Type I Interferon Modulates the Function of Ly6C High-Expressing Naïve CD8+ T Cells to Promote an Antitumor Response
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Antibodies
2.2. Ethics Approval
2.3. Mice
2.4. Cell Culture
2.5. In Vitro Stimulation of Naïve T Cell
2.6. Type I IFN-Mediated Immunomodulation of Ly6C Expression in CD8⁺ T Cells
2.7. Flow Cytometry and Cell Sorting
2.8. Adoptive Cell Transfer
2.9. Tumor Experiments
2.10. Vaccinia and Vaccination
2.11. Statistical Analysis
3. Results
3.1. Naïve CD8+ T Cells with High Ly6C Expression Enhance Effector Functions and Tumor Control
3.2. Type I IFN Signaling Modulates Naïve CD8 T Cell to Express Ly6Chi Features
3.3. IFNβ-Preconditioned Naïve CD8+ T Cells Enhance Activation and Effector Functions
3.4. Vaccination with HPV16 Vaccinia CRT-E7 and Alb-IFNβ Increases Tumor-Specific CD8+ T Cell Infiltration and Delays Tumor Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surh, C.D.; Sprent, J. Homeostasis of naive and memory T cells. Immunity 2008, 29, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Sprent, J.; Surh, C.D. Normal T cell homeostasis: The conversion of naive cells into memory-phenotype cells. Nat. Immunol. 2011, 12, 478–484. [Google Scholar] [CrossRef] [PubMed]
- White, J.T.; Cross, E.W.; Burchill, M.A.; Danhorn, T.; McCarter, M.D.; Rosen, H.R.; O’connor, B.; Kedl, R.M. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 2016, 7, 11291. [Google Scholar] [CrossRef]
- Fulton, R.B.; E Hamilton, S.; Xing, Y.; Best, J.A.; Goldrath, A.W.; A Hogquist, K.; Jameson, S.C. The TCR’s sensitivity to self peptide-MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nat. Immunol. 2015, 16, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.-J.; Lee, S.-W.; Kye, Y.-C.; Lee, G.-W.; Kim, H.-O.; Yun, C.-H.; Cho, J.-H. Self-reactivity controls functional diversity of naive CD8+ T cells by co-opting tonic type I interferon. Nat. Commun. 2021, 12, 6059. [Google Scholar] [CrossRef]
- Lin, S.L.; Castano, A.P.; Nowlin, B.T.; Lupher, M.L.; Duffield, J.S., Jr. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 2009, 183, 6733–6743. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.-L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204, 3037–3047. [Google Scholar] [CrossRef]
- Johnson, R.; Lancki, D.W.; Fitch, F.W. Accessory molecules involved in antigen-mediated cytolysis and lymphokine production by cytotoxic T lymphocyte subsets. I. Identification of functions for the T cell surface molecules Ly-6C and Thy-1. J. Immunol. 1993, 151, 2986–2999. [Google Scholar] [CrossRef]
- Dumont, F.J. Stimulation of murine T cells via the Ly-6C antigen: Lack of proliferative response in aberrant T cells from lpr/lpr and gld/gld mice despite high Ly-6C antigen expression. J. Immunol. 1987, 138, 4106–4113. [Google Scholar] [CrossRef]
- Jergović, M.; Coplen, C.P.; Uhrlaub, J.L.; Besselsen, D.G.; Cheng, S.; Smithey, M.J.; Nikolich-Žugich, J. Infection-induced type I interferons critically modulate the homeostasis and function of CD8+ naive T cells. Nat. Commun. 2021, 12, 5303. [Google Scholar] [CrossRef]
- Urban, S.L.; Berg, L.J.; Welsh, R.M. Type 1 interferon licenses naive CD8 T cells to mediate anti-viral cytotoxicity. Virology 2016, 493, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Robinson, S.N.; Chavez, J.M.; Pisarev, V.M.; Mosley, R.L.; Rosenthal, G.J.; Blonder, J.M.; Talmadge, J.E. Delivery of Flt3 ligand (Flt3L) using a poloxamer-based formulation increases biological activity in mice. Bone Marrow Transpl. 2003, 31, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Alkhani, A.; Levy, C.S.; Tsui, M.; Rosenberg, K.A.; Polovina, K.; Mattis, A.N.; Mack, M.; Van Dyken, S.; Wang, B.M.; Maher, J.J.; et al. Ly6c(Lo) non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation. Sci. Rep. 2020, 10, 7165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, X. Simple bioconjugate chemistry serves great clinical advances: Albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 2016, 45, 1432–1456. [Google Scholar] [CrossRef]
- Chuang, V.T.; Kragh-Hansen, U.; Otagiri, M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 2002, 19, 569–577. [Google Scholar] [CrossRef]
- Chuang, Y.M.; He, L.; Pinn, M.L.; Tsai, Y.C.; Cheng, M.A.; Farmer, E.; Karakousis, P.C.; Hung, C.F. Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell. Mol. Immunol. 2021, 18, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Kung, Y.-J.; Lam, B.; Tseng, S.-H.; MacDonald, A.; Tu, H.-F.; Wang, S.; Lin, J.; Tsai, Y.C.; Wu, T.C.; Hung, C.-F. Localization of Salmonella and albumin-IL-2 to the tumor microenvironment augments anticancer T cell immunity. J. Biomed. Sci. 2022, 29, 57. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.H.; Cheng, M.A.; Farmer, E.; Ferrall, L.; Kung, Y.J.; Lam, B.; Lim, L.; Wu, T.C.; Hung, C.F. Albumin and interferon-beta fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity. J. Immunother. Cancer 2022, 10, e004342. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.; Guarnieri, F.G.; Staveley-O’Carroll, K.F.; Levitsky, H.I.; August, J.T.; Pardoll, D.M.; Wu, T.C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996, 56, 21–26. [Google Scholar]
- Hsieh, C.-J.; Kim, T.W.; Hung, C.-F.; Juang, J.; Moniz, M.; Boyd, D.A.; He, L.; Chen, P.-J.; Chen, C.-H.; Wu, T.-C. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 2004, 22, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- DeLong, J.H.; Hall, A.O.; Konradt, C.; Coppock, G.M.; Park, J.; Pritchard, G.H.; Hunter, C.A. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. J. Immunol. 2018, 200, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.U.; Kwon, H.J.; Ko, H.J.; Byun, Y.H.; Seong, B.L.; Uematsu, S.; Akira, S.; Kweon, M.N. Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 2011, 7, e1001304. [Google Scholar] [CrossRef] [PubMed]
- Dyevoich, A.M.; Haas, K.M. Type I IFN, Ly6C+ cells, and Phagocytes Support Suppression of Peritoneal Carcinomatosis Elicited by a TLR and CLR Agonist Combination. Mol. Cancer Ther. 2020, 19, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Walunas, T.L.; Bruce, D.S.; Dustin, L.; Loh, D.Y.; Bluestone, J.A. Ly-6C is a marker of memory CD8+ T cells. J. Immunol. 1995, 155, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
ANTIBODIES | CATALOG | COMPANY |
---|---|---|
APC/Cyanine7 anti-mouse CD62L Antibody | 104427 | BioLegend (San Diego, CA, USA) |
BD Horizon™ APC-R700 Rat Anti-Mouse CD44 | 565480 | BD Biosciences (Franklin Lakes, NJ, USA) |
Brilliant Violet 421™ anti-mouse Ly-6C Antibody | 128031 | BioLegend (San Diego, CA, USA) |
FITC anti-mouse CD8a Antibody | 100705 | BioLegend (San Diego, CA, USA) |
PerCP/Cyanine5.5 anti-mouse Ly-6C Antibody | 128011 | BioLegend (San Diego, CA, USA) |
APC anti-mouse TNF-α Antibody | 506307 | BioLegend (San Diego, CA, USA) |
APC anti-mouse CD69 Antibody | 104513 | BioLegend (San Diego, CA, USA) |
Brilliant Violet 785™ anti-mouse IFN-γ Antibody | 505837 | BioLegend (San Diego, CA, USA) |
APC/Fire™ 750 anti-mouse CD8a Antibody | 100766 | BioLegend (San Diego, CA, USA) |
Zombie AquaTM Fixable Viability Kit | 423102 | BioLegend (San Diego, CA, USA) |
HLA-A*02:01 HPV16 E7 Tetramer-YMLDLQPETT-PE | TB-M048-1 | MBL International (Schaumburg, IL, USA) |
Brilliant Violet 650™ anti-mouse CD8a Antibody | 100742 | BioLegend (San Diego, CA, USA) |
Brilliant Violet 785™ anti-mouse CD3 Antibody | 100231 | BioLegend (San Diego, CA, USA) |
CD44 Monoclonal Antibody (IM7), PE | 12-0441-82 | Thermo Fisher Scientific (San Diego, CA, USA) |
FITC Anti-CD8 alpha antibody [KT15] | Ab22504 | Abcam (Cambridge, United Kingdom) |
Brilliant Violet 785™ anti-mouse CD3 Antibody | 100231 | BioLegend (San Diego, CA, USA) |
EasySep™ Mouse Naïve CD8+ T Cell Isolation Kit | 19858 | StemCell Technologies (Vancouver, BC, Canada) |
Ultra-LEAF™ Purified anti-mouse CD3 Antibody | 100238 | BioLegend (San Diego, CA, USA) |
Ultra-LEAF™ Purified anti-mouse CD28 Antibody | 102116 | BioLegend (San Diego, CA, USA) |
Invitrogen™ eBioscience™ Foxp3/Transcription Factor Staining Buffer Set | 50-112-8857 | Thermo Fisher Scientific (San Diego, CA, USA) |
Recombinant Mouse IFN-α (carrier-free) | 752804 | BioLegend (San Diego, CA, USA) |
Recombinant Mouse IFN-β1 (carrier-free) | 581304 | BioLegend (San Diego, CA, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, H.-F.; Tao, J.; Hu, M.-H.; Fan, D.; Tsai, Y.-C.; Wu, T.-C.; Hung, C.-F. Type I Interferon Modulates the Function of Ly6C High-Expressing Naïve CD8+ T Cells to Promote an Antitumor Response. Vaccines 2025, 13, 246. https://doi.org/10.3390/vaccines13030246
Tu H-F, Tao J, Hu M-H, Fan D, Tsai Y-C, Wu T-C, Hung C-F. Type I Interferon Modulates the Function of Ly6C High-Expressing Naïve CD8+ T Cells to Promote an Antitumor Response. Vaccines. 2025; 13(3):246. https://doi.org/10.3390/vaccines13030246
Chicago/Turabian StyleTu, Hsin-Fang, Julia Tao, Ming-Hung Hu, Darrell Fan, Ya-Chea Tsai, Tzyy-Choou Wu, and Chien-Fu Hung. 2025. "Type I Interferon Modulates the Function of Ly6C High-Expressing Naïve CD8+ T Cells to Promote an Antitumor Response" Vaccines 13, no. 3: 246. https://doi.org/10.3390/vaccines13030246
APA StyleTu, H.-F., Tao, J., Hu, M.-H., Fan, D., Tsai, Y.-C., Wu, T.-C., & Hung, C.-F. (2025). Type I Interferon Modulates the Function of Ly6C High-Expressing Naïve CD8+ T Cells to Promote an Antitumor Response. Vaccines, 13(3), 246. https://doi.org/10.3390/vaccines13030246