Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Determination of Preconception Se Intake
2.4. Diagnosis of GDM in Japan
2.5. Measurement of 8-OHdG Levels
2.6. Other Obstetric Outcomes and Confounding Factors
2.7. Statistical Analyses
3. Results
3.1. Maternal Medical and Socioeconomic Background and Obstetric Outcomes
3.2. Association between Preconception Se Intake and Urine 8-OHdG Levels during Early Trimester
3.3. Preconception Se intake and Risk for GDM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metzger, B.E.; Coustan, D.R. Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care 1998, 21, B161–B167. [Google Scholar] [CrossRef] [Green Version]
- Koivusalo, S.B.; Rönö, K.; Klemetti, M.M.; Roine, R.P.; Lindström, J.; Erkkola, M.; Kaaja, R.J.; Pöyhönen-Alho, M.; Tiitinen, A.; Huvinen, E.; et al. Gestational diabetes mellitus can be prevented by lifestyle intervention: The Finnish gestational diabetes prevention study (RADIEL): A randomized controlled trial. Diabetes Care 2016, 39, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Reece, E.A.; Homko, C.J. Infant of the diabetic mother. Semin. Perinatol. 1994, 18, 459–469. [Google Scholar] [PubMed]
- Silverman, B.L.; Rizzo, T.A.; Cho, N.H.; Metzger, B.E. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998, 21, B142–B149. [Google Scholar]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Diabetes in pregnancy and childhood cognitive development: A systematic review. Pediatrics 2016, 137, e20154234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, J.; Vogel, C.; Hall, J.; Hutchinson, J.; Mann, S.; Duncan, H.; Woods-Townsend, K.; de Lusignan, S.; Poston, L.; Cade, J.; et al. Preconception health in England: A proposal for annual reporting with core metrics. Lancet 2019, 393, 2262–2271. [Google Scholar] [CrossRef]
- Wibowo, N.; Irwinda, R. The effect of multi-micronutrient and protein supplementation on iron and micronutrients status in pregnant women. Med. J. Indones. 2015, 24, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2017, 77, e12653. [Google Scholar] [CrossRef] [Green Version]
- Misu, H.; Takamura, T.; Takayama, H.; Hayashi, H.; Matsuzawa-Nagata, N.; Kurita, S.; Ishikura, K.; Ando, H.; Takeshita, Y.; Ota, T.; et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 2010, 12, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Mita, Y.; Nakayama, K.; Inari, S.; Nishito, Y.; Yoshioka, Y.; Sakai, N.; Sotani, K.; Nagamura, T.; Kuzuhara, Y.; Inagaki, K.; et al. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat. Commun. 2017, 21, 1658. [Google Scholar] [CrossRef]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef]
- Scholl, T.O.; Stein, T.P. Oxidant damage to DNA and pregnancy outcome. J. Matern. Fetal Med. 2001, 10, 182–185. [Google Scholar] [CrossRef]
- Rudra, C.B.; Qiu, C.; David, R.M.; Bralley, J.A.; Walsh, S.W.; Williams, M.A. A prospective study of early-pregnancy plasma malondialdehyde concentration and risk of preeclampsia. Clin. Biochem. 2006, 39, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.T.; Scholl, T.O.; Schluter, M.D.; Leskiw, M.J.; Chen, X.; Spur, B.W.; Rodriguez, A. Oxidative stress early in pregnancy and pregnancy outcome. Free Radic. Res. 2008, 42, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Bloch-Damti, A.; Bashan, N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid. Redox. Signal. 2005, 7, 1553–1567. [Google Scholar] [CrossRef]
- Qiu, C.; Hevner, K.; Abetew, D.; Enquobahrie, D.A.; Williams, M.A. Oxidative DNA damage in early pregnancy and risk of gestational diabetes mellitus: A pilot study. Clin. Biochem. 2011, 44, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Barrington, W.; Taylor, M.; Smith, S.; Bowen-Simpkins, P. Selenium and recurrent miscarriage. J. Obstet. Gynaecol. 1997, 17, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Koçak, İ.; Aksoy, E.; Üstün, C. Recurrent spontaneous abortion and selenium deficiency. Int J. Gynaecol. Obs. 1999, 65, 79–80. [Google Scholar] [CrossRef]
- Mistry, H.D.; Vicky, W.; Ramsay, M.M.; Symonds, M.E.; Broughton, P.F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 2008, 52, 881–888. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P.; Bode, P.; Redman, C.W. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am. J. Obstet. Gynecol. 2003, 189, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Maleki, A.; Fard, M.K.; Zadeh, D.H.; Mamegani, M.A.; Abasaizadeh, S.; Mazloomzadeh, S. The relationship between plasma level of Se and preeclampsia. Hypertens. Pregnancy 2011, 30, 180–187. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chen, C.W.; Su, Y.J.; Chang, W.H.; Kao, W.F.; Yang, C.C.; Wang, I.J. Associations between levels of urinary oxidative stress of 8-OHdG and risk of atopic diseases in children. Int J. Environ. Res. Public Health 2020, 17, 8207. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Science and Technology Agency. Standard Table of Food Composition in Japan, 5th ed.; Ministry of Finance Printing Bureau: Tokyo, Japan, 2000. (In Japanese)
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Centre-Based Prospective Study for the Next Generation (JPHC-NEXT) protocol area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, S.; Aoki, S.; Kasai, J.; Shindo, R.; Obata, S.; Hasegawa, Y.; Mochimaru, A.; Miyagi, E. High probability of false-positive gestational diabetes mellitus diagnosis during early pregnancy. BMJ Open Diabetes Res. Care 2020, 8, e001234. [Google Scholar] [CrossRef] [PubMed]
- Myoga, M.; Tsuji, M.; Tanaka, R.; Shibata, E.; Askew, D.J.; Yukiyo, A.; Senju, A.; Kawamto, T.; Hachisuga, T.; Araki, S.; et al. Impact of sleep duration during pregnancy on the risk of gestational diabetes in the Japan environmental and Children’s study (JECS). BMC Pregnancy Childbirth 2019, 19, 483. [Google Scholar] [CrossRef] [PubMed]
- Mazlumoglu, M.R.; Ozkan, O.; Alp, H.H.; Ozyildirim, E.; Bingol, F.; Yoruk, O.; Kuduban, O. Measuring oxidative DNA damage with 8-hydroxy-2’-deoxyguanosine levels in patients with laryngeal cancer. Ann. Otol. Rhinol. Laryngol. 2017, 126, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Kyozuka, H.; Yamaguchi, A.; Suzuki, D.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. Japan Environment and Children’s Study (JECS) Group. Risk factors for placenta accreta spectrum: Findings from the Japan environment and Children’s study. BMC Pregnancy Childbirth 2019, 19, 447. [Google Scholar] [CrossRef]
- Lei, C.; Niu, X.; Wei, J.; Zhu, J.; Zhu, Y. Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clin. Chim. Acta 2009, 399, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Symposium on ‘Geographical and geological influences on nutrition’: Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Alarcón, M.; López-G. de la Serrana, H.; Pérez-Valero, V.; López-Martínez, C. Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci. Total Environ. 1999, 228, 79–85. [Google Scholar] [CrossRef]
- Kljai, K.; Runje, R. Selenium and glycogen levels in diabetic patients. Biol. Trace Elements Res. 2001, 83, 223–229. [Google Scholar] [CrossRef]
- Laclaustra, M.; Navas-Acien, A.; Stranges, S.; Ordovas, J.M.; Guallar, E. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Environ. Health Perspect. 2009, 117, 1409–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, M.; Lapolla, A.; Jitaru, P.; Sechi, A.; Cosma, C.; Cozzi, G.; Cescon, P.; Barbante, C. Plasma selenoproteins concentrations in type 2 diabetes mellitus—A pilot study. Transl. Res. 2010, 156, 242–250. [Google Scholar] [CrossRef]
- Stapleton, S.R. Selenium: An insulin-mimetic. Cell. Mol. Life Sci. 2000, 57, 1874–1879. [Google Scholar] [CrossRef]
- Satyanarayana, S.; Sekhar, J.R.; Kumar, K.E.; Shannika, L.B.; Rajanna, B.; Rajanna, S. Influence of selenium (antioxidant) on gliclazide induced hypoglycaemia/anti hyperglycaemia in normal/alloxan-induced diabetic rats. Mol. Cell. Biochem. 2006, 283, 123–127. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Speckmann, B.; Pinto, A.; Sies, H. High selenium intake and increased diabetes risk: Experimental evidence for interplay between selenium and carbohydrate metabolism. J. Clin. Biochem. Nutr. 2011, 48, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Chen, X.; Scholl, T.O.; Leskiw, M.J.; Donaldson, M.R.; Stein, T.P. Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J. Clin. Endocrinol. Metab. 2003, 88, 5963–5968. [Google Scholar] [CrossRef] [Green Version]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef]
- Japan Ministry of Health, Labour and Welfare. Japanese Dietary Standards (2020) Summary. Available online: https://www.mhlw.go.jp/content/10904750/000586553.pdf (accessed on 3 November 2020).
- Yamaguchi, A.; Kyozuka, H.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. Japan Environment and Children’s Study Group. Risk of preterm birth, low birthweight and small-for-gestational-age infants in pregnancies with adenomyosis: A cohort study of the Japan Environment and Children’s Study. Acta Obset. Gynecol. Scand. 2019, 98, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Vandorsten, J.P.; Dodson, W.C.; Espeland, M.A.; Grobman, W.A.; Guise, J.M.; Mercer, B.M.; Minkoff, H.L.; Poindexter, B.; Prosser, L.A.; Sawaya, G.F.; et al. NIH consensus development conference: Diagnosing gestational diabetes mellitus. Nih Consens. State Sci. Stat. 2013, 29, 1–31. [Google Scholar]
Quintile for Se Intake | ||||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 | Q5 (High) | ||
Variable | n = 18,986 | n = 19,432 | n = 18,614 | n = 17,573 | n = 18,159 | p-Value |
Maternal medical background | ||||||
Preconception Se intake, μg/day median (interquartile range) | 27 (21–30) | 39 (36–42) | 50 (47–52) | 62 (59–66) | 89 (78–111) | <0.001 a |
Maternal age, mean years (SD) | 29.8 (5.3) | 31.1 (5.0) | 31.5 (4.9) | 31.8 (4.8) | 31.9 (5.0) | <0.001 b |
Maternal age category, % | ||||||
≤19 | 1.6 | 0.7 | 0.7 | 0.5 | 0.6 | <0.001 c |
20–29 | 47.1 | 37.3 | 34.2 | 32 | 31.3 | |
30–39 | 48.2 | 57.5 | 60.3 | 62.5 | 62.4 | |
≥40 | 3.1 | 4.6 | 4.8 | 5.0 | 5.7 | |
BMI before pregnancy (kg/m2), % | ||||||
<18.5 | 17.1 | 16.0 | 16.2 | 16.0 | 15.4 | <0.001 c |
18.5–25.0 | 70.8 | 73.9 | 73.9 | 74.2 | 73.2 | |
>25.0 | 12.1 | 10.1 | 9.9 | 9.8 | 11.4 | |
Smoking during pregnancy, % | 6.4 | 4.7 | 4.1 | 3.9 | 5.2 | <0.001 c |
Primipara, % | 48.2 | 42.4 | 38.8 | 36.6 | 34.7 | <0.001 c |
Hypertension before pregnancy, % | 1.3 | 1.2 | 1.1 | 1.0 | 1.3 | 0.023 c |
ART, % | 2.2 | 3.0 | 2.9 | 3.3 | 3.1 | <0.001 c |
Obstetric outcomes | ||||||
GDM, % | 2.5 | 2.7 | 2.4 | 2.6 | 2.9 | 0.031 b |
Eo-GDM, % | 0.7 | 0.8 | 0.7 | 0.8 | 0.9 | 0.043 b |
Lo-GDM, % | 1.6 | 1.6 | 1.4 | 1.5 | 1.7 | 0.191 b |
PTB < 37 wks, % | 5.4 | 5.4 | 5.4 | 4.9 | 5.6 | 0.076 b |
LBW < 2500 g, % | 8.8 | 8.8 | 8.3 | 7.9 | 8.7 | 0.005 b |
Quintile for Se Intake | ||||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 | Q5 (High) | ||
Variable | n = 18,986 | n = 19,432 | n = 18,614 | n = 17,573 | n = 18,159 | p-Value |
Urine 8 OHdG levels, ng/mL, mean (SE) | 2.13 (0.01) | 2.04 (0.01) | 2.04 (0.01) | 2.03 (0.01) | 2.06 (0.01) | <0.001 a |
Quintile for Se Intake | |||||
---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 | Q5 (High) | |
n = 18,986 | n = 19,432 | n = 18,614 | n = 17,573 | n = 18,159 | |
GDM | |||||
OR (95% CI) | 1.03 (0.90–1.17) | 1.09 (0.96–1.24) | 1 (Ref) | 1.08 (0.95–1.23) | 1.21 (1.07–1.38) |
aOR (95% CI) | 1.07 (0.94–1.22) | 1.10 (0.97–1.25) | 1 (Ref) | 1.07 (0.94–1.22) | 1.15 (1.01–1.30) |
Eo-GDM | |||||
OR (95% CI) | 0.98 (0.77–1.25) | 1.15 (0.91–1.45) | 1 (Ref) | 1.20 (0.95–1.53) | 1.34 (1.06–1.69) |
aOR (95% CI) | 1.02 (0.80–1.31) | 1.16 (0.92–1.47) | 1 (Ref) | 1.19 (0.93–1.51) | 1.24 (0.98–1.56) |
Lo-GDM | |||||
OR (95% CI) | 1.16 (0.98–1.37) | 1.13 (0.96–1.33) | 1 (Ref) | 1.06 (0.89–1.26) | 1.21 (1.02–1.42) |
aOR (95% CI) | 1.19 (1.01–1.41) | 1.14 (0.96–1.34) | 1 (Ref) | 1.05 (0.89–1.25) | 1.15 (0.98–1.36) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyozuka, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Hosoya, M.; Yasumura, S.; et al. Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study. Antioxidants 2021, 10, 568. https://doi.org/10.3390/antiox10040568
Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, Sato A, Ogata Y, Hosoya M, Yasumura S, et al. Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study. Antioxidants. 2021; 10(4):568. https://doi.org/10.3390/antiox10040568
Chicago/Turabian StyleKyozuka, Hyo, Tsuyoshi Murata, Toma Fukuda, Akiko Yamaguchi, Aya Kanno, Shun Yasuda, Akiko Sato, Yuka Ogata, Mitsuaki Hosoya, Seiji Yasumura, and et al. 2021. "Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study" Antioxidants 10, no. 4: 568. https://doi.org/10.3390/antiox10040568
APA StyleKyozuka, H., Murata, T., Fukuda, T., Yamaguchi, A., Kanno, A., Yasuda, S., Sato, A., Ogata, Y., Hosoya, M., Yasumura, S., Hashimoto, K., Nishigori, H., & Fujimori, K. (2021). Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study. Antioxidants, 10(4), 568. https://doi.org/10.3390/antiox10040568