Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Pasta Making
2.3. Physicochemical Characterization
2.4. Technological Characterization of Pasta
2.4.1. Optimal Cooking Time
2.4.2. Water Absorption
2.4.3. Cooking Loss
2.4.4. Hydration Test
2.4.5. Instrumental Color
2.5. Nutritional Characterization
2.5.1. Starch Hydrolysis and Predicted Glycemic Index (pGI)
2.5.2. Protein Solubility and Electrophoresis
2.6. Free and Bound Polyphenols Characterization
2.7. Antioxidant Activity
2.8. In Vitro Digestion and Polyphenol Bioaccessibility Evaluation
2.9. Sensory Analysis
2.9.1. Panel Test Design and Execution
2.9.2. Descriptive Analysis (DA)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Technological Properties
3.2. Polyphenol Content and Antioxidant Activity
3.3. Nutritional Properties
3.3.1. Proximate Composition
3.3.2. Protein Solubility and Electrophoretic Migration
3.4. Descriptive Analysis Profile Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | artichoke powder |
AUC | area under the curve |
aw | water activity |
DW | dry weight |
FSE | ferrous sulfate equivalent |
HI | hydrolysis index |
OCT | optimal cooking time |
P-AP | enriched pasta with artichoke powder |
P-CTR | control pasta |
pGI | predicted glycemic index |
TE | Trolox equivalent |
TTA | total titratable acidity |
References
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food—Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Bavaro, A.R.; Tarantini, A.; Bruno, A.; Logrieco, A.F.; Gallo, A.; Mita, G.; Valerio, F.; Bleve, G.; Cardinali, A. Functional foods in Mediterranean diet: Exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin. Exp. Res. 2024, 36, 208. [Google Scholar] [CrossRef]
- Ayuso, P.; Quizhpe, J.; Rosell, M.d.l.Á.; Peñalver, R.; Nieto, G. Bioactive Compounds, Health Benefits and Food Applications of Artichoke (Cynara scolymus L.) and Artichoke By-Products: A Review. Appl. Sci. 2024, 14, 4940. [Google Scholar] [CrossRef]
- Olas, B. An Overview of the Versatility of the Parts of the Globe Artichoke (Cynara scolymus L.), Its By-Products and Dietary Supplements. Nutrients 2024, 16, 599. [Google Scholar] [CrossRef]
- Colombo, R.; Moretto, G.; Pellicorio, V.; Papetti, A. Globe Artichoke (Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties. Foods 2024, 13, 1427. [Google Scholar] [CrossRef]
- Zayed, A.; Farag, M.A. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT 2020, 132, 109883. [Google Scholar] [CrossRef]
- Bavaro, A.R.; De Bellis, P.; Montemurro, M.; D’Antuono, I.; Linsalata, V.; Cardinali, A. Characterization and functional application of artichoke bracts: Enrichment of bread with health promoting compounds. LWT 2025, 215, 117256. [Google Scholar] [CrossRef]
- Carpentieri, S.; Augimeri, G.; Ceramella, J.; Vivacqua, A.; Sinicropi, M.S.; Pataro, G.; Bonofiglio, D.; Ferrari, G. Antioxidant and Anti-Inflammatory Effects of Extracts from Pulsed Electric Field-Treated Artichoke By-Products in Lipopolysaccharide-Stimulated Human THP-1 Macrophages. Foods 2022, 11, 2250. [Google Scholar] [CrossRef]
- Boubaker, M.; Damergi, C.; Marzouk, C.B.; Blecker, C.; Bouzouita, N. Effect of artichoke (Cynara scolymus L.) by-product on the quality and total phenol content of bread. Mediterr. J. Chem. 2016, 5, 548–553. [Google Scholar] [CrossRef]
- Colantuono, A.; Ferracane, R.; Vitaglione, P. Potential bioaccessibility and functionality of polyphenols and cynaropicrin from breads enriched with artichoke stem. Food Chem. 2018, 245, 838–844. [Google Scholar] [CrossRef]
- Canale, M.; Spina, A.; Summo, C.; Strano, M.C.; Bizzini, M.; Allegra, M.; Sanfilippo, R.; Amenta, M.; Pasqualone, A. Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product. Plants 2022, 11, 3409. [Google Scholar] [CrossRef]
- Cannas, M.; Conte, P.; Urgeghe, P.P.; Piga, A.; Alañón, M.E.; Del Caro, A. Artichoke by-products: Promising ingredients for breadstick fortification. LWT 2024, 202, 116307. [Google Scholar] [CrossRef]
- Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int. J. Food Sci. 2017, 52, 2078–2087. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Ruggeri, S.; Ciorba, R.; Ceccarelli, D.; Ciccoritti, R. Artichoke By-Products Valorization for Phenols-Enriched Fresh Egg Pasta: A Sustainable Food Design Project. Sustainability 2022, 14, 14778. [Google Scholar] [CrossRef]
- la Gatta, B.; Rutigliano, M.; Liberatore, M.T.; Dilucia, F.; Spadaccino, G.; Quinto, M.; Di Luccia, A. Preservation of bioactive compounds occurring in fresh pasta fortified with artichoke bracts and tomato powders obtained with a novel pre-treatment. LWT 2023, 187, 115298. [Google Scholar] [CrossRef]
- Italian Republic. Decreto del Presidente Della Repubblica (DPR) 9 Febbraio 2001, n. 187. Regolamento Per la Revisione Della Normativa Sulla Produzione e Commercializzazione di Sfarinati e Paste Alimentari, a Norma Dell’articolo 50 Della Legge 22 Febbraio 1994, n. 146; Ministry of Agricultural, Food and Forestry Policies: Rome, Italy, 2001.
- AACC International. Approved Methods of Analysis. In Method 02-31.01. Titratable Acidity—Basic Method; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Schettino, R.; Verni, M.; Acin-Albiac, M.; Vincentini, O.; Krona, A.; Knaapila, A.; Cagno, R.D.; Gobbetti, M.; Rizzello, C.G.; Coda, R. Bioprocessed Brewers’ Spent Grain Improves Nutritional and Antioxidant Properties of Pasta. Antioxidants 2021, 10, 742. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis. 2010. Available online: http://methods.aaccnet.org/ (accessed on 18 March 2025).
- D’Imperio, M.; Durante, M.; Gonnella, M.; Renna, M.; Montesano, F.F.; Parente, A.; Mita, G.; Serio, F. Enhancing the Nutritional Value of Portulaca Oleracea L. by Using Soilless Agronomic Biofortification with Zinc. Food Res. Int. 2022, 155, 111057. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Rockville, MA, USA, 2000. [Google Scholar]
- Canale, M.; Sanfilippo, R.; Strano, M.C.; Bavaro, A.R.; Amenta, M.; Bizzini, M.; Allegra, M.; Blangiforti, S.; Spina, A. Technological Properties of Inulin-Enriched Doughs and Breads, Influence on Short-Term Storage and Glycemic Response. Foods 2024, 13, 2711. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Bonomi, F.; D’Egidio, M.G.; Iametti, S.; Marengo, M.; Marti, A.; Pagani, M.A.; Ragg, E.M. Structure–Quality Relationship in Commercial Pasta: A Molecular Glimpse. Food Chem. 2012, 135, 348–355. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Bavaro, A.R.; Di Biase, M.; Linsalata, V.; D’Antuono, I.; Di Stefano, V.; Lonigro, S.L.; Garbetta, A.; Valerio, F.; Melilli, M.G.; Cardinali, A. Potential Prebiotic Effect of Inulin-Enriched Pasta after In Vitro Gastrointestinal Digestion and Simulated Gut Fermentation. Foods 2024, 13, 1815. [Google Scholar] [CrossRef]
- Lucas-González, R.; Díez-Riquelme, V.; Viuda-Martos, M.; Ángel Pérez-Álvarez, J.; Sánchez-Zapata, E.; Fernández-López, J. Effect of the Food Matrix on the (Poly) Phenol Stability of Different Plant-Based Meat Products and Their Main Ingredients after in Vitro Gastrointestinal Digestion. Food Funct. 2023, 14, 10796–10813. [Google Scholar] [CrossRef]
- UNI ISO 8589:1990; General Guidance for the Design of Test Rooms. Ente Italiano di Normazione-UNI: Milano, Italy, 1990.
- The European Parliament; The Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/E.C. (General Data Protection Regulation); The European Parliament: Strasbourg, France; The Council of the European Union: Brussels, Belgium, 2016; Available online: http://data.europa.eu/eli/reg/2016/679/oj (accessed on 17 March 2025).
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016.
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023.
- Périnel, E.; Pagès, J. Optimal Nested Cross-over Designs in Sensory Analysis. Food Qual. Prefer. 2004, 15, 439–446. [Google Scholar] [CrossRef]
- Societa Italiana di Scienze Sensoriali. Atlante Sensoriale dei Prodotti Alimentari; Sinesio, F.M.E., Spinelli, S., Eds.; Tecniche Nuove: Milan, Italy, 2012. [Google Scholar]
- Galetti, J.A.; Calder, B.L.; Skonberg, D.I. Mechanical Separation of Green Crab (Carcinus Maenas) Meat and Consumer Acceptability of a Value-Added Food Product. J. Aquat. Food Prod. Technol. 2017, 26, 172–180. [Google Scholar] [CrossRef]
- Dadalı, C. Artichoke Bracts as Fat and Wheat Flour Replacer in Cake: Optimization of Reduced Fat and Reduced Wheat Flour Cake Formulation. J. Food Meas. Charact. 2023, 17, 98–107. [Google Scholar] [CrossRef]
- Calasso, M.; Lisi, A.; Ressa, A.; Caponio, G.R.; Difonzo, G.; Minervini, F.; Gargano, M.L.; Vacca, M.; De Angelis, M. Incorporating Fresh Durum Wheat Semolina Pasta Fortified with Cardoncello (Pleurotus eryngii) Mushroom Powder as a Mediterranean Diet Staple. Antioxidants 2025, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Liberatore, M.T.; Dilucia, F.; Rutigliano, M.; Viscecchia, R.; Spano, G.; Capozzi, V.; Bimbo, F.; Di Luccia, A.; la Gatta, B. Polyphenolic Characterization, Nutritional and Microbiological Assessment of Newly Formulated Semolina Fresh Pasta Fortified with Grape Pomace. Food Chem. 2025, 463, 141531. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 690–711. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Xing, X.; Wang, S. Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Curr. Opin. Food Sci. 2022, 48, 100941. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz- Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated Methodology to Determine Antioxidant Capacity in Plant Foods, Oils and Beverages: Extraction, Measurement and Expression of Results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Padalino, L.; D’Antuono, I.; Durante, M.; Conte, A.; Cardinali, A.; Linsalata, V.; Mita, G.; Logrieco, A.; Del Nobile, M. Use of Olive Oil Industrial By-Product for Pasta Enrichment. Antioxidants 2018, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Cedola, A.; Cardinali, A.; D’Antuono, I.; Conte, A.; Del Nobile, M.A. Cereal Foods Fortified with By-Products from the Olive Oil Industry. Food Biosci. 2020, 33, 100490. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- European Commission. Commission Regulation (EU) No 1047/2012 of 8 November 2012 amending Regulation (EC) No 1924/2006 with regard to the list of nutrition claims Text with EEA relevance. Off. J. Eur. Union 2012, 310, 36–37. [Google Scholar]
- Zang, P.; Gao, Y.; Chen, P.; Lv, C.; Zhao, G. Recent Advances in the Study of Wheat Protein and Other Food Components Affecting the Gluten Network and the Properties of Noodles. Foods 2022, 11, 3824. [Google Scholar] [CrossRef] [PubMed]
- Krekora, M.; Nawrocka, A. The Influence of Selected Polyphenols on the Gluten Structure—A Study on Gluten Dough with Application of FT-IR and FT-Raman Spectroscopy. J. Cereal Sci. 2022, 108, 103570. [Google Scholar] [CrossRef]
- Ribeiro, M.; Sousa, T.D.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Review of Structural Features and Binding Capacity of Polyphenols to Gluten Proteins and Peptides In Vitro: Relevance to Celiac Disease. Antioxidants 2020, 9, 463. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential as an Anti- Hepatitis C Virus Agent. Front. Pharmacol. 2016, 7, 472. [Google Scholar] [CrossRef]
- Bolha, A.; Blaznik, U.; Korošec, M. Influence of Intrinsic and Extrinsic Food Attributes on Consumers’ Acceptance of Reformulated Food Products: A Systematic Review. Slov. J. Public Health 2020, 60, 72. [Google Scholar] [CrossRef]
- Ballco, P.; Gracia, A. Tackling Nutritional and Health Claims to Disentangle Their Effects on Consumer Food Choices and Behaviour: A Systematic Review. Food Qual. Prefer. 2022, 101, 104634. [Google Scholar] [CrossRef]
- Crucean, D.; Debucquet, G.; Rannou, C.; le-Bail, A. Vitamin B4 as a salt substitute in bread: A challenging and successful new strategy. Sensory perception and acceptability by French consumers. Appetite 2019, 134, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Laureati, M.; De Boni, A.; Saba, A.; Lamy, E.; Minervini, F.; Delgado, A.M.; Sinesio, F. Determinants of Consumers’ Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024, 13, 1534. [Google Scholar] [CrossRef] [PubMed]
P-CTR | P-AP | |
---|---|---|
pH | 6.11 ± 0.07 a | 5.89 ± 0.06 b |
TTA (mL) * | 0.75 ± 0.07 b | 4.50 ± 0.07 a |
OCT (min) | 6.5 ± 0.01 a | 6.5 ± 0.01 a |
Water absorption (%) | 128.26 ± 10.95 b | 173.04 ± 4.53 a |
Cooking loss (g/100 g pasta) | 4.6 ± 0.28 b | 9.4 ± 0.85 a |
Color analysis | ||
∆L | 53.67 ± 0.26 a | 33.88 ± 0.54 b |
∆a | 1.05 ± 0.48 b | 3.30 ± 0.16 a |
∆b | 20.78 ± 1.02 a | 16.26 ± 0.45 b |
∆Eab | 57.57 ± 0.38 a | 37.73 ± 0.52 b |
Pasta | |||||||
---|---|---|---|---|---|---|---|
Rt | Polyphenols | P-CTR | P-AP | ||||
(min) | (mg/100 g DW) | Uncooked | Cooked | Digested | Uncooked | Cooked | Digested |
4.37 | 1-O-caffeoylquinic acid | nd | nd | nd | 1.491 ± 0.075 b | 1.193 ± 0.060 c | 1.968 ± 0.098 a |
4.76 | 3-O-caffeoylquinic acid | nd | nd | nd | 0.859 ± 0.043 b | 0.716 ± 0.036 c | 1.076 ± 0.054 a |
7.12 | Chlorogenic acid | nd | nd | nd | 14.998 ± 0.750 a | 9.310 ± 0.465 b | 14.025 ± 0.701 a |
14.23 | Coumaric acid | 0.038 ± 0.002 d | 0.023 ± 0.001 d | 0.107 ± 0.005 c | 0.179 ± 0.009 b | 0.096 ± 0.005 c | 0.379 ± 0.019 a |
14.81 | Apigenin derivative | 0.139 ± 0.007 d | 0.054 ± 0.003 e | 0.193 ± 0.010 d | 0.526 ± 0.026 b | 0.295 ± 0.015 c | 1.034 ± 0.052 a |
16.63 | Ferulic acid | 0.325 ± 0.016 a | 0.131 ± 0.007 c | 0.353 ± 0.018 a | 0.235 ± 0.012 b | 0.271 ± 0.014 b | 0.265 ± 0.013 b |
16.90 | 1,4-dicaffeoylquinic acid | nd | nd | nd | 1.441 ± 0.072 b | 0.664 ± 0.033 c | 2.238 ± 0.112 a |
17.74 | 4,5-dicaffeoylquinic acid | nd | nd | nd | 0.852 ± 0.043 b | 0.648 ± 0.032 c | 1.504 ± 0.075 a |
18.37 | 3,5-dicaffeoylquinic acid | nd | nd | nd | 7.433 ± 0.372 a | 3.875 ± 0.194 c | 5.182 ± 0.259 b |
19.47 | 1,5-dicaffeoylquinic acid | nd | nd | nd | 15.185 ± 0.759 a | 8.428 ± 0.421 c | 12.466 ± 0.623 b |
22.96 | 3,4-dicaffeoylquinic acid | nd | nd | nd | 1.552 ± 0.078 b | 1.196 ± 0.060 c | 2.019 ± 0.101 a |
24.21 | Apigenin-7-O-glucoside | nd | nd | nd | 5.008 ± 0.250 a | 2.786 ± 0.139 c | 3.738 ± 0.187 b |
34.88 | Luteolin | nd | nd | nd | 1.003 ± 0.050 a | 0.648 ± 0.032 b | 0.341 ± 0.017 c |
40.83 | Apigenin | nd | nd | nd | 2.801 ± 0.140 a | 2.148 ± 0.107 b | 1.212 ± 0.061 c |
Total | 0.502 ± 0.025 d | 0.208 ± 0.010 d | 0.653 ± 0.033 d | 53.563 ± 2.678 a | 32.275 ± 1.614 c | 47.447 ± 2.372 b |
Pasta | |||||
---|---|---|---|---|---|
Rt | Polyphenols | P-CTR | P-AP | ||
(min) | (mg/100 g DW) | Uncooked | Digested | Uncooked | Digested |
9.33 | Caffeic acid | nd | 0.028 ± 0.001 b | 11.968 ± 0.598 a | nd |
14.27 | Coumaric acid | 0.127 ± 0.006 b | 0.006 ± 0.001 c | 1.099 ± 0.055 a | nd |
16.55 | Ferulic acid | 4.960 ± 0.248 a | 0.091 ± 0.005 c | 4.225 ± 0.211 b | 0.019 ± 0.001 c |
24.35 | Apigenin 7-O-glucoside | nd | nd | 1.188 ± 0.059 a | 0.084 ± 0.004 b |
30.10 | Caffeic acid derivative 1 | 0.187 ± 0.009 b | nd | 0.496 ± 0.025 a | nd |
31.67 | Caffeic acid derivative 2 | 0.210 ± 0.010 b | nd | 0.436 ± 0.022 a | nd |
34.90 | Luteolin | nd | nd | nd | 0.021 ± 0.001 a |
40.90 | Apigenin | nd | nd | nd | 0.445 ± 0.022 a |
Total | 5.483 ± 0.274 b | 0.125 ± 0.006 c | 19.411 ± 0.971 a | 0.570 ± 0.028 c |
DPPH | ABTS | FRAP | ||||
---|---|---|---|---|---|---|
(μmol TE/g DW) | (μmol TE/g DW) | (μmol FSE/g DW) | ||||
Pasta Extract | P-CTR | P-AP | P-CTR | P-AP | P-CTR | P-AP |
Free polyphenols | ||||||
Uncooked | nd | 4.627 ± 0.766 a | 6.618 ± 0.093 b | 22.263 ± 1.191 a | 0.766 ± 0.023 b | 4.278 ± 0.199 a |
Cooked | nd | 3.616 ± 0.367 a | 4.021 ± 0.031 b | 13.505 ± 2.491 a | 0.428 ± 0.008 b | 3.154 ± 0.064 a |
Bound polyphenols | ||||||
Uncooked | 0.264 ± 0.016 b | 1.647 ± 0.296 a | 1.923 ± 0.009 b | 6.992 ± 0.086 a | 0.416 ± 0.003 b | 1.907 ± 0.081 a |
Cooked | 0.041 ± 0.008 b | 0.086 ± 0.015 a | 0.245 ± 0.006 a | 0.328 ± 0.059 a | 0.205 ± 0.006 b | 0.393 ± 0.009 a |
Pasta | ||
---|---|---|
Nutrient Content | P-CTR | P-AP |
Energy (KJ/Kcal)/100 g | 1500 ± 80/354 ± 19 a | 1487 ± 70/351 ± 17 a |
Fat (%) | 1.09 ± 0.05 a | 1.4 ± 0.3 a |
of which: saturates | 0.12 ± 0.02 b | 0.28 ± 0.07 a |
Carbohydrate (%) | 71.5 ± 4.4 a | 68.1 ± 3.8 a |
of which: sugars | 2.57 ± 0.71 a | 2.41 ± 0.68 a |
Fiber (%) | 2.8 ± 0.5 b | 9.8 ± 0.9 a |
Protein (%) | 13.03 ± 1.67 a | 11.64 ± 1.39 a |
Saturated fatty acids (%) | 11.13 ± 1.57 b | 19.43 ± 2.48 a |
Monounsaturated fatty acids (%) | 24.58 ± 3.32 a | 18.22 ± 2.44 a |
Polyunsaturated fatty acids (%) | 64.29 ± 8.68 a | 62.35 ± 7.79 a |
Hydrolysis Index (HI) | 71.78 ± 0.13 a | 70.82 ± 0.28 b |
Predicted glycemic index (pGI) | 58.41 ± 0.24 a | 56.67 ± 0.52 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bavaro, A.R.; De Bellis, P.; Linsalata, V.; Rucci, S.; Predieri, S.; Cianciabella, M.; Tamburino, R.; Cardinali, A. Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties. Antioxidants 2025, 14, 475. https://doi.org/10.3390/antiox14040475
Bavaro AR, De Bellis P, Linsalata V, Rucci S, Predieri S, Cianciabella M, Tamburino R, Cardinali A. Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties. Antioxidants. 2025; 14(4):475. https://doi.org/10.3390/antiox14040475
Chicago/Turabian StyleBavaro, Anna Rita, Palmira De Bellis, Vito Linsalata, Serena Rucci, Stefano Predieri, Marta Cianciabella, Rachele Tamburino, and Angela Cardinali. 2025. "Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties" Antioxidants 14, no. 4: 475. https://doi.org/10.3390/antiox14040475
APA StyleBavaro, A. R., De Bellis, P., Linsalata, V., Rucci, S., Predieri, S., Cianciabella, M., Tamburino, R., & Cardinali, A. (2025). Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties. Antioxidants, 14(4), 475. https://doi.org/10.3390/antiox14040475