Potential Association between Shift Work and Serologic Response to Hepatitis B Vaccination among Manufacturing Workers in Republic of Korea
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Study Population
2.2. Study Eligibility Criteria and Outcomes
2.3. Statistical Aanalysis
2.4. Ethical Considerations
3. Results
3.1. Study Population
3.2. Immune Response after HBV Vaccination
3.3. Factors Associated with HBV Vaccination Response Failure
3.4. Subgroup Analysis of Factors Associated with HBV Response Failure Specifically among Shift and Non-Shift Workers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boivin, D.B.; Boudreau, P. Kosmadopoulos A: Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythms. 2022, 37, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Hoe, V.C.W.; Darus, A.; Bhoo-Pathy, N. Association between night-shift work, sleep quality and metabolic syndrome. Occup. Environ. Med. 2018, 75, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand. J. Work. Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ruan, W.; Chen, Z.; Peng, Y.; Li, W. Shift work and risk of cardiovascular disease morbidity and mortality: A dose-response meta-analysis of cohort studies. Eur. J. Prev. Cardiol. 2018, 25, 1293–1302. [Google Scholar] [CrossRef]
- van Mark, A.; Spallek, M.; Groneberg, D.A.; Kessel, R.; Weiler, S.W. Correlates shift work with increased risk of gastrointestinal complaints or frequency of gastritis or peptic ulcer in H. pylori-infected shift workers? Int. Arch. Occup. Environ. Health 2010, 83, 423–431. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Circadian rhythms: A regulator of gastrointestinal health and dysfunction. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 411–424. [Google Scholar] [CrossRef]
- Gao, Y.; Gan, T.; Jiang, L.; Yu, L.; Tang, D.; Wang, Y.; Li, X.; Ding, G. Association between shift work and risk of type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of observational studies. Chronobiol. Int. 2020, 37, 29–46. [Google Scholar] [CrossRef]
- Moon, S.H.; Lee, B.J.; Kim, S.J.; Kim, H.C. Relationship between thyroid stimulating hormone and night shift work. Ann. Occup. Environ. Med. 2016, 28, 53. [Google Scholar] [CrossRef]
- Manouchehri, E.; Taghipour, A.; Ghavami, V.; Ebadi, A.; Homaei, F.; Latifnejad Roudsari, R. Night-shift work duration and breast cancer risk: An updated systematic review and meta-analysis. BMC Women’s Health 2021, 21, 89. [Google Scholar] [CrossRef]
- IARC. IARC Monographs Volume 124: Night Shift Work. Available online: https://www.iarc.who.int/news-events/iarc-monographs-volume-124-night-shift-work/ (accessed on 17 April 2023).
- Akerstedt, T.; Wright, K.P., Jr. Sleep Loss and Fatigue in Shift Work and Shift Work Disorder. Sleep Med. Clin. 2009, 4, 257–271. [Google Scholar] [CrossRef]
- Driesen, K.; Jansen, N.W.; Kant, I.; Mohren, D.C.; van Amelsvoort, L.G. Depressed mood in the working population: Associations with work schedules and working hours. Chronobiol. Int. 2010, 27, 1062–1079. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, T.; Bollinger, A.; Oster, H.; Solbach, W. Sleep, immunity, and circadian clocks: A mechanistic model. Gerontology 2010, 56, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Bjorvatn, B.; Axelsson, J.; Pallesen, S.; Waage, S.; Vedaa, Ø.; Blytt, K.M.; Buchvold, H.V.; Moen, B.E.; Thun, E. The Association Between Shift Work and Immunological Biomarkers in Nurses. Front. Public Health 2020, 8, 415. [Google Scholar] [CrossRef] [PubMed]
- Loef, B.; Nanlohy, N.M.; Jacobi, R.H.J.; van de Ven, C.; Mariman, R.; van der Beek, A.J.; Proper, K.I.; van Baarle, D. Immunological effects of shift work in healthcare workers. Sci. Rep. 2019, 9, 18220. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, F.S.; Rosa, D.S.; Zimberg, I.Z.; Dos Santos Quaresma, M.V.; Nunes, J.O.; Apostolico, J.S.; Weckx, L.Y.; Souza, A.R.; Narciso, F.V.; Fernandes-Junior, S.A.; et al. Night shift work and immune response to the meningococcal conjugate vaccine in healthy workers: A proof of concept study. Sleep Med. 2020, 75, 263–275. [Google Scholar] [CrossRef]
- Thorkildsen, M.S.; Gustad, L.T.; Damås, J.K. The Effects of Shift Work on the Immune System: A Narrative Review. Sleep Sci. 2023, 16, e368–e374. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.-H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, cmr.00046-19. [Google Scholar] [CrossRef]
- Körber, N.; Pohl, L.; Weinberger, B.; Grubeck-Loebenstein, B.; Wawer, A.; Knolle, P.A.; Roggendorf, H.; Protzer, U.; Bauer, T. Hepatitis B Vaccine Non-Responders Show Higher Frequencies of CD24highCD38high Regulatory B Cells and Lower Levels of IL-10 Expression Compared to Responders. Front. Immunol. 2021, 12, 713351. [Google Scholar] [CrossRef]
- Di Lello, F.A.; Martínez, A.P.; Flichman, D.M. Insights into induction of the immune response by the hepatitis B vaccine. World J. Gastroenterol. 2022, 28, 4249–4262. [Google Scholar] [CrossRef]
- Kim, S.-H.; Chae, C.-H. Association between Vitamin D Deficiency and Serologic Response to Hepatitis B Virus Vaccination among Heavy Industry Workers. Vaccines 2024, 12, 723. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Trabucco Aurilio, M.; Ferrazza, G.; Magrini, A.; Rizza, S. Night Shift Work Is Associated with Reduced Rate of Humoral Response Following Vaccination for HBV. Int. J. Environ. Res. Public Health 2022, 19, 8834. [Google Scholar] [CrossRef] [PubMed]
- Izadi, N.; Aminian, O.; Eftekhari, S.; Piruznia, R. Do Occupational Factors Affect the Immune Response to Hepatitis B Vaccination in Healthcare Workers? Arch. Clin. Infect. Dis. 2020, 15, e96758. [Google Scholar] [CrossRef]
- Kim, D.Y. History and future of hepatitis B virus control in South Korea. Clin. Mol. Hepatol. 2021, 27, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Korean Infectious Disease Prevention and Control Act, Hepatitis B. Available online: https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EA%B0%90%EC%97%BC%EB%B3%91%EC%9D%98%EC%98%88%EB%B0%A9%EB%B0%8F%EA%B4%80%EB%A6%AC%EC%97%90%EA%B4%80%ED%95%9C%EB%B2%95%EB%A5%A0 (accessed on 26 August 2024).
- Elecsys Anti-HBs II. Available online: https://assets.roche.com/f/173850/x/0c123ae9f7/anti-hbsii-08498598190-en-can.pdf (accessed on 7 July 2024).
- Savard, J.; Laroche, L.; Simard, S.; Ivers, H.; Morin, C.M. Chronic insomnia and immune functioning. Psychosom. Med. 2003, 65, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Van Loveren, H.; Van Amsterdam, J.G.; Vandebriel, R.J.; Kimman, T.G.; Rümke, H.C.; Steerenberg, P.S.; Vos, J.G. Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ. Health Perspect. 2001, 109, 757–764. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, cmr.00084-18. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Chen, X.; Fu, X.; Li, W.; Liu, H.; Dong, Y.; Liu, C.; Zhang, X.; Shen, L.; et al. Contribution of sex-based immunological differences to the enhanced immune response in female mice following vaccination with hepatitis B vaccine. Mol. Med. Rep. 2019, 20, 103–110. [Google Scholar] [CrossRef]
- Senden, T.F. Response to intradermal hepatitis B vaccination: Differences between males and females? Vaccine 1990, 8, 612–613. [Google Scholar] [CrossRef]
- Prather, A.A.; Hall, M.; Fury, J.M.; Ross, D.C.; Muldoon, M.F.; Cohen, S.; Marsland, A.L. Sleep and antibody response to hepatitis B vaccination. Sleep 2012, 35, 1063–1069. [Google Scholar] [CrossRef]
- Sadarangani, S.P.; Whitaker, J.A.; Poland, G.A. “Let there be light”: The role of vitamin D in the immune response to vaccines. Expert Rev. Vaccines 2015, 14, 1427–1440. [Google Scholar] [CrossRef]
- Aranow, C. Vitamin D and the immune system. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.P.; Dragunsky, E.M.; Chumakov, K.M. 1,25-Dihydroxyvitamin D3 Enhances Systemic and Mucosal Immune Responses to Inactivated Poliovirus Vaccine in Mice. J. Infect. Dis. 2006, 193, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Zitt, E.; Sprenger-Mähr, H.; Knoll, F.; Neyer, U.; Lhotta, K. Vitamin D deficiency is associated with poor response to active hepatitis B immunisation in patients with chronic kidney disease. Vaccine 2012, 30, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.X.; Boland, G.J.; van Hattum, J.; de Gast, G.C. Long-term persistence of T cell memory to HBsAg after hepatitis B vaccination. World J. Gastroenterol. 2004, 10, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Awad, G.; Roch, T.; Stervbo, U.; Kaliszczyk, S.; Stittrich, A.; Hörstrup, J.; Cinkilic, O.; Appel, H.; Natrus, L.; Gayova, L.; et al. Robust hepatitis B vaccine-reactive T cell responses in failed humoral immunity. Mol. Ther. Methods Clin. Dev. 2021, 21, 288–298. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, M.H.; Lee, W.I. The prevalence of “anti-HBc alone” and HBV DNA detection among anti-HBc alone in Korea. J. Med. Virol. 2010, 82, 1508–1514. [Google Scholar] [CrossRef]
Variables | Total (n = 1103) | Shift Work | p-Value | ||
---|---|---|---|---|---|
No (n = 766) | Yes (n = 337) | ||||
Age (years) † | 29.9 ± 6.5 | 31.7 ± 6.3 | 25.6 ± 4.3 | <0.001 | |
Birth year 1995 or later | 39 (3.5) | 15 (2.0) | 24 (7.1) | <0.001 | |
Age group | ≤29 | 625 (56.7) | 337 (44.0) | 288 (85.5) | <0.001 |
30~39 | 366 (33.2) | 319 (41.6) | 47 (13.9) | ||
≥40 | 112 (10.2) | 110 (14.4) | 2 (0.6) | ||
Sex | Male | 861 (78.1) | 673 (87.9) | 188 (55.8) | <0.001 |
Female | 242 (21.9) | 93 (12.1) | 149 (44.2) | ||
Work place | Company A | 447 (40.5) | 110 (14.4) | 337 (100) | <0.001 |
Company B | 656 (59.5) | 656 (85.6) | 0 (0) | ||
Type of work | Production department | 645 (58.5) | 331 (43.2) | 314 (93.2) | <0.001 |
Administrative department | 391 (35.4) | 381 (49.7) | 10 (3.0) | ||
Support department | 67 (6.1) | 54 (7.0) | 13 (3.9) | ||
Employment duration (years) | 6.58 ± 5.63 | 7.33 ± 6.18 | 4.91 ± 3.62 | <0.001 | |
Smoking | Current smoker | 405 (36.7) | 278 (36.3) | 127 (37.7) | 0.658 |
None or ex-smoker | 698 (63.3) | 488 (63.7) | 210 (62.3) | ||
Body mass index (kg/m2) | 24.2 ± 3. 7 | 24.6 ± 3.5 | 23.3 ± 3.8 | <0.001 | |
Anti-HB titer prior to vaccination (mIU/mL) | 3.75 ± 2.24 | 3.53 ± 2.19 | 4.24 ± 2.29 | <0.001 | |
Serum 25-OH vitamin D (ng/mL) | 15.9 ± 6.5 | 16.8 ± 6.7 | 13.7 ± 5.5 | <0.001 | |
Vitamin D deficiency (25-OH vitamin D level below 20 ng/mL) | 860 (78.0) | 667 (64.8) | 303 (89.9) | <0.001 | |
Hemoglobin A1c (mg/dL) | 5.34 ± 0.3 | 5.33 ± 0.3 | 5.36 ± 0.3 | 0.082 | |
Serum creatinine (mg/dL) | 0.96 ± 0.12 | 0.96 ± 0.13 | 0.96 ± 0.1 | 0.284 | |
AST (IU/L) | 23.7 ± 13.96 | 23.7 ± 16.20 | 23.8 ± 6.41 | 0.895 | |
ALT (IU/L) | 26.8 ± 16.92 | 26.8 ± 19.27 | 26.8 ± 9.67 | 0.967 |
Variables | HBs IgG Levels (Post-Vaccination) | p-Value | |||
---|---|---|---|---|---|
10 mIU/mL Responder (n = 1013) | 10 mIU/mL Non-Responder (n = 90) | ||||
Shift work | Yes | 306 (30.2) | 31 (34.4) | 0.405 | |
No | 707 (69.8) | 59 (65.6) | |||
Type of work | Production department | 591 (58.3) | 54 (60.0) | 0.858 | |
Administrative department | 361 (35.6) | 30 (33.3) | |||
Support department | 61 (6.0) | 6 (6.7) | |||
Employment duration (years) | 6.43 ± 5.58 | 8.42 ± 6.00 | <0.001 | ||
Age (years) † | 29.6 ± 6.4 | 32.3 ± 6.5 | <0.001 | ||
Birth year 1995 or later | Yes | 36 (3.6) | 3 (3.3) | >0.999 | |
No | 977 (96.4) | 87 (96.7) | |||
Age group | ≤29 | 594 (58.6) | 31 (34.4) | <0.001 | |
30~39 | 323 (31.9) | 43 (47.8) | |||
≥40 | 96 (9.5) | 16 (17.8) | |||
Sex | Male | 777 (76.7) | 84 (93.3) | <0.001 | |
Female | 236 (23.3) | 6 (6.7) | |||
Smoking | Current smoker | 324 (32.0) | 45 (50.0) | 0.001 | |
None or ex-smoker | 689 (68.0) | 45 (50.0) | |||
Body mass index (kg/m2) | 24.1 ± 3.7 | 24.7 ± 3.7 | 0.181 | ||
Anti-HB titer prior to vaccination | 3.9 ± 2.3 | 2.3 ± 1.0 | <0.001 | ||
Serum 25-OH vitamin D (ng/mL) | 16.0 ± 6.6 | 14.5 ± 4.6 | 0.004 | ||
Vitamin D deficiency (25-OH vitamin D level below 20 ng/mL) | 781 (77.1) | 79 (87.8) | 0.019 | ||
Hemoglobin A1c (mg/dL) | 5.35 ± 0.29 | 5.30 ± 0.31 | 0.136 | ||
Serum creatinine (mg/dL) | 0.96 ± 0.12 | 0.97 ± 0.12 | 0.407 | ||
AST (IU/L) | 23.8 ± 14.3 | 23.2 ± 9.4 | 0.467 | ||
ALT (IU/L) | 26.7 ± 17.1 | 29.4 ± 15.4 | 0.208 |
Variables | Univariate | Binary Logistic Model | |||
---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | p-Value | |
Shift work | 1.21 | 0.77–1.91 | 2.87 | 1.64–5.05 | <0.001 |
Employment duration (per year) | 1.06 | 1.02–1.09 | |||
Age (per year) | 1.06 | 1.03–1.09 | 1.06 | 1.02–1.10 | 0.006 |
Sex (male) | 4.25 | 1.83–9.79 | 3.47 | 1.39–8.69 | 0.008 |
HBsAb titer prior to vaccination (per 1 mIU/mL) | 0.45 | 0.34–0.61 | 0.44 | 0.33–0.60 | <0.001 |
Current smoking | 2.12 | 1.38–3.28 | 1.64 | 1.02–2.62 | 0.040 |
Vitamin D deficiency (25-OH vitamin D level below 20 ng/mL) | 2.13 | 1.12–4.08 | 2.57 | 1.31–5.07 | 0.006 |
Variables | Shift Workers | Non Shift Workers | |||||
---|---|---|---|---|---|---|---|
HBs IgG Levels (Post-Vaccination) | p-Values | HBs IgG Levels (Post-Vaccination) | p-Value | ||||
10 mIU/mL Responder (n = 306) | 10 mIU/mL Non-Responder (n = 31) | 10 mIU/mL Responder (n = 707) | 10 mIU/mL Non-Responder (n = 59) | ||||
Type of work | Production department | 285 (93.1) | 29 (93.5) | >0.999 | 306 (43.3) | 25 (42.4) | 0.905 |
Administrative department | 9 (2.9) | 1 (3.2) | 352 (49.8) | 29 (49.2) | |||
Support department | 12 (3.9) | 1 (3.2) | 49 (6.9) | 5 (9.3) | |||
Employment duration (year) | 4.69 ± 3.48 | 7.10 ± 4.29 | 0.001 | 7.18 ± 6.12 | 9.12 ± 6.65 | 0.022 | |
Age (years) † | 25.3 ± 4.2 | 28.3 ± 4.4 | <0.001 | 31.5 ± 6.3 | 34.4 ± 6.5 | <0.001 | |
Birth year 1995 or later | Yes | 22 (7.2) | 2 (6.5) | >0.999 | 14 (2.0) | 1 (1.7) | >0.999 |
No | 284 (92.8) | 29 (93.5) | 693 (98.0) | 58 (98.3) | |||
Age group | ≤29 | 269(87.9) | 19(61.3) | 0.001 | 325 (46.9) | 12 (20.3) | <0.001 |
30~39 | 35 (11.4) | 12 (38.7) | 288 (40.7) | 31 (52.5) | |||
≥40 | 2 (0.7) | 0 (0.0) | 94 (13.3) | 16 (27.1) | |||
Sex | Male | 163 (53.3) | 25 (19.4) | 0.003 | 614 (86.8) | 59 (100.0) | 0.001 |
Female | 143 (46.7) | 6 (6.7) | 93 (13.2) | 0 (0.0) | |||
Smoking | Current smoker | 96(31.4) | 15 (48.4) | 0.055 | 228 (32.2) | 30 (50.8) | 0.004 |
None or ex-smoker | 210 (68.6) | 16 (51.6) | 479 (67.8) | 29 (49.2) | |||
Body mass index (kg/m2) | 23.2 ± 3.8 | 24.2 ± 3.4 | 0.182 | 24.5 ± 3.5 | 24.9 ± 3.8 | 0.661 | |
HBsAb titer prior to vaccination | 4.4 ± 2.3 | 2.6 ± 1.6 | <0.001 | 3.7 ± 2.2 | 2.1 ± 0.2 | <0.001 | |
Serum 25-OH vitamin D (ng/mL) | 13.7 ± 5.6 | 13.8 ± 3.8 | 0.948 | 17.0 ± 6.7 | 14.8 ± 5.0 | 0.013 | |
Vitamin D deficiency (25-OH vitamin D level below 20 ng/mL) | 273 (90.1) | 30 (96.8) | 0.342 | 508 (71.9) | 49 (83.1) | 0.064 | |
Hemoglobin A1c (mg/dL) | 5.28 ± 0.26 | 5.35 ± 0.40 | 0.341 | 5.39 ± 0.30 | 5.28 ± 0.26 | 0.237 | |
Serum creatinine (mg/dL) | 0.97 ± 0.10 | 0.94 ± 0.11 | 0.028 | 0.95 ± 0.13 | 0.99 ± 0.12 | 0.044 | |
AST (IU/L) | 23.8 ± 6.1 | 24.0 ± 9.1 | 0.158 | 23.8 ± 16.6 | 22.9 ± 9.6 | 0.728 | |
ALT (IU/L) | 26.6 ± 9.1 | 28.7 ± 14.5 | 0.683 | 26.7 ± 19.5 | 28.3 ± 15.9 | 0.168 |
Variables | Univariate | Binary Logistic Model | |||
---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | p-Value | |
Age (per year) | 1.16 | 1.07–1.25 | |||
Employment duration (per year) | 1.16 | 1.06–1.26 | 1.14 | 1.03–1.25 | 0.010 |
Sex (male) | 3.66 | 1.46–9.16 | 2.74 | 1.05–7.13 | 0.039 |
HBsAb titer prior to vaccination (per 1 mIU/mL) | 0.56 | 0.41–0.77 | 0.59 | 0.43–0.80 | 0.001 |
Current smoking | 2.05 | 0.97–4.32 | |||
Serum creatinine (per 1 mg/dL) | 0.07 | 0.00–1.58 |
Variables | Univariate | Binary Logistic Model | |||
---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | p-Value | |
Age (per year) | 1.07 | 1.03–1.11 | 1.05 | 1.00–1.09 | 0.035 |
Employment duration (per year) | 1.05 | 1.01–1.09 | |||
HBsAb titer prior to vaccination (per 1 mIU/mL) | 0.19 | 0.07–0.52 | 0.17 | 0.06–0.48 | 0.001 |
Vitamin D deficiency (25-OH vitamin D level below 20 ng/mL) | 1.92 | 0.95–3.86 | 2.50 | 1.19–5.22 | 0.015 |
Current smoking | 2.17 | 1.27–3.71 | 2.04 | 1.14–3.65 | 0.017 |
Serum creatinine (per 1 mg/dL) | 11.4 | 1.35–95.56 | 23.07 | 2.07–256.67 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Chae, C.-H. Potential Association between Shift Work and Serologic Response to Hepatitis B Vaccination among Manufacturing Workers in Republic of Korea. Vaccines 2024, 12, 1041. https://doi.org/10.3390/vaccines12091041
Kim S-H, Chae C-H. Potential Association between Shift Work and Serologic Response to Hepatitis B Vaccination among Manufacturing Workers in Republic of Korea. Vaccines. 2024; 12(9):1041. https://doi.org/10.3390/vaccines12091041
Chicago/Turabian StyleKim, Si-Ho, and Chang-Ho Chae. 2024. "Potential Association between Shift Work and Serologic Response to Hepatitis B Vaccination among Manufacturing Workers in Republic of Korea" Vaccines 12, no. 9: 1041. https://doi.org/10.3390/vaccines12091041
APA StyleKim, S. -H., & Chae, C. -H. (2024). Potential Association between Shift Work and Serologic Response to Hepatitis B Vaccination among Manufacturing Workers in Republic of Korea. Vaccines, 12(9), 1041. https://doi.org/10.3390/vaccines12091041