8 | 0.20 (0.28) | 0.20 (0.22) | 0.87 | |
Week 16 | 0.23 (0.26) | 0.17 (0.19) | 0.45 | |
Lutein and zeaxanthin (mg/d) | Week 0 | 3.10 (2.85) | 3.58 (2.35) | 0.58 |
Week 8 | 3.27 (3.35) | 3.43 (2.80) | 0.89 | |
Week 16 | 3.49 (2.56) | 4.35 (3.62) | 0.45 | |
Lycopene (mg/d) | Week 0 | 1.52 (2.27) | 2.40 (3.46) | 0.35 |
Week 8 | 1.90 (3.30) | 0.73 (0.79) | 0.10 | |
Week 16 | 2.37 (2.09) | 1.21 (1.49) | 0.011 |
Plasma Malondialdehyde (µmol/L) 1 | Plasma 8-Iso-Prostaglandin F2α (ng/L) | |||||||
---|---|---|---|---|---|---|---|---|
Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 2 | p | Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 2 | p | |
Plasma total carotenoids (µmol/L) | 0.005 (−0.027, 0.036) | 0.76 | 0.007 (−0.030, 0.044) | 0.70 | −0.015 (−0.025, −0.005) | 0.004 | −0.017 (−0.028, −0.007) | 0.002 |
Plasma β-carotene (µmol/L) | 0.000 (−0.099, 0.100) | 1.00 | −0.005 (−0.117, 0.108) | 0.94 | −0.044 (−0.075, −0.013) | 0.007 | −0.048 (−0.081, −0.015) | 0.006 |
Plasma α-carotene (µmol/L) | 0.024 (−0.241, 0.288) | 0.86 | 0.022 (−0.286, 0.330) | 0.89 | −0.089 (−0.175, −0.013) | 0.044 | −0.100 (−0.195, −0.005) | 0.039 |
Plasma β-cryptoxanthin (µmol/L) | 0.014 (−0.100, 0.129) | 0.80 | 0.024 (−0.101, 0.150) | 0.70 | −0.055 (−0.090, −0.020) | 0.003 | −0.055 (−0.091, −0.018) | 0.005 |
Plasma lutein (µmol/L) | 0.071 (−0.113, 0.254) | 0.44 | 0.066 (−0.139, 0.271) | 0.52 | −0.066 (−0.125, −0.006) | 0.032 | −0.076 (−0.138, −0.013) | 0.019 |
Plasma zeaxanthin (µmol/L) | 0.126 (−0.208, 0.461) | 0.45 | 0.173 (−0.194, 0.541) | 0.34 | −0.104 (−0.215, 0.007) | 0.07 | −0.125 (−0.239, −0.010) | 0.034 |
Plasma lycopene (µmol/L) | 0.002 (−0.118, 0.122) | 0.98 | 0.019 (−0.118, 0.156) | 0.79 | −0.033 (−0.073, 0.007) | 0.10 | −0.034 (−0.077, 0.010) | 0.13 |
Skin carotenoids status | 0.005 (−0.002, 0.012) | 0.14 | 0.005 (−0.002, 0.012) | 0.19 | −0.001 (−0.004, 0.001) | 0.31 | −0.002 (−0.004, 0.001) | 0.12 |
Wolfberry Group (n = 22) | Plasma Malondialdehyde (µmol/L) 1 | Plasma 8-Iso-Prostaglandin F2α (ng/L) 1 | ||
Simple Linear Regression Coefficient (95% CI) | p | Simple Linear Regression Coefficient (95% CI) | p | |
Total fat (%) | −0.01 (−1.47, 2.70) | 0.55 | 231 (−776, 1238) | 0.63 |
Truncal fat (%) | 0.57 (−2.77, 3.91) | 0.72 | −6 (−867, 855) | 0.99 |
Appendicular fat (%) | −0.80 (−3.93, 2.32) | 0.59 | 509 (−255, 1274) | 0.18 |
Total fat mass (kg) | 5.7 (−53.6, 65.0) | 0.84 | 0.39 (−14.86, 15.65) | 0.96 |
Truncal fat mass (kg) | 6.9 (−101.4, 115.2) | 0.89 | 4.12 (−31.88, 23.64) | 0.76 |
Appendicular fat mass (kg) | 21.4 (−108.6, 151.4) | 0.73 | 8.73 (−24.46, 41.93) | 0.59 |
Total lean mass (kg) | 8.6 (−55.8, 73.0) | 0.78 | 8.99 (−24.88, 6.90) | 0.25 |
Truncal lean mass (kg) | −42.9 (−153.7, 68.0) | 0.42 | −4.73 (−33.69, 24.23) | 0.73 |
Appendicular lean mass (kg) | 69.3 (−36.1, 174.7) | 0.18 | −23.76 (−49.51, 1.98) | 0.07 |
Control Group (n = 18) | Plasma Malondialdehyde (µmol/L) | Plasma 8-Iso-Prostaglandin F2α (ng/L) | ||
Simple Linear Regression Coefficient (95% CI) | p | Simple Linear Regression Coefficient (95% CI) | p | |
Total fat (%) | 1.29 (−1.04, 3.61) | 0.26 | 396 (−732, 1523) | 0.47 |
Truncal fat (%) | 0.72 (−1.32, 2.75) | 0.47 | 242 (−732, 1216) | 0.61 |
Appendicular fat (%) | 1.46 (−0.35, 3.27) | 0.11 | 422 (−477, 1321) | 0.34 |
Total fat mass (kg) | 14.7 (−23.6, 53.0) | 0.43 | 8.03 (−10.09, 26.15) | 0.37 |
Truncal fat mass (kg) | 2.47 (−62.6, 67.5) | 0.94 | 7.12 (−23.64, 37.88) | 0.64 |
Appendicular fat mass (kg) | 47.0 (−25.7, 119.6) | 0.19 | 17.63 (−17.51, 52.77) | 0.31 |
Total lean mass (kg) | −16.6 (−47.6, 14.5) | 0.28 | −0.00 (−15.22, 15.19) | 1.00 |
Truncal lean mass (kg) | −33.1 (−92.0, 25.7) | 0.25 | −2.48 (−31.38, 26.43) | 0.86 |
Appendicular lean mass (kg) | −30.0 (−94.0, 34.1) | 0.34 | 1.90 (−29.26, 33.07) | 0.90 |
References
- Luo, J.; Mills, K.; Cessie, S.; Noordam, R.; Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Neale, E.P.; Batterham, M.J.; Tapsell, L.C. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: A meta-analysis. Nutr. Res. 2016, 36, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, A.C.; Dedoussis, G.V.Z.; Schmidt, H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006, 187, 1–17. [Google Scholar] [CrossRef]
- Mirmiran, P.; Hadavi, H.; Mottaghi, A.; Azizi, F. Effect of dietary patterns on oxidative stress in Patiants with metabolic syndrome: Tehran Lipid and Glucose Study. Casp. J. Intern. Med. 2018, 9, 376–385. [Google Scholar]
- Kim, J.Y.; Yang, Y.J.; Yang, Y.K.; Oh, S.Y.; Hong, Y.C.; Lee, E.K.; Kwon, O. Diet quality scores and oxidative stress in Korean adults. Eur. J. Clin. Nutr. 2011, 65, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Pirouzeh, R.; Heidarzadeh-Esfahani, N.; Morvaridzadeh, M.; Izadi, A.; Yosaee, S.; Potter, E.; Heshmati, J.; Pizarro, A.B.; Omidi, A.; Heshmati, S. Effect of DASH diet on oxidative stress parameters: A systematic review and meta-analysis of randomized clinical trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2131–2138. [Google Scholar] [CrossRef]
- Cocate, P.G.; Natali, A.J.; Alfenas, R.C.G.; de Oliveira, A.; dos Santos, E.C.; Hermsdorff, H.H.M. Carotenoid consumption is related to lower lipid oxidation and DNA damage in middle-aged men. Br. J. Nutr. 2015, 114, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrientos, G.; Alves, J.; Pradas, F. Association between parameters related to oxidative stress and trace minerals in athletes. Sustainability 2020, 12, 4966. [Google Scholar] [CrossRef]
- Paterson, E.; Gordon, M.H.; Niwat, C.; George, T.W.; Parr, L.; Waroonphan, S.; Lovegrove, J. Supplementation with fruit and vegetable soups and beverages increases plasma carotenoid concentrations but does not alter markers of oxidative stress or cardiovascular risk factors. J. Nutr. 2006, 136, 2849–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanchet, M.Z.S.; Nardi, G.M.; Bratti, L.O.S.; Filippin-Monteiro, F.B.; Locatelli, C. Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. Oxid. Med. Cell. Longev. 2017, 2017, 9763210. [Google Scholar]
- O’Connell, O.F.; Ryan, L.; O’Brien, N.M. Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr. Res. 2007, 27, 258–264. [Google Scholar] [CrossRef]
- Brambila-Macias, J.; Shankar, B.; Capacci, S.; Mazzocchi, M.; Perez-Cueto, F.J.A.; Verbeke, W.; Traill, W.B. Policy interventions to promote healthy eating: A review of what works, what does not, and what is promising. Food Nutr. Bull. 2011, 32, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Goji berry (Lycium barbarum): Composition and health effects—A review. Polish, J. Food Nutr. Sci. 2016, 66, 67–75. [Google Scholar] [CrossRef]
- Xu, W.; Saiki, S.; Myojin, T.; Liu, Y.; Zhu, B.; Murata, Y.; Ashida, H.; Tsunenaga, M.; Nakamura, Y. Lycii fructus extract ameliorates hydrogen peroxide-induced cytotoxicity through indirect antioxidant action. Biosci. Biotechnol. Biochem. 2018, 82, 1812–1820. [Google Scholar] [CrossRef]
- Philippe, D.; Brahmbhatt, V.; Foata, F.; Saudan, Y.; Serrant, P.; Blum, S.; Benyacoub, J.; Vidal, K. Anti-inflammatory effects of Lacto-Wolfberry in a mouse model of experimental colitis. World J. Gastroenterol. 2012, 18, 5351–5359. [Google Scholar] [CrossRef]
- Feng, Z.; Jia, H.; Li, X.; Bai, Z.; Liu, Z.; Sun, L.; Zhu, Z.; Bucheli, P.; Ballèvre, O.; Wang, J.; et al. A milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro. Neurochem. Res. 2010, 35, 702–711. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent. Aging Dis. 2017, 8, 778–791. [Google Scholar] [CrossRef] [Green Version]
- Amagase, H.; Sun, B.; Borek, C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr. Res. 2009, 29, 19–25. [Google Scholar] [CrossRef]
- Ma, J.J.; Zhang, W.J.; Yang, Y.; Yuan, X.G. Effects of Lycium barbarum polysaccharide on the immune function and antioxidant of taekwondo athletes. Chin. J. Appl. Physiol. 2019, 35, 513–516. [Google Scholar]
- Henry, C. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Board Singapore My Healthy Plate. Available online: https://www.ntu.edu.sg/students/undergraduate/studentservices/healthandcounselling/documents/hpb_myhealthyplate_factsheet_fa(hires).pdf (accessed on 10 March 2021).
- U.S. Department of Agriculture Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 10 March 2021).
- Health Promotion Board Singapore Energy & Nutrient Composition of Food. Available online: https://focos.hpb.gov.sg/eservices/ENCF/ (accessed on 10 March 2021).
- Toh, D.W.K.; Sutanto, C.N.; Loh, W.W.; Lee, W.Y.; Yao, Y.; Ong, C.N.; Kim, J.E. Skin carotenoids status as a potential surrogate marker for cardiovascular disease risk determination in middle-aged and older adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 592–601. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): Body Composition Procedures Manual; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018; pp. 1–173.
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Paul, J.; Nantha-Aree, M.; Buckley, N.; Shahzad, U.; Cheng, J.; Debeer, J.; Winemaker, M.; Wismer, D.; Punthakee, D.; et al. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials. Clin. Epidemiol. 2014, 6, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Kim, Y.J.; Lim, Y.; Oh, B.; Kim, J.Y.; Bouwman, J.; Kwon, O. Combination of diet quality score, plasma carotenoids, and lipid peroxidation to monitor oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bucheli, P.; Vidal, K.; Shen, L.; Gu, Z.; Zhang, C.; Miller, L.E.; Wang, J. Goji berry effects on macular characteristics and plasma antioxidant levels. Optom. Vis. Sci. 2011, 88, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Ahn, Y.; Kwon, O.; Lee, M.Y.; Lee, C.H.; Lee, S.; Park, T.; Kwon, S.W.; Kim, J.Y. Dietary wolfberry extract modifies oxidative stress by controlling the expression of inflammatory mRNAs in overweight and hypercholesterolemic subjects: A randomized, double-blind, placebo-controlled trial. J. Agric. Food Chem. 2017, 65, 309–316. [Google Scholar] [CrossRef]
- Kaviarasan, S.; Muniandy, S.; Qvist, R.; Ismail, I.S. F2-isoprostanes as novel biomarkers for type 2 diabetes: A review. J. Clin. Biochem. Nutr. 2009, 45, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Pan, J.; Wang, L.; Zhu, H.; Yu, R.; Zou, Y. Associations of plasma 8-isoprostane levels with the presence and extent of coronary stenosis in patients with coronary artery disease. Atherosclerosis 2006, 184, 425–430. [Google Scholar] [CrossRef]
- Gross, M.; Steffes, M.; Jacobs, D.R.; Yu, X.; Lewis, L.; Lewis, C.E.; Loria, C.M. Plasma F2-isoprostanes and coronary artery calcification: The CARDIA study. Clin. Chem. 2005, 51, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, G.L. Classifying oxidative stress by F2-Isoprostane levels in human disease: The re-imagining of a biomarker. Redox Biol. 2017, 12, 897–898. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.J.; Morrow, J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000, 28, 505–513. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y.; et al. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid. Med. Cell. Longev. 2019, 2019, 2437397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.F.; Chung, W.Y.; Wang, J.; Richelle, M.; Bucheli, P. Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (gou qi zi; Fructus barbarum L.). Br. J. Nutr. 2006, 96, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Tuzcu, M.; Orhan, C.; Muz, O.E.; Sahin, N.; Juturu, V.; Sahin, K. Lutein and zeaxanthin isomers modulates lipid metabolism and the inflammatory state of retina in obesity-induced high-fat diet rodent model. BMC Ophthalmol. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, Y.; Taguchi, C.; Saita, E.; Suzuki-Sugihara, N.; Nishiyama, H.; Wang, W.; Masuda, Y.; Kondo, K. Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males. Food Res. Int. 2017, 99, 944–949. [Google Scholar] [CrossRef]
- Bhosale, P.; Bernstein, P.S. Synergistic effects of zeaxanthin and its binding protein in the prevention of lipid membrane oxidation. Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1740, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Pu, L.; Chen, M.; Wei, J.; Xin, Z.; Wang, Y.; Yao, Z.; Shi, T.; Guo, C. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J. Clin. Biochem. Nutr. 2018, 62, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Gao, J.; Zheng, Y.; Wang, X.; Chen, C.; Cao, K.; Xu, J.; Li, Y.; Lu, W.; Liu, J.; et al. Zeaxanthin induces Nrf2-mediated phase II enzymes in protection of cell death. Cell Death Dis. 2014, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hempel, J.; Fischer, A.; Fischer, M.; Högel, J.; Bosy-Westphal, A.; Carle, R.; Schweiggert, R.M. Effect of aggregation form on bioavailability of zeaxanthin in humans: A randomised cross-over study. Br. J. Nutr. 2017, 118, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Breithaupt, D.E.; Weller, P.; Wolters, M.; Hahn, A. Comparison of plasma responses in human subjects after the ingestion of 3R, 3R’ -zeaxanthin dipalmitate from wolfberry using chiral high-performance liquid chromatography. Br. J. Nutr. 2004, 91, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Sefc, K.M.; Brown, A.C.; Clotfelter, E.D. Carotenoid-based coloration in cichlid fishes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 173, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Lin, H.; Leffell, D.J.; Welch, E.; Ermakov, I.; Bhosale, P.; Bernstein, P.S.; Gellermann, W. Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am. J. Clin. Nutr. 2010, 92, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Toh, D.W.K.; Loh, W.W.; Sutanto, C.N.; Yao, Y.; Kim, J.E. Skin carotenoid status and plasma carotenoids: Biomarkers of dietary carotenoids, fruits and vegetables for middle-aged and older Singaporean adults. Br. J. Nutr. 2021, 1–10. [Google Scholar] [CrossRef]
- Warolin, J.; Coenen, K.R.; Kantor, J.L.; Whitaker, L.E.; Wang, L.; Acra, S.A.; Roberts, L.J.; Buchowski, M.S. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy Black and White American youth. Pediatr. Obes. 2014, 9, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2015, 16, 378–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oprescu, A.I.; Bikopoulos, G.; Naassan, A.; Allister, E.M.; Tang, C.; Park, E.; Uchino, H.; Lewis, G.F.; Fantus, I.G.; Rozakis-Adcock, M.; et al. Free fatty acid-induced reduction in glucose-stimulated insulin secretion: Evidence for a role of oxidative stress in vitro and in vivo. Diabetes 2007, 56, 2927–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H.; Nance, D.M. Lycium barbarum increases caloric expenditure and decreases waist circumference in healthy overweight men and women: Pilot study. J. Am. Coll. Nutr. 2011, 30, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Samadi, M.; Moradi, S.; Azadbakht, L.; Rezaei, M.; Hojati, N. Adherence to healthy diet is related to better linear growth with open growth plate in adolescent girls. Nutr. Res. 2020, 76, 29–36. [Google Scholar] [CrossRef]
- Capurso, C.; Bellanti, F.; Buglio, A.L.; Vendemiale, G. The mediterranean diet slows down the progression of aging and helps to prevent the onset of frailty: A narrative review. Nutrients 2020, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.-W.; Kim, S.-W.; Lim, J.-Y.; Kim, K.-W.; Jang, H.C.; Kim, C.-H.; Kim, K. Frailty status can predict further lean body mass decline in older adults. J. Am. Geriatr. Soc. 2014, 62, 2110–2117. [Google Scholar] [CrossRef] [PubMed]
- Mareschal, J.; Achamrah, N.; Norman, K.; Genton, L. Clinical Value of Muscle Mass Assessment in Clinical Conditions Associated with Malnutrition. J. Clin. Med. 2019, 8, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef]
- Toh, D.W.K.; Xia, X.; Low, J.H.M.; Sutanto, C.N.; Poh, K.K.; Wang, J.-W.; Foo, R.S.-Y.; Kim, J.E. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial. Am. J. Clin. Nutr. 2020, 4, 82. (in press). [Google Scholar]
- Carbone, J.W.; Pasiakos, S.M. Dietary protein and muscle mass: Translating science to application and health benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
Study Visit | Wolfberry Group (n = 22) Mean (SD) | Control Group (n = 18) Mean (SD) | p | ||
---|---|---|---|---|---|
Time 2 | Intervention × Time 2 | ||||
Plasma total carotenoids (%) | Week 8 | 51.1 (112.1) * | −18.9 (30.7) | 0.041 | 0.008 |
Week 16 | 10.6 (74.6) | −35.2 (30.8) | |||
Plasma β-carotene (%) | Week 8 | 86.8 (220.7) * | −20.0 (32.2) | 0.08 | 0.029 |
Week 16 | 20.6 (130.1) | −38.3 (35.5) | |||
Plasma α-carotene (%) | Week 8 | 59.4 (145.1) * | −14.5 (30.4) | 0.07 | 0.034 |
Week 16 | 9.4 (91.6) | −28.4 (34.9) | |||
Plasma β-cryptoxanthin (%) | Week 8 | 45.7 (111.4) | −13.9 (42.7) | <0.001 | 0.05 |
Week 16 | 7.4 (74.2) | −31.6 (36.8) * | |||
Plasma lutein (%) | Week 8 | 46.3 (78.9) | −2.5 (29.4) | 0.021 | 0.45 |
Week 16 | 14.0 (70.0) | −20.4 (34.1) | |||
Plasma zeaxanthin (%) | Week 8 | 124.2 (76.5) * | 8.4 (24.7) | <0.001 | <0.001 |
Week 16 | 62.5 (91.4) * | −14.0 (29.8) | |||
Plasma lycopene (%) | Week 8 | 10.1 (101.3) | −24.7 (55.2) | 0.32 | 0.12 |
Week 16 | 6.5 (83.2) | −43.6 (36.9) * |
Wolfberry Group (n = 22) 1 | Plasma Malondialdehyde (µmol/L) 2 | Plasma 8-Iso-Prostaglandin F2α (ng/L) | ||||||
Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 3 | p | Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 3 | p | |
Plasma total carotenoids (µmol/L) | −0.333 (−0.885, 0.219) | 0.22 | −0.379 (−0.964, 0.206) | 0.19 | −0.204 (−0.460, 0.051) | 0.11 | −0.207 (−0.478, 0.063) | 0.12 |
Plasma β-carotene (µmol/L) | −0.243 (−0.552, 0.065) | 0.12 | −0.289 (−0.604, 0.027) | 0.07 | −0.058 (−0.212, 0.096) | 0.44 | −0.061 (−0.222, 0.100) | 0.44 |
Plasma α-carotene (µmol/L) | −0.342 (−0.781, 0.097) | 0.12 | −0.422 (−0.866, 0.022) | 0.06 | −0.112 (−0.328, 0.104) | 0.29 | −0.109 (−0.335, 0.116) | 0.32 |
Plasma β-cryptoxanthin (µmol/L) | −0.190 (−0.760, 0.379) | 0.49 | −0.210 (−0.827, 0.408) | 0.48 | −0.319 (−0.549, −0.089) | 0.009 | −0.305 (−0.555, −0.054) | 0.020 |
Plasma lutein (µmol/L) | −0.214 (−0.816, 0.388) | 0.47 | −0.206 (−0.897, 0.486) | 0.54 | −0.199 (−0.474, 0.077) | 0.15 | −0.285 (−0.580, 0.010) | 0.06 |
Plasma zeaxanthin (µmol/L) | 0.015 (−0.453, 0.483 | 0.95 | 0.126 (−0.382, 0.634) | 0.61 | −0.167 (−0.376, 0.041) | 0.11 | −0.213 (−0.428, 0.002) | 0.052 |
Plasma lycopene (µmol/L) | −0.173 (−0.681, 0.334) | 0.48 | −0.273 (−0.912, 0.365) | 0.38 | −0.138 (−0.374, 0.097) | 0.24 | −0.087 (−0.391, 0.218) | 0.56 |
Skin carotenoids status | 0.005 (−0.003, 0.014) | 0.19 | 0.005 (−0.004, 0.013) | 0.24 | 0.000 (−0.004, 0.004) | 0.93 | 0.000 (−0.004, 0.004) | 0.92 |
Control Group (n = 18) 1 | Plasma Malondialdehyde (µmol/L) 2 | Plasma 8-Iso-Prostaglandin F2α (ng/L) | ||||||
Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 3 | p | Simple Linear Regression Coefficient (95% CI) | p | Multiple Linear Regression Coefficient (95% CI) 3 | p | |
Plasma total carotenoids (µmol/L) | 1.887 (−0.504, 4.277) | 0.11 | 2.757 (−1.015, 6.528) | 0.14 | −0.526 (−1.131, 0.078) | 0.08 | −0.725 (−1.589, 0.139) | 0.09 |
Plasma β-carotene (µmol/L) | 1.420 (−0.698, 3.538) | 0.17 | 1.506 (−1.471, 4.484) | 0.29 | −0.610 (−1.089, −0.132) | 0.016 | −0.807 (−1.36, −0.259) | 0.007 |
Plasma α-carotene (µmol/L) | 1.931 (−0.112, 3.974) | 0.06 | 2.773 (−0.202, 5.747) | 0.07 | −0.358 (−0.914, 0.198) | 0.19 | −0.351 (−1.12, 0.422) | 0.35 |
Plasma β-cryptoxanthin (µmol/L) | 1.026 (−1.070, 3.123) | 0.32 | 1.547 (−1.853, 4.946) | 0.34 | −0.422 (−0.931, 0.088) | 0.10 | −0.446 (−1.23, 0.337) | 0.24 |
Plasma lutein (µmol/L) | 2.141 (0.096, 4.186) | 0.041 | 2.245 (−0.715, 5.204) | 0.13 | −0.183 (−0.776, 0.410) | 0.52 | −0.388 (−1.116, 0.339) | 0.27 |
Plasma zeaxanthin (µmol/L) | 1.535 (−1.012, 4.082) | 0.22 | 1.196 (−2.037, 4.428) | 0.44 | −0.525 (−1.153, 0.103) | 0.10 | −0.652 (−1.325, 0.021) | 0.06 |
Plasma lycopene (µmol/L) | 1.489 (−0.526, 3.504) | 0.14 | 1.945 (−0.806, 4.697) | 0.151 | −0.226 (−0.769, 0.316) | 0.39 | −0.055 (−0.757, 0.646) | 0.87 |
Skin carotenoids status | 0.006 (−0.008, 0.019) | 0.38 | 0.005 (−0.011, 0.021) | 0.52 | −0.002 (−0.005, 0.002) | 0.27 | −0.004 (−0.007, −0.001) | 0.011 |
Study Visit | Wolfberry Group (n = 22) Mean (SD) | Control Group (n = 18) Mean (SD) | p | ||
---|---|---|---|---|---|
Time 2 | Intervention × Time 2 | ||||
Body mass index (kg/m2) | Week 0 1 | 22.7 (3.7) | 22.8 (2.5) | 0.51 | 0.67 |
Week 4 | 22.8 (3.6) | 22.8 (2.3) | |||
Week 8 | 22.8 (3.7) | 22.9 (2.3) | |||
Week 12 | 22.8 (3.7) | 22.8 (2.4) | |||
Week 16 | 22.7 (3.7) | 22.9 (2.3) | |||
Waist circumference (cm) | Week 0 | 80.5 (9.6) | 80.8 (7.5) | 0.55 | 0.96 |
Week 4 | 80.7 (10.2) | 80.9 (6.6) | |||
Week 8 | 80.4 (10.2) | 80.1 (6.7) | |||
Week 12 | 80.2 (9.9) | 80.7 (7.4) | |||
Week 16 | 80.4 (9.6) | 80.2 (6.4) | |||
Total fat (%) | Week 0 | 36.5 (6.9) | 35.1 (6.1) | 0.08 | 0.44 |
Week 16 | 36.2 (7.4) | 34.4 (7.4) | |||
Truncal fat (%) | Week 0 | 37.0 (7.6) | 35.7 (5.7) | 0.15 | 0.56 |
Week 16 | 36.7 (7.9) | 35.0 (6.9) | |||
Appendicular fat (%) | Week 0 | 38.9 (8.7) | 36.5 (8.9) | 0.31 | 0.56 |
Week 16 | 38.7 (9.7) | 35.9 (10.6) | |||
Total fat mass (kg) | Week 0 | 21.3 (6.3) | 20.9 (4.0) | 0.12 | 0.62 |
Week 16 | 21.1 (6.3) | 20.5 (4.3) | |||
Truncal fat mass (kg) | Week 0 | 10.8 (3.6) | 10.2 (1.9) | 0.25 | 0.90 |
Week 16 | 10.6 (3.5) | 10.1 (2.0) | |||
Appendicular fat mass (kg) | Week 0 | 9.6 (3.0) | 9.7 (2.7) | 0.10 | 0.37 |
Week 16 | 9.5 (3.0) | 9.4 (2.9) | |||
Total lean mass (kg) | Week 0 | 34.8 (6.9) | 37.0 (7.5) | 0.016 | 0.26 |
Week 16 | 35.1 (7.3) | 37.8 (8.1) * | |||
Truncal lean mass (kg) | Week 0 | 17.3 (3.1) | 18.0 (3.4) | 0.014 | 0.25 |
Week 16 | 17.5 (3.4) | 18.5 (3.7) * | |||
Appendicular lean mass (kg) | Week 0 | 14.6 (3.6) | 16.0 (3.9) | 0.08 | 0.32 |
Week 16 | 14.7 (3.8) | 16.3 (4.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toh, D.W.K.; Lee, W.Y.; Zhou, H.; Sutanto, C.N.; Lee, D.P.S.; Tan, D.; Kim, J.E. Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial. Antioxidants 2021, 10, 567. https://doi.org/10.3390/antiox10040567
Toh DWK, Lee WY, Zhou H, Sutanto CN, Lee DPS, Tan D, Kim JE. Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial. Antioxidants. 2021; 10(4):567. https://doi.org/10.3390/antiox10040567
Chicago/Turabian StyleToh, Darel Wee Kiat, Wan Yee Lee, Hanzhang Zhou, Clarinda Nataria Sutanto, Delia Pei Shan Lee, Denise Tan, and Jung Eun Kim. 2021. "Wolfberry (Lycium barbarum) Consumption with a Healthy Dietary Pattern Lowers Oxidative Stress in Middle-Aged and Older Adults: A Randomized Controlled Trial" Antioxidants 10, no. 4: 567. https://doi.org/10.3390/antiox10040567