Development of a Potent Stabilizer for Long-Term Storage of Foot-and-Mouth Disease Vaccine Antigens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Vaccine Antigens
2.2. Buffers and Excipients
2.3. S particle Quantification
2.4. Stability Tests
2.5. Transmission Electron Microscopy
2.6. Statistical Analysis
3. Results
3.1. Identification of FMDV O/SKR/JC/2014 (O JC) as a Highly Unstable Model Virus
3.2. Screening of Buffers during Short-Term Storage of FMDV O JC Vaccine Antigen
3.3. Effectivity of Candidate Buffers for Long-Term Storage of FMDV O JC Vaccine Antigen
3.4. Effectivity of the Combinational Use of a Selected Buffer and Excipients
3.5. Compatibility of the Candidate Stabilizer Composition with Other FMDV Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [Green Version]
- Hutber, A.M.; Kitching, R.P.; Fishwick, J.C.; Bires, J. Foot-and-mouth disease: The question of implementing vaccinal control during an epidemic. Vet. J. 2011, 188, 18–23. [Google Scholar] [CrossRef]
- Malik, N.; Kotecha, A.; Gold, S.; Asfor, A.; Ren, J.; Huiskonen, J.T.; Tuthill, T.J.; Fry, E.E.; Stuart, D.I. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathog. 2017, 13, e1006607. [Google Scholar] [CrossRef] [Green Version]
- Doel, T.R.; Chong, W.K. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch. Virol. 1982, 73, 185–191. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Seago, J.; Perez, E.; Charleston, B.; Eble, P.L.; Dekker, A. Isolation of single-domain antibody fragments that preferentially detect intact (146S) particles of foot-and-mouth disease virus for use in vaccine quality control. Front. Immunol. 2017, 8, 960. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Li, P.; Bao, H.; Sun, P.; Bai, X.; Bai, Q.; Li, N.; Ma, X.; Cao, Y.; Fu, Y.; et al. Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines. Appl. Microbiol. Biotechnol. 2020, 104, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Arguello, S.; Rincon, V.; Rodriguez-Huete, A.; Martinez-Salas, E.; Belsham, G.J.; Valbuena, A.; Mateu, M.G. Thermostability of the foot-and-mouth disease virus capsid is modulated by lethal and viability-restoring compensatory amino acid substitutions. J. Virol. 2019, 93, e02293–e02318. [Google Scholar] [CrossRef] [Green Version]
- Porta, C.; Kotecha, A.; Burman, A.; Jackson, T.; Ren, J.; Loureiro, S.; Jones, I.M.; Fry, E.E.; Stuart, D.I.; Charleston, B. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog. 2013, 9, e1003255. [Google Scholar] [CrossRef]
- Fellowes, O.N. Freeze-drying of foot-and-mouth disease virus and storage stability of the infectivity of dried virus at 4 C. Appl. Microbiol. 1965, 13, 496–499. [Google Scholar] [CrossRef]
- Malenovska, H. The influence of stabilizers and rates of freezing on preserving of structurally different animal viruses during lyophilization and subsequent storage. J. Appl. Microbiol. 2014, 117, 1810–1819. [Google Scholar] [CrossRef]
- Ferris, N.P.; Philpot, R.M.; Oxtoby, J.M.; Armstrong, R.M. Freeze-drying foot-and-mouth disease virus antigens. I. Infectivity studies. J. Virol. Methods. 1990, 29, 43–52. [Google Scholar] [CrossRef]
- Pelliccia, M.; Andreozzi, P.; Paulose, J.; D’Alicarnasso, M.; Cagno, V.; Donalisio, M.; Civra, A.; Broeckel, R.M.; Haese, N.; Silva, P.J.; et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 2016, 7, 13520. [Google Scholar] [CrossRef]
- Pastorino, B.; Baronti, C.; Gould, E.A.; Charrel, R.N.; de Lamballerie, X. Effect of chemical stabilizers on the thermostability and infectivity of a representative panel of freeze dried viruses. PLoS ONE 2015, 10, e0118963. [Google Scholar] [CrossRef] [PubMed]
- Schley, D.; Tanaka, R.J.; Leungchavaphongse, K.; Shahrezaei, V.; Ward, J.; Grant, C.; Charleston, B.; Rhodes, C.J. Modelling the influence of foot-and-mouth disease vaccine antigen stability and dose on the bovine immune response. PLoS ONE 2012, 7, e30435. [Google Scholar]
- Bahnemann, H.G. Binary Ethylenimine as an Inactivant for Foot-and-Mouth Disease Virus and its Application for Vaccine Production. Arch. Virol. 1975, 47, 47–56. [Google Scholar] [CrossRef]
- Barteling, S.J.; Meloen, R.H. A simple method for the quantification of 140S particles of foot-and-mouth disease virus (FMDV). Arch Gesamte Virusforsch. 1974, 45, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Doel, T.R.; Fletton, B.W.; Staple, R.F. Further developments in the quantification of small RNA viruses by U.V. photometry of sucrose density gradients. Dev. Biol. Stand. 1981, 50, 209–219. [Google Scholar]
- Spitteler, M.A.; Romo, A.; Magi, N.; Seo, M.G.; Yun, S.J.; Barroumeres, F.; Régulier, E.G.; Bellinzoni, R. Validation of a high performance liquid chromatography method for quantitation of foot-and-mouth disease virus antigen in vaccines and vaccine manufacturing. Vaccine 2019, 37, 5288–5296. [Google Scholar] [CrossRef]
- Scott, K.A.; Kotecha, A.; Seago, J.; Ren, J.; Fry, E.E.; Stuart, D.I.; Charleston, B.; Maree, F.F. SAT2 foot-and-mouth disease virus structurally modified for increased thermostability. J. Virol. 2017, 91, e02312–e02316. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.E.; Ko, M.K.; Choi, J.H.; Shin, S.H.; Jo, H.; You, S.H.; Lee, M.J.; Kim, S.; Kim, B.; Park, J. New foot-and-mouth disease vaccine, O JC-R, induce complete protection to pigs against SEA topotype viruses occurred in South Korea, 2014–2015. J. Vet. Sci. 2019, 20, e42. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Fijten, H.P.; Westra, D.F.; Dekker, A. Stabilizing effects of excipients on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles during storage as oil-emulsion vaccine. Vaccine 2015, 33, 2477–2484. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.; Gabas, A.L. Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application, 1st ed.; Victor Dalmont: Paris, France, 1856; pp. 562–594. [Google Scholar]
- Li, B.; Dobosz, K.M.; Zhang, H.; Schiffman, J.D.; Saranteas, K.; Henson, M.A. Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods. Chem. Eng. Sci. 2019, 208, 115162. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Biological Standardization: Fifty-Sixth Report; World Health Organization: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/handle/10665/43594 (accessed on 5 February 2021).
- Loughney, J.W.; Lancaster, C.; Ha, S.; Rustandi, R.R. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology. Anal. Biochem. 2014, 461, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, K.; Masuda, K.; DeBoer, D.J.; Sakaguchi, M.; Tsujimoto, H. Immunoblot analysis for IgE-reactive components of fetal calf serum in dogs that developed allergic reactions after non-rabies vaccination. Vet. Immunol. Immunopathol. 2007, 115, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Bu, G.; Luo, Y.; Chen, F.; Liu, K.; Zhu, T. Milk processing as a tool to reduce cow’s milk allergenicity: A mini-review. Dairy Sci. Technol. 2013, 93, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhao, Q.; Li, Z.; Sun, L.; Ma, G.; Zhang, S.; Su, Z. Stabilization study of inactivated foot and mouth disease virus vaccine by size-exclusion HPLC and differential scanning calorimetry. Vaccine 2017, 35, 2413–2419. [Google Scholar] [CrossRef]
- Walters, R.H.; Bhatnagar, B.; Tchessalov, S.; Izutsu, K.I.; Tsumoto, K.; Ohtake, S. Next generation drying technologies for pharmaceutical applications. J. Pharm. Sci. 2014, 103, 2673–2695. [Google Scholar] [CrossRef] [PubMed]
- Kamerzell, T.J.; Esfandiary, R.; Joshi, S.B.; Middaugh, C.R.; Volkin, D.B. Protein-excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Adv. Drug. Deliv. Rev. 2011, 63, 1118–1159. [Google Scholar] [CrossRef]
- Kolhe, P.; Amend, E.; Singh, S.K. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol. Prog. 2010, 26, 727–733. [Google Scholar] [CrossRef]
- Gokarn, Y.R.; Fesinmeyer, R.M.; Saluja, A.; Razinkov, V.; Chase, S.F.; Laue, T.M.; Brems, D.N. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci. 2011, 20, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Jones, L.S.; Dong, A.; Kendrick, B.S.; Chang, B.S.; Manning, M.C.; Randolph, T.W.; Carpenter, J.F. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci. 2003, 12, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 2007, 33, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Ejima, D.; Tsumoto, K.; Obeyama, N.; Tanaka, Y.; Kita, Y.; Timasheff, S.N. Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. Biophys. Chem. 2007, 127, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.M.C.; Petrovajova, D.; Hornakova, T. Viral vaccine stabilizers: Status and trends. Acta. Virol. 2017, 61, 231–239. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.-Y.; Kim, H.; Park, S.Y.; Park, S.H.; Kim, J.-S.; Park, J.-W.; Park, J.-H.; Ko, Y.-J. Development of a Potent Stabilizer for Long-Term Storage of Foot-and-Mouth Disease Vaccine Antigens. Vaccines 2021, 9, 252. https://doi.org/10.3390/vaccines9030252
Kim A-Y, Kim H, Park SY, Park SH, Kim J-S, Park J-W, Park J-H, Ko Y-J. Development of a Potent Stabilizer for Long-Term Storage of Foot-and-Mouth Disease Vaccine Antigens. Vaccines. 2021; 9(3):252. https://doi.org/10.3390/vaccines9030252
Chicago/Turabian StyleKim, Ah-Young, Hyejin Kim, Sun Young Park, Sang Hyun Park, Jae-Seok Kim, Jung-Won Park, Jong-Hyeon Park, and Young-Joon Ko. 2021. "Development of a Potent Stabilizer for Long-Term Storage of Foot-and-Mouth Disease Vaccine Antigens" Vaccines 9, no. 3: 252. https://doi.org/10.3390/vaccines9030252
APA StyleKim, A. -Y., Kim, H., Park, S. Y., Park, S. H., Kim, J. -S., Park, J. -W., Park, J. -H., & Ko, Y. -J. (2021). Development of a Potent Stabilizer for Long-Term Storage of Foot-and-Mouth Disease Vaccine Antigens. Vaccines, 9(3), 252. https://doi.org/10.3390/vaccines9030252