The Application of Exercise Training for Diabetic Peripheral Neuropathy
Abstract
:1. Introduction
2. Pathophysiology
3. Methodological Approach
4. Exercise-Based Interventions
4.1. Mobility and Functional Movement-Based Exercise Training
4.2. Aerobic Exercise Training
4.2.1. Sensorimotor Function
4.2.2. Physical Fitness
4.3. Resistance Exercise Training
4.3.1. Glycemic Control
4.3.2. Microvascular Perfusion
4.3.3. Neural Drive
4.4. Concurrent Aerobic and Resistance Exercise Training
Sensorimotor Function
4.5. Balance and Proprioception-Based Exercise Training
4.6. Whole-Body Vibration Exercise Training
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2020.
- Chong, M.S.; Hester, J. Diabetic painful neuropathy: Current and future treatment options. Drugs 2007, 67, 569–585. [Google Scholar] [CrossRef] [PubMed]
- Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig. 2010, 2, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2016, 40, 136–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittel, D.C.; Bittel, A.J.; Tuttle, L.J.; Hastings, M.; Commean, P.K.; Mueller, M.J.; Cade, W.T.; Sinacore, D.R. Adipose tissue content, muscle performance and physical function in obese adults with type 2 diabetes mellitus and peripheral neuropathy. J. Diabetes Its Complicat. 2015, 29, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.J.; Tuttle, L.J.; Lemaster, J.W.; Strube, M.J.; McGill, J.B.; Hastings, M.K.; Sinacore, D.R. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2013, 94, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Kruse, R.L.; LeMaster, J.W.; Madsen, R.W. Fall and Balance Outcomes After an Intervention to Promote Leg Strength, Balance, and Walking in People With Diabetic Peripheral Neuropathy: “Feet First” Randomized Controlled Trial. Phys. Ther. 2010, 90, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- Sartor, C.D.; Hasue, R.H.; Cacciari, L.P.; Butugan, M.K.; Watari, R.; Pássaro, A.C.; Giacomozzi, C.; Sacco, I.C. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: Results of a randomized controlled trial. BMC Musculoskelet. Disord. 2014, 15, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, D.M.; Williams, E.R.; Cross, J.M.; Riedinger, B.R.; Meyer, R.A.; Abela, G.S.; Slade, J.M. Aerobic exercise improves microvascular function in older adults. Med. Sci. Sports Exerc. 2019, 51, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Szyguła, R.; Wierzbicka, M.; Sondel, G. Influence of 8-week aerobic training on the skin microcirculation in patients with ischaemic heart disease. J. Aging Res. 2020, 2020, 4602067. [Google Scholar] [CrossRef]
- Campbell, A.; Grace, F.; Ritchie, L.; Beaumont, A.; Sculthorpe, N. Long-term aerobic exercise improves vascular function into old age: A systematic review, meta-analysis and meta regression of observational and interventional studies. Front. Physiol. 2019, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unhjem, R.; Tøien, T.; Kvellestad, A.C.G.; Øren, T.S.; Wang, E. External resistance is imperative for training-induced efferent neural drive enhancement in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 224–232. [Google Scholar] [CrossRef]
- Tøien, T.; Unhjem, R.; Øren, T.S.; Kvellestad, A.C.G.; Hoff, J.; Wang, E. Neural plasticity with age: Unilateral maximal strength training augments efferent neural drive to the contralateral limb in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 596–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Feyter, H.M.; Praet, S.F.; Broek, N.M.V.D.; Kuipers, H.; Stehouwer, C.D.; Nicolay, K.; Prompers, J.; van Loon, L.J. Exercise Training Improves Glycemic Control in Long-Standing Insulin-Treated Type 2 Diabetic Patients. Diabetes Care 2007, 30, 2511–2513. [Google Scholar] [CrossRef] [Green Version]
- Snowling, N.J.; Hopkins, W.G. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: A meta-analysis. Diabetes Care 2006, 29, 2518–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehouwer, C.D.A. Microvascular dysfunction and hyperglycemia: A vicious cycle with widespread consequences. Diabetes 2018, 67, 1729–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, A.K.; Nones, C.F.; Reis, R.C.; Chichorro, J.G.; Cunha, J.M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes 2015, 6, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol. 2002, 50, 325–392. [Google Scholar] [PubMed]
- Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev. 2007, Cd004572. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Obrosova, I.G.; Mabley, J.; Szabó, C. Role of Nitrosative Stress and Peroxynitrite in the Pathogenesis of Diabetic Complications. Emerging New Therapeutical Strategies. Curr. Med. Chem. 2005, 12, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, L.; Molyneaux, L.; Yue, D.K. The Relationship Among Pain, Sensory Loss, and Small Nerve Fibers in Diabetes. Diabetes Care 2006, 29, 883–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadic, A.J.; Borić, M.; Vidak, M.; Ferhatovic, L.; Puljak, L. Changes in epidermal thickness and cutaneous innervation during maturation in long-term diabetes. J. Tissue Viability 2014, 23, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Shun, C.-T.; Chang, Y.; Wu, H.; Hsieh, S.; Lin, W.; Lin, Y.; Tai, T.; Hsieh, S.-T. Skin denervation in type 2 diabetes: Correlations with diabetic duration and functional impairments. Brain 2004, 127 (Pt 7), 1593–1605. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W. Mechanisms of diabetic neuron damage: Molecular pathways. Handb. Clin. Neurol. 2014, 126, 379–399. [Google Scholar]
- Francis, G.J.; Martínez, J.A.; Liu, W.Q.; Zochodne, D.W.; Hanson, L.R.; Frey, W.H.; Toth, C. Motor End Plate Innervation Loss in Diabetes and the Role of Insulin. J. Neuropathol. Exp. Neurol. 2011, 70, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, C.J.; E Powell, K.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Corbin, C.B. Concepts in Physical Education: With Laboratories and Experiments, 4th ed.; W.C. Brown: Dubuque, IA, USA, 1983. [Google Scholar]
- El-Refay, B.H.; Ali, O.I. Efficacy of Exercise Rehabilitation Program in Improving Gait of Diabetic Neuropathy Patients. Med. J. Cairo Univ. 2014, 82, 225–232. [Google Scholar]
- Kanchanasamut, W.; Pensri, P. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study. Diabet. Foot Ankle 2017, 8, 1287239. [Google Scholar] [CrossRef]
- Win, M.; Fukai, K.; Nyunt, H.H.; Linn, K.Z. Hand and foot exercises for diabetic peripheral neuropathy: A randomized controlled trial. Nurs. Health Sci. 2020, 22, 416–426. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Ferreira, J.; Silva, É.Q.; Donini, A.; Cruvinel-Júnior, R.H.; Verissímo, J.L.; Bus, S.A.; Sacco, I.C.N. Feasibility and preliminary efficacy of a foot-ankle exercise program aiming to improve foot-ankle functionality and gait biomechanics in people with diabetic neuropathy: A randomized controlled trial. Sensors 2020, 20, 5129. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Maiya, A.; Shastry, B. Effect of aerobic exercise on quality of life in population with diabetic peripheral neuropathy in type 2 diabetes: A single blind, randomized controlled trial. Qual. Life Res. 2014, 23, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Maiya, A.G.; Shastry, B.A. Effect of aerobic exercise on peripheral nerve functions of population with diabetic peripheral neuropathy in type 2 diabetes: A single blind, parallel group randomized controlled trial. J. Diabetes Complicat. 2014, 28, 332–339. [Google Scholar] [CrossRef]
- Morrison, S.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J. Diabetes Complicat. 2014, 28, 715–722. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Gao, X.; Wu, J.; Jiao, X.; Zhao, J.; Lv, X. Investigating the role of backward walking therapy in alleviating plantar pressure of patients with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 2014, 95, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Hamed, N.S.; Abd-Ellatif, N.A. Effect of high intensity interval training on diabetic obese women with polyneuropathy: A randomized controlled clinical trial. Phys. Ther. Rehabil. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Kluding, P.M.; Pasnoor, M.; Singh, R.; D’Silva, L.J.; Yoo, M.; Billinger, S.A.; LeMaster, J.W.; Dimachkie, M.M.; Herbelin, L.; Wright, D.E. Safety of Aerobic Exercise in People With Diabetic Peripheral Neuropathy: Single-Group Clinical Trial. Phys. Ther. 2015, 95, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, M.; D’Silva, L.J.; Martin, K.; Sharma, N.K.; Pasnoor, M.; LeMaster, J.W.; Kluding, P.M. Pilot Study of Exercise Therapy on Painful Diabetic Peripheral Neuropathy. Pain Med. 2015, 16, 1482–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, S.; Maiya, A.; Shastry, B.A.; Guddattu, V. Analysis of postural control during quiet standing in a population with diabetic peripheral neuropathy undergoing moderate intensity aerobic exercise training: A single blind, randomized controlled trial. Am. J. Phys. Med. Rehabil. 2016, 95, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Billinger, S.A.; Sisante, J.V.; Alqahtani, A.S.; Pasnoor, M.; Kluding, P.M. Aerobic exercise improves measures of vascular health in diabetic peripheral neuropathy. Int. J. Neurosci. 2017, 127, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, F.; Nikookheslat, S.; Salekzamani, Y.; Boule, N.; Jafari, A. Effect of aerobic training on nerve conduction in men with type 2 diabetes and peripheral neuropathy: A randomized controlled trial. Neurophysiol. Clin. 2018, 48, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Najafi, S.; Rezasoltani, Z.; Sanati, E.; Zamani, N.; Dadarkhah, A. Effects of aerobic exercise on electrophysiological features of diabetic peripheral neuropathy: Single-blind clinical trial. Top. Geriatr. Rehabil. 2019, 35, 164–169. [Google Scholar] [CrossRef]
- Gholami, F.; Nazari, H.; Alimi, M. Cycle training improves vascular function and neuropathic symptoms in patients with type 2 diabetes and peripheral neuropathy: A randomized controlled trial. Exp. Gerontol. 2020, 131, 110799. [Google Scholar] [CrossRef]
- Handsaker, J.C.; Brown, S.J.; Bowling, F.L.; Maganaris, C.N.; Boulton, A.J.; Reeves, N.D. Resistance exercise training increases lower limb speed of strength generation during stair ascent and descent in people with diabetic peripheral neuropathy. Diabet Med. 2016, 33, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kluding, P.M.; Pasnoor, M.; Singh, R.; Jernigan, S.; Farmer, K.; Rucker, J.; Sharma, N.K.; Wright, D.E. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Its Complicat. 2012, 26, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taveggia, G.; Villafañe, J.H.; Vavassori, F.; Lecchi, C.; Borboni, A.; Negrini, S. Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: A randomized clinical trial. J. Manip. Physiol. Ther. 2014, 37, 242–252. [Google Scholar] [CrossRef]
- Nadi, M.; Marandi, S.M.; Esfarjani, F.; Saleki, M.; Mohammadi, M. The comparison between effects of 12 weeks combined training and vitamin d supplement on improvement of sensory-motor neuropathy in type 2 diabetic women. Adv. Biomed. Res. 2017, 6, 55. [Google Scholar] [PubMed]
- Stubbs, E.B.J.; Fisher, M.A.; Miller, C.M.; Jelinek, C.; Butler, J.; McBurney, C.; Collins, E.G. Randomized Controlled Trial of Physical Exercise in Diabetic Veterans With Length-Dependent Distal Symmetric Polyneuropathy. Front. Neurosci. 2019, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyedizadeh, S.H.; Cheragh-Birjandi, S.; Nia, M.R.H. The Effects of Combined Exercise Training (Resistance-Aerobic) on Serum Kinesin and Physical Function in Type 2 Diabetes Patients with Diabetic Peripheral Neuropathy (Randomized Controlled Trials). J. Diabetes Res. 2020, 2020, 6978128. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Petrofsky, J.S.; Lee, S.S.W.; Lee, K.J.; Yim, J.E. Effects of an Exercise Program on Balance and Trunk Proprioception in Older Adults with Diabetic Neuropathies. Diabetes Technol. Ther. 2011, 13, 803–811. [Google Scholar] [CrossRef] [PubMed]
- LeMaster, J.W.; Mueller, M.J.; E Reiber, G.; Mehr, D.R.; Madsen, R.W.; Conn, V. Effect of Weight-Bearing Activity on Foot Ulcer Incidence in People With Diabetic Peripheral Neuropathy: Feet First Randomized Controlled Trial. Phys. Ther. 2008, 88, 1385–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allet, L.; Armand, S.; Aminian, K.; Pataky, Z.; Golay, A.; de Bie, R.; de Bruin, E.D. An exercise intervention to improve diabetic patients’ gait in a real-life environment. Gait Posture 2010, 32, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Eftekhar-Sadat, B.; Azizi, R.; Aliasgharzadeh, A.; Toopchizadeh, V.; Ghojazadeh, M. Effect of balance training with Biodex Stability System on balance in diabetic neuropathy. Ther. Adv. Endocrinol. Metab. 2015, 6, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battesha, H.H.M.; Ahmed, G.M.; A Amer, H.; El Gohary, A.M.; Ragab, W.M. Effect of core stability exercises and desensitisation therapy on limit of stability in diabetic peripheral neuropathy patients. Int. J. Ther. Rehabil. 2018, 25, 128–134. [Google Scholar] [CrossRef]
- Boslego, L.A.W.; Phillips, C.E.M.; E Atler, K.; Tracy, B.L.; Van Puymbroeck, M.; A Schmid, A. Impact of yoga on balance, balance confidence and occupational performance for adults with diabetic peripheral neuropathy: A pilot study. Br. J. Occup. Ther. 2017, 80, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Kanjirathingal, J.P.; Mullerpatan, R.P.; Nehete, G.; Raghuram, N. Effect of yogasana intervention on standing balance performance among people with diabetic peripheral neuropathy: A pilot study. Int. J. Yoga 2021, 14, 60–70. [Google Scholar]
- Ahn, S.; Song, R. Effects of Tai Chi Exercise on glucose control, neuropathy scores, balance, and quality of life in patients with type 2 diabetes and neuropathy. J. Altern. Complement. Med. 2012, 18, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handsaker, J.C.; Brown, S.J.; Petrovic, M.; Bowling, F.L.; Rajbhandari, S.; E Marple-Horvat, D.; Boulton, A.J.; Reeves, N.; Marple-Horvat, D. Combined exercise and visual gaze training improves stepping accuracy in people with diabetic peripheral neuropathy. J. Diabetes Its Complicat. 2019, 33, 107404. [Google Scholar] [CrossRef] [PubMed]
- Grewal, G.S.; Schwenk, M.; Lee-Eng, J.; Parvaneh, S.; Bharara, M.; Menzies, R.A.; Talal, T.K.; Armstrong, D.G.; Najafi, B. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: A randomized controlled trial. Gerontology 2015, 61, 567–574. [Google Scholar] [CrossRef]
- Ahmad, I.; Noohu, M.M.; Verma, S.; Singla, D.; Hussain, M.E. Effect of sensorimotor training on balance measures and proprioception among middle and older age adults with diabetic peripheral neuropathy. Gait Posture 2019, 74, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Hung, E.S.; Chen, S.C.; Chang, F.C.; Shiao, Y.; Peng, C.W.; Lai, C.H. Effects of interactive video game-based exercise on balance in diabetic patients with peripheral neuropathy: An open-level, crossover pilot study. Evid. Based Complement. Altern. Med. 2019, 2019, 4540709. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M. Effect of ankle proprioceptive training on gait and risk of falling in patients with diabetic neuropathy: A randomized controlled trial. Int. J. Diabetes Res. 2019, 2, 40–45. [Google Scholar]
- Kessler, N.J.; Hong, J. Whole body vibration therapy for painful diabetic peripheral neuropathy: A pilot study. J. Bodyw. Mov. Ther. 2013, 17, 518–522. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Song, C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J. Exp. Med. 2013, 231, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, N.J.; Lockard, M.M.; Fischer, J. Whole body vibration improves symptoms of diabetic peripheral neuropathy. J. Bodyw. Mov. Ther. 2020, 24, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Kohl, H.W.; Barlow, C.E., 3rd; Paffenbarger, R.S., Jr.; Gibbons, L.W.; Macera, C.A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 1995, 273, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Kohl, H.W., 3rd; Paffenbarger, R.S., Jr.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.M. Physical activity and coronary heart disease in men: The harvard alumni health study. Circulation 2000, 102, 975–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-Y.; Haskell, W.L.; Farrell, S.W.; LaMonte, M.J.; Blair, S.N.; Curtin, L.R.; Hughes, J.P.; Burt, V.L. Cardiorespiratory Fitness Levels Among US Adults 20–49 Years of Age: Findings From the 1999–2004 National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2010, 171, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Cleve. Clin. J. Med. 2017, 84, S15–S21. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The american college of sports medicine and the american diabetes association: Joint position statement. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Scott, C.A.; Mao, C.; Tang, J.; Farmer, A.J. Resistance exercise versus aerobic exercise for type 2 diabetes: A systematic review and meta-analysis. Sports Med. 2014, 44, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, N.; Curtis, A.J.; Heritier, S.; Gadowski, A.M.; Pavkov, M.E.; Kenealy, T.; Owens, D.R.; Thomas, R.L.; Song, S.; Wong, J.; et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: Systematic review and meta-analyses. Diabetologia 2021, 64, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Wingard, D.; Wong, N.; Goldberg, R. Heart Disease and Diabetes. In Diabetes in America; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, USA, 2018. [Google Scholar]
- Herder, C.; Roden, M.; Ziegler, D. Novel insights into sensorimotor and cardiovascular autonomic neuropathy from recent-onset diabetes and population-based cohorts. Trends Endocrinol. Metab. 2019, 30, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Hordern, M.D.; Miller, T.; Chyun, D.A.; Bertoni, A.G.; Blumenthal, R.S.; Philippides, G.; Rocchini, A. Exercise training for type 2 diabetes mellitus: Impact on cardiovascular risk: A scientific statement from the American Heart Association. Circulation 2009, 119, 3244–3262. [Google Scholar] [CrossRef] [PubMed]
- Aminoff, M.J.; Albers, J.W. Electrophysiologic techniques in the evaluation of patients with suspected neurotoxic disorders. In Electrodiagnosis in Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2005; pp. 795–811. [Google Scholar]
- Kikkawa, Y.; Kuwabara, S.; Misawa, S.; Tamura, N.; Kitano, Y.; Ogawara, K.; Hattori, T. The acute effects of glycemic control on nerve conduction in human diabetics. Clin. Neurophysiol. 2005, 116, 270–274. [Google Scholar] [CrossRef]
- Fuchsjäger-Mayrl, G.; Pleiner, J.; Wiesinger, G.F.; Sieder, A.E.; Quittan, M.; Nuhr, M.J.; Francesconi, C.; Seit, H.-P.; Francesconi, M.; Schmetterer, L.; et al. Exercise Training Improves Vascular Endothelial Function in Patients with Type 1 Diabetes. Diabetes Care 2002, 25, 1795–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, D.L.; Earnest, C.P.; Blair, S.N.; Church, T.S. The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: Results from the DREW study. Br. J. Sports Med. 2012, 46, 753. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Choi, H.E.; Jung, H.; Kang, S.H.; Kim, J.H.; Byun, Y.S. Impact of aerobic exercise training on endothelial function in acute coronary syndrome. Ann. Rehabil. Med. 2014, 38, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Pearson, M.J.; Smart, N.A. Aerobic training intensity for improved endothelial function in heart failure patients: A systematic review and meta-analysis. Cardiol. Res. Pract. 2017, 2017, 2450202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, S.; Cai, X.; Yin, H.; Sun, Z.; Zügel, M.; Steinacker, J.M.; Schumann, U. Exercise training and endothelial function in patients with type 2 diabetes: A meta-analysis. Cardiovasc. Diabetol. 2018, 17, 64. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, R.; Hwang, M.-H.; Hamilton, M.T.; Park, Y. The effects of exercise on vascular endothelial function in type 2 diabetes: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 15. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Myers, J.; McAuley, P.; Lavie, C.J.; Despres, J.P.; Arena, R.; Kokkinos, P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: Their independent and interwoven importance to health status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar] [CrossRef] [PubMed]
- van Sloten, T.T.; Savelberg, H.H.; Duimel-Peeters, I.G.; Meijer, K.; Henry, R.M.; Stehouwer, C.D.; Schaper, N.C. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 2011, 91, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Sudore, R.L.; Karter, A.J.; Huang, E.S.; Moffet, H.H.; Laiteerapong, N.; Schenker, Y.; Adams, A.S.; Whitmer, R.A.; Liu, J.Y.; Miao, Y.; et al. Symptom Burden of Adults with Type 2 Diabetes Across the Disease Course: Diabetes & Aging Study. J. Gen. Intern. Med. 2012, 27, 1674–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Reusch, J.E.; Bridenstine, M.; Regensteiner, J.G. Type 2 diabetes mellitus and exercise impairment. Rev. Endocr. Metab. Disord. 2013, 14, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.A.; Reusch, J.E.; Levi, M.; Regensteiner, J.G. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 2007, 30, 2880–2885. [Google Scholar] [CrossRef] [Green Version]
- Gohel, M.G.; Chacko, A.N. Serum GGT activity and hsCRP level in patients with type 2 diabetes mellitus with good and poor glycemic control: An evidence linking oxidative stress, inflammation and glycemic control. J. Diabetes Metab. Disord. 2013, 12, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosado-Pérez, J.; Mendoza-Núñez, V.M. Relationship between aerobic capacity with oxidative stress and inflammation biomarkers in the blood of older mexican urban-dwelling population. Dose Response 2018, 16, 1559325818773000. [Google Scholar] [CrossRef] [Green Version]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Stone, M.H.; Stone, M.; Sands, W.A. Principles and Practice of Resistance Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Haff, G.; Triplett, N.T.; National, S.; Conditioning, A. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics Champaign: Champaign, IL, USA, 2016. [Google Scholar]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 2009, 23 (Suppl. S5), S60–S79. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Kodama, S.; Horikawa, C.; Fujihara, K.; Hirose, A.S.; Hirasawa, R.; Yachi, Y.; Ohara, N.; Shimano, H.; Hanyu, O.; et al. In Search of the Ideal Resistance Training Program to Improve Glycemic Control and its Indication for Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Sports Med. 2015, 46, 67–77. [Google Scholar] [CrossRef]
- Pesta, D.H.; Goncalves, R.L.S.; Madiraju, A.K.; Strasser, B.; Sparks, L.M. Resistance training to improve type 2 diabetes: Working toward a prescription for the future. Nutr. Metab. 2017, 14, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, C.; Hadley, E.C. The significance of sarcopenia in old age. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., 3rd; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630. [Google Scholar] [CrossRef]
- Iglay, H.B.; Thyfault, J.P.; Apolzan, J.W.; Campbell, W.W. Resistance training and dietary protein: Effects on glucose tolerance and contents of skeletal muscle insulin signaling proteins in older persons. Am. J. Clin. Nutr. 2007, 85, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Zachwieja, J.J.; Toffolo, G.; Cobelli, C.; Bier, D.M.; Yarasheski, K.E. Resistance exercise and growth hormone administration in older men: Effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism 1996, 45, 254–260. [Google Scholar] [CrossRef]
- Stirban, A. Microvascular dysfunction in the context of diabetic neuropathy. Curr. Diabetes Rep. 2014, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- García-Mateo, P.; García-de-Alcaraz, A.; Rodríguez-Peréz, M.A.; Alcaraz-Ibáñez, M. Effects of resistance training on arterial stiffness in healthy people: A systematic review. J. Sports Sci. Med. 2020, 19, 444–451. [Google Scholar] [PubMed]
- Maeda, S.; Otsuki, T.; Iemitsu, M.; Kamioka, M.; Sugawara, J.; Kuno, S.; Ajisaka, R.; Tanaka, H. Effects of leg resistance training on arterial function in older men. Br. J. Sports Med. 2006, 40, 867–869. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.; Williams, J.; Atherton, P.; Smith, K.; Hildebrandt, W.; Rankin, D.; Greenhaff, P.; Macdonald, I.; Rennie, M.J. Resistance exercise training improves age-related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to feeding and exercise. J. Appl. Physiol. 2012, 112, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.D.; Heffernan, K.S.; Ranadive, S.; Woods, J.A.; Fernhall, B. Effect of resistance training on biomarkers of vascular function and oxidative stress in young african-american and caucasian men. J. Hum. Hypertens. 2013, 27, 388–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.K.; Hurvitz, E.A. Peripheral neuropathy: A true risk factor for falls. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M211–M215. [Google Scholar] [CrossRef]
- Startzell, J.K.; Owens, D.A.; Mulfinger, L.M.; Cavanagh, P.R. Stair negotiation in older people: A review. J. Am. Geriatr. Soc. 2000, 48, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Tilling, L.M.; Darawil, K.; Britton, M. Falls as a complication of diabetes mellitus in older people. J. Diabetes Complicat. 2006, 20, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Handsaker, J.C.; Brown, S.J.; Bowling, F.L.; Cooper, G.; Maganaris, C.N.; Boulton, A.J.; Reeves, N.D. Contributory Factors to Unsteadiness During Walking Up and Down Stairs in Patients With Diabetic Peripheral Neuropathy. Diabetes Care 2014, 37, 3047–3053. [Google Scholar] [CrossRef] [Green Version]
- Bento, P.C.B.; Pereira, G.; Ugrinowitsch, C.; Rodacki, A. Peak torque and rate of torque development in elderly with and without fall history. Clin. Biomech. 2010, 25, 450–454. [Google Scholar] [CrossRef]
- Crozara, L.F.; Morcelli, M.H.; Marques, N.R.; Hallal, C.Z.; Spinoso, D.H.; de Almeida Neto, A.F.; Cardozo, A.C.; Gonçalves, M. Motor readiness and joint torque production in lower limbs of older women fallers and non-fallers. J. Electromyogr. Kinesiol. 2013, 23, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- LaRoche, D.P.; Cremin, K.A.; Greenleaf, B.; Croce, R.V. Rapid torque development in older female fallers and nonfallers: A comparison across lower-extremity muscles. J. Electromyogr. Kinesiol. 2010, 20, 482–488. [Google Scholar] [CrossRef]
- Ryan, A.S.; Ms, D.E.H.; Lott, M.E.; Ivey, F.M.; Fleg, J.; Hurley, B.F.; Goldberg, A.P. Insulin Action After Resistive Training in Insulin Resistant Older Men and Women. J. Am. Geriatr. Soc. 2001, 49, 247–253. [Google Scholar] [CrossRef]
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20 (Suppl. S5), S135–S145. [Google Scholar] [CrossRef]
- Knight, C.A.; Kamen, G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J. Electromyogr. Kinesiol. 2001, 11, 405–412. [Google Scholar] [CrossRef]
- Häkkinen, K.; Alen, M.; Kallinen, M.; Newton, R.U.; Kraemer, W.J. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur. J. Appl. Physiol. 2000, 83, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Škarabot, J.; Brownstein, C.G.; Casolo, A.; Del Vecchio, A.; Ansdell, P. The knowns and unknowns of neural adaptations to resistance training. Eur. J. Appl. Physiol. 2021, 121, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Liu-Ambrose, T.; Khan, K.M.; Eng, J.J.; Janssen, P.A.; Lord, S.R.; McKay, H.A. Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: A 6-month randomized, controlled trial. J. Am. Geriatr. Soc. 2004, 52, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Nyberg, S.K.; Hoff, J.; Zhao, J.; Leivseth, G.; Tørhaug, T.; Husby, O.S.; Helgerud, J.; Richardson, R.S. Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: Implications for physical function and fall prevention. Exp. Gerontol. 2017, 91, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Emam, A.A.; Gad, A.M.; Ahmed, M.M.; Assal, H.S.; Mousa, S.G. Quantitative assessment of posture stability using computerised dynamic posturography in type 2 diabetic patients with neuropathy and its relation to glycaemic control. Singap. Med. J. 2009, 50, 614–618. [Google Scholar]
- Simoneau, G.G.; Ulbrecht, J.S.; Derr, J.A.; Becker, M.B.; Cavanagh, P.R. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care 1994, 17, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Xiao, T.; Cao, C.; Smith, L.; Imm, K.; Grabovac, I.; Waldhoer, T.; Zhang, Y.; Yeung, A.; Demurtas, J.; et al. Tai Chi for Chronic Illness Management: Synthesizing Current Evidence from Meta-Analyses of Randomized Controlled Trials. Am. J. Med. 2021, 134, 194–205.e12. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.M.; Maher, C.; Lam, P.; Ferreira, M.L.; Latimer, J. Tai chi exercise for treatment of pain and disability in people with persistent low back pain: A randomized controlled trial. Arthritis Rheum. 2011, 63, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.; Wang, C.; Dong, X.; Ding, M. The effects of tai chi on type 2 diabetes mellitus: A meta-analysis. J. Diabetes Res. 2018, 2018, 7350567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, J.; Liou, C.; Wang, P.; Yeh, S.; Lin, L.; Lo, S.; Tsai, F. Effect of 12-week Tai Chi Chuan exercise on peripheral nerve modulation in patients with type 2 diabetes mellitus. J. Rehabil. Med. 2009, 41, 924–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, X.; Liu, S.; Lu, F.; Shi, X.; Guo, X. Efficacy and safety of tai chi for parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e99377. [Google Scholar] [CrossRef]
- Chen, C.H.; Yen, M.; Fetzer, S.; Lo, L.H.; Lam, P. The effects of tai chi exercise on elders with osteoarthritis: A longitudinal study. Asian Nurs. Res. 2008, 2, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Lee, E.O.; Lam, P.; Bae, S.C. Effects of tai chi n pain, balance, muscle strength, and perceived difficulties in physical functioning in older women with osteoarthritis: A randoexercise omized clinical trial. J. Rheumatol. 2003, 30, 2039–2044. [Google Scholar] [PubMed]
- Wu, W.; Liu, X.; Wang, L.; Wang, Z.; Hu, J.; Yan, J. Effects of tai chi on exercise capacity and health-related quality of life in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1253–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, G.Y.; McCarthy, E.P.; Wayne, P.M.; Stevenson, L.W.; Wood, M.J.; Forman, D.; Davis, R.B.; Phillips, R.S. Tai chi exercise in patients with chronic heart failure: A randomized clinical trial. Arch. Intern. Med. 2011, 171, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Gatts, S.K.; Woollacott, M.H. How tai chi improves balance: Biomechanics of recovery to a walking slip in impaired seniors. Gait Posture 2007, 25, 205–214. [Google Scholar] [CrossRef]
- Tsang, W.W.; Wong, V.S.; Fu, S.N.; Hui-Chan, C.W. Tai Chi improves standing balance control under reduced or conflicting sensory conditions. Arch. Phys. Med. Rehabil. 2004, 85, 129–137. [Google Scholar] [CrossRef]
- Au-Yeung, S.S.Y.; Hui-Chan, C.W.Y.; Tang, J.C.S. Short-form tai chi improves standing balance of people with chronic stroke. Neurorehabili. Neural Repair 2009, 23, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Evaluation of the effectiveness of tai chi for improving balance and preventing falls in the older population—A review. J. Am. Geriatr. Soc. 2002, 50, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Tölle, T.; Xu, X.; Sadosky, A.B. Painful diabetic neuropathy: A cross-sectional survey of health state impairment and treatment patterns. J. Diabetes Complicat. 2006, 20, 26–33. [Google Scholar] [CrossRef]
- Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med. 2008, 9, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Capodaglio, P.; Ferrario, C.; Tarabini, M.; Galli, M. Whole-body vibration training in obese subjects: A systematic review. PLoS ONE 2018, 13, e0202866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, A.; Kalfon, R.; Wong, A. Whole-body vibration training decreases ankle systolic blood pressure and leg arterial stiffness in obese postmenopausal women with high blood pressure. Menopause 2015, 22, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; García-López, D.; González-Gallego, J.; Garatachea, N. Whole-body vibration training increases muscle strength and mass in older women: A randomized-controlled trial. Scand. J. Med. Sci. Sports 2010, 20, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.; Beijer, Å.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J. Changes in motor unit activity and respiratory oxygen uptake during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training. J. Musculoskelet. Neuronal Interact. 2019, 19, 159–168. [Google Scholar]
- Karatrantou, K.; Bilios, P.; Bogdanis, G.C.; Ioakimidis, P.; Soulas, E.; Gerodimos, V. Effects of whole-body vibration training frequency on neuromuscular performance: A randomized controlled study. Biol. Sport 2019, 36, 273–282. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Burtscher, M.; Brazo-Sayavera, J.; Tomas-Carus, P.; Olcina, G.; Timón, R. Effects of whole-body vibration training combined with cyclic hypoxia on bone mineral density in elderly people. Front. Physiol. 2019, 10, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abercromby, A.F.; Amonette, W.E.; Layne, C.S.; McFarlin, B.K.; Hinman, M.R.; Paloski, W.H. Vibration exposure and biodynamic responses during whole-body vibration training. Med. Sci. Sports Exerc. 2007, 39, 1794–1800. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Pope, M.H. The effects of whole body vibration on humans: Dangerous or advantageous? Acta Physiol. Hung. 2003, 90, 195–206. [Google Scholar] [CrossRef]
- Seidel, H. Selected health risks caused by long-term, whole-body vibration. Am. J. Ind. Med. 1993, 23, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Lings, S.; Leboeuf-Yde, C. Whole-body vibration and low back pain: A systematic, critical review of the epidemiological literature 1992–1999. Int. Arch. Occup. Environ. Health 2000, 73, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Melese, H.; Alamer, A.; Hailu Temesgen, M.; Kahsay, G. Effectiveness of exercise therapy on gait function in diabetic peripheral neuropathy patients: A systematic review of randomized controlled trials. Diabetes Metab. Syndr. Obes. 2020, 13, 2753–2764. [Google Scholar] [CrossRef]
- Leitzelar, B.N.; Koltyn, K.F. Exercise and neuropathic pain: A general overview of preclinical and clinical research. Sport Med. 2021, 7, 21. [Google Scholar]
- Thukral, N.; Kaur, J.; Malik, M. A systematic review and meta-analysis on efficacy of exercise on posture and balance in patients suffering from diabetic neuropathy. Curr. Diabetes Rev. 2021, 17, 332–344. [Google Scholar] [CrossRef]
Author (Year) | Participants | Primary Measures | Intervention | Key Results | ||||
---|---|---|---|---|---|---|---|---|
Type | Frequency | Time | Intensity | Duration | ||||
Mueller (2013) [8] | Weight-bearing (15); non-weight-bearing (14) | 6-min walk and daily step count | Mobility and functional movement | 3 days/week | 60 min/session | 60–70% MHR | 12 weeks | Weight-bearing group: greater improvements in 6-min walk and daily step count; non-weight-bearing group: greater improvements in HbA1c. |
El-Refay and Ali (2014) [30] | Control (15); experimental (15) | Gait | Mobility and functional movement | 3 days/week | 45–60 min/session | --- | 8 weeks | Increased walking speed, cadence, and ankle ROM; decreased step time |
Sartor (2014) [10] | Control (29); experimental (26) | Gait | Mobility and functional movement | 2 days/week | 40–60 min/session | --- | 12 weeks | No significant change in foot rollover during gait |
Kanchanasamut and Pensri (2017) [31] | Control (10); experimental (11) | Foot mobility, plantar pressure, and foot sensation | Mobility and functional movement | 5 days/week | --- | --- | 8 weeks | Increased ROM and decrease peak plantar pressure |
Win (2020) [32] | Control (53); experimental (51) | Activities of daily living, DPN signs/symptoms, and pain | Mobility and functional movement | 3 sessions/day; 2–3 days/week | 10 min/session | --- | 8 weeks | Improvements in motor scores and activities of daily living |
Monteiro (2020) [33] | Control (15); experimental (15) | Strength, PA, gait speed, ROM, DPN symptoms, and QOL | Mobility and functional movement | 2 days/week | 50 min/session | --- | 12 weeks | Improvements in toe strength, gait, DPM symptoms, and foot contact pressure |
Dixit (2014) [34] | Control (37); experimental (29) | Neuropathy quality of life | Aerobic | 5–6 days/week | 150–360 min/week | 40–60% HRR | 8 weeks | Improved neuropathy quality of life total score |
Dixit (2014) [35] | Control (37); experimental (29) | Nerve conduction studies and MDNS | Aerobic | 3–6 days/week | 150–360 min/week | 40–60% HRR | 8 weeks | MDNS scores decreased and NCV increased |
Morrison (2014) [36] | Non-DPN (21); DPN (16) | Gait, reactions, fall risk, and balance | Aerobic | 3 days/week | 30–45 min/session | 50–75% HRR | 12 weeks | Reaction time decreased, gait velocity and stride/step length increased, balance and postural coordination improved |
Zhang (2014) [37] | Control (30); experimental (30) | Plantar pressure | Aerobic | 3 days/week | 20–40 min/session | 100–120 bpm | 12 weeks | Peak plantar pressure in forefoot decreased while pressure in the medial foot increased |
Hamed (2014) [38] | DPN (40); HIIT group (20); aerobic group (20) | Leeds Assessment of Neuropathic Symptoms/Signs Scale | Aerobic | 3 days/week | Aerobic: 50 min; HIIT: 20 min | Aerobic: 50–60% MHR; HIIT: 85–95% MHR | 15 weeks | HIIT lead to greater reductions in pain outcome compared to moderate aerobic exercise |
Kluding (2015) [39] | Experimental (18) | Adverse events, fatigue, and 2peak | Aerobic | 3 days/week | 30–50 min/session | 50–70% 2reserve | 16 weeks | 57 nonserious adverse events occurred and improvements occurred in general fatigue, physical fatigue, and 2peak |
Yoo (2015) [40] | Experimental (14) | Pain intensity and pain interference | Aerobic | 3 days/week | 30–50 min/session | 50–70% 2reserve | 16 weeks | Pain interference was reduced in walking, normal work, relationship with others, and sleep |
Dixit (2016) [41] | Control (36); experimental (28) | Balance and posture stability | Aerobic | 3–6 days/week | 150–360 min/week | 40–60% HRR | 8 weeks | Moderate improvement on eyes closed sway velocity on foam |
Billinger (2017) [42] | experimental (17) | FMD | Aerobic | 3 days/week | 30–60 min/session | 50–70% 2reserve | 16 weeks | Improvements in peak diameter and time to peak shear, but not statistically significant |
Gholami (2018) [43] | Control (12); experimental (12) | Nerve conduction studies | Aerobic | 3 days/week | 20–45 min/session | 50–70% HRR | 12 weeks | NCV increased but potential amplitude was not different from control |
Azizi (2019) [44] | Experimental (35) | Nerve conduction studies | Aerobic | 3 days/week | 40–45 min/session | 70–85% MHR | 8 weeks | Improvements in both action potential amplitude and conduction velocity |
Gholami (2020) [45] | Control (15); experimental (16) | FMD, IMT, vessel diameter, and MDNS | Aerobic | 3 days/week | 30–45 min/session | 50–70% HRR | 12 weeks | Significant improvements in FMD and MDNS |
Handsaker (2016) [46] | Control (21); non-DPN (13); DPN (9) | Speed of ankle and knee strength generation | Resistance training | 1 day/week | 60 min/session | 12 RM | 16 weeks | Ankle and knee speed of strength generation were higher in both stair ascent and descent |
Kluding (2012) [47] | Experimental (17) | Pain, MNSI, nerve function, and intraepidermal nerve fiber | Aerobic and resistance training | 3–4 days/week | 30–50 min/session (aerobic) | 50–70% 2reserve; 7–8 RPE | 10 weeks | Reduction in pain, neuropathic symptoms, and increased intraepidermal nerve fiber branching |
Taveggia (2014) [48] | Control (14); experimental (13) | 6-min walk and 10-m walking test | Aerobic and resistance training | 5 days/week | 60 min/session | --- | 4 weeks | Increased 6-min walk distance |
Nadi (2017) [49] | Control (41); experimental (42) | MNSI | Aerobic and resistance training | 3 days/week | 20–60 min/session | 50–70% MHR; 50% 10RM | 12 weeks | Reduction in numbness, pain, tingling, weakness; increases in sense of touch |
Stubbs (2019) [50] | Control (12); experimental (33) | NCS | Aerobic and resistance training | 3 days/week | >30 min/session | 60–80% 2peak | 12 weeks | No alterations in sensory/motor nerve electrodiagnostic |
Seyedizadeh (2020) [51] | Control (10); experimental (12) | Serum kinesin-1 and physical function | Aerobic and resistance training | 3 days/week | ≥60 min | 8–12 RM; 50–65% HRR | 8 weeks | Serum kinesin-1 and aerobic endurance decreased and upper body strength increased (all non-significant) |
Song (2011) [52] | Control (19); experimental (19) | Static/dynamic balance and trunk proprioception | Balance | 2 days/week | 60 min/session | --- | 8 weeks | Postural sway decreased, one-leg stance increased, dynamic balance improved, and trunk repositioning errors decreased |
LeMaster (2008) [53] | Control (38); experimental (41) | Activity level | Balance | 3 days/week | 60 min/session | --- | 12 months | Increase in total daily steps |
Allet (2010) [54] | Control (35); experimental (36) | Gait | Balance | 2 days/week | 60 min/session | --- | 12 weeks | Increased habitual walking speed; improved cadence, gait cycle time, and stance time |
Kruse (2010) [9] | Control (38); experimental (41) | Strength, balance, and falls | Balance | 3 days/week | 60 min/session | --- | 12 months | Small time increase in 1-leg, eyes closed stand |
Eftekhar-Sadat (2015) [55] | Control (17); experimental (17) | TUG, BBS, fall risk, and postural stability | Balance | 3 days/week | --- | --- | 4 weeks | Decrease in TUG, fall risk index, and increase overall stability index |
Ahmed (2018) [56] | Control (15); experimental (45) | Posture stability | Balance | 3 days/week | 60 min/session | --- | 6 weeks | Increased posture stability |
Boslego (2017) [57] | Experimental (15) | BBS, balance confidence, and occupation performance/satisfaction | Yoga | 2 days/week | 60 min/session | --- | 8 weeks | Improvements in BBS, balance confidence, and occupation performance/satisfaction |
Kanjirathingal (2021) [58] | Yoga (11); conventional (10); control (14) | Balance, center of pressure, chair stand, and step-up test | Yoga | 3 days/week | 60 min/session | --- | 12 weeks | Improvements in balance, center of pressure, chair stand, and step-up test |
Ahn and Song (2012) [59] | Control (19); experimental (20) | Glucose control, neuropathy score, balance, and quality of life | Tai-chi | 2 days/week | 60 min/session | --- | 12 weeks | Improved glucose control, balance, neuropathic symptoms, and quality of life |
Handsaker (2019) [60] | Control (7); experimental (24) | Stepping accuracy | Proprioception | 1 day/week | 60 min/session | --- | 16 weeks | Increased stepping accuracy |
Grewal (2015) [61] | Control (16); experimental (18) | Posture stability and daily physical activity | Proprioception | 2 days/week | 45 min/session | --- | 4 weeks | Reduced center of mass, ankle, and hip joint sway |
Ahmad (2019) [62] | Control (17); experimental (20) | Balance and proprioception | Proprioception | 3 days/week | 50–60 min/session | --- | 8 weeks | Increased one-leg stance, decreased TUG, center of pressure sway, and increased proprioception |
Hung (2019) [63] | DPN-group A (12); DPN-group B (12) | MFES, TUG, BBS, and UST | Proprioception | 3 days/week | 30 min/session | --- | 6 weeks | Improvements occurred in BBS, right-leg UST, and TUG test scores |
Rehab and Saleh (2019) [64] | Control (15); experimental (15) | Gait and risk of falling | Proprioception | 3 days/week | 30 min/session | --- | 8 weeks | Increased step length, velocity and cadence; decreased risk of falling |
Kessler (2013) [65] | Experimental (8) | Neuropathic pain scale and visual analog pain scale | Whole body vibration | 3 days/week | 12 min/session | 25 Hz and 5 mm amplitude | 4 weeks | Reductions in both pain scales |
Lee (2013) [66] | WBV/balance (19); balance (18); control (18) | Balance, muscle strength, and HbA1c | Whole body vibration | 2 days/week (balance); 3×3 min/day | 60 min/session | --- | 6 weeks | Combined vibration and balance training improved static balance, muscle strength, and HbA1c |
Kessler (2020) [67] | Control (8); experimental (12) | Visual analog pain scale | Whole body vibration | 3 days/week | 12 min/session | 25 Hz and 0.5–1.0 g | 4 weeks | Significant reductions in pain after 2 and 4 weeks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, C.J.; Hastings, M.K. The Application of Exercise Training for Diabetic Peripheral Neuropathy. J. Clin. Med. 2021, 10, 5042. https://doi.org/10.3390/jcm10215042
Holmes CJ, Hastings MK. The Application of Exercise Training for Diabetic Peripheral Neuropathy. Journal of Clinical Medicine. 2021; 10(21):5042. https://doi.org/10.3390/jcm10215042
Chicago/Turabian StyleHolmes, Clifton J., and Mary K. Hastings. 2021. "The Application of Exercise Training for Diabetic Peripheral Neuropathy" Journal of Clinical Medicine 10, no. 21: 5042. https://doi.org/10.3390/jcm10215042
APA StyleHolmes, C. J., & Hastings, M. K. (2021). The Application of Exercise Training for Diabetic Peripheral Neuropathy. Journal of Clinical Medicine, 10(21), 5042. https://doi.org/10.3390/jcm10215042