Evaluation of the Accuracy of Cr and BUN Using the ABL90 FLEX PLUS Blood Gas Analyzer and the Equivalence of Candidate Specimens for Assessment of Renal Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Testing Analyzers, Reagents, and Measurements
2.3. Data and Statistical Analysis
3. Results
3.1. Comparative Analysis According to Analyzers or Sample Types
3.2. Assessment of Equivalence between the Primary and Candidate Specimens Using the ABL90 FLEX PLUS
3.2.1. Evaluation of the Systematic Difference among Specimen Types
3.2.2. Comparison of Precision among Specimen Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, T.D.; Lee, H.A.; Lee, K.; Yun, Y.M. Accuracy-based proficiency testing of creatinine measurement: 7 years’ experience in Korea. J. Lab. Med. Qual. Assur. 2019, 41, 13–23. [Google Scholar] [CrossRef]
- Shephard, M.D. Point-of-Care Testing and Creatinine Measurement. Clin. Biochem. Rev. 2011, 32, 109–114. [Google Scholar] [PubMed]
- Corbett, M.; Duarte, A.; Llewellyn, A.; Altunkaya, J.; Harden, M.; Harris, M.; Walker, S.; Palmer, S.; Dias, S.; Soares, M. Point-of-care creatinine tests to assess kidney function for outpatients requiring contrast-enhanced CT imaging: Systematic reviews and economic evaluation. Health Technol. Assess. 2020, 24, 1–248. [Google Scholar] [CrossRef] [PubMed]
- Bargnoux, A.S.; Kuster, N.; Sutra, T.; Laroche, L.; Rodriguez, A.; Morena, M.; Chenine, L.; Chalabi, L.; Dupuy, A.M.; Badiou, S.; et al. Evaluation of a new point-of-care testing for creatinine and urea measurement. Scand J. Clin. Lab. Investig. 2021, 81, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Radiometer Medical ApS. ABL90 FLEX PLUS: Instructions for Use; Radiometer Medical ApS: Brønshøj, Denmark, 2018. [Google Scholar]
- Snaith, B.; Harris, M.A.; Shinkins, B.; Jordaan, M.; Messenger, M.; Lewington, A. Point-of-care creatinine testing for kidney function measurement prior to contrast-enhanced diagnostic imaging: Evaluation of the performance of three systems for clinical utility. Clin. Chem. Lab. Med. 2018, 56, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Korpi-Steiner, N.L.; Williamson, E.E.; Karon, B.S. Comparison of three whole blood creatinine methods for estimation of glomerular filtration rate before radiographic contrast administration. Am. J. Clin. Pathol. 2009, 132, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Lee-Lewandrowski, E.; Chang, C.; Gregory, K.; Lewandrowski, K. Evaluation of rapid point-of-care creatinine testing in the radiology service of a large academic medical center: Impact on clinical operations and patient disposition. Clin. Chim. Acta 2012, 413, 88–92. [Google Scholar] [CrossRef]
- Dimeski, G.; Tilley, V.; Jones, B.W.; Brown, N.N. Which point-of-care creatinine analyser for radiology: Direct comparison of the i-Stat and StatStrip creatinine methods with different sample types. Ann. Clin. Biochem. 2013, 50, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamasis, G.V.; Hampton-Till, J.; Al-Janabi, F.; Mohdnazri, S.; Parker, M.; Ioannou, A.; Jagathesan, R.; Kabir, A.; Sayer, J.W.; Robinson, N.M.; et al. Impact of point-of-care pre-procedure creatinine and eGFR testing in patients with ST segment elevation myocardial infarction undergoing primary PCI: The pilot STATCREAT study. Int. J. Cardiol. 2017, 240, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carden, A.J.; Salcedo, E.S.; Tran, N.K.; Gross, E.; Mattice, J.; Shepard, J.; Galante, J.M. Prospective observational study of point-of-care creatinine in trauma. Trauma Surg. Acute Care Open 2016, 1, e000014. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Snaith, B.; Clarke, R. Strategies for assessing renal function prior to outpatient contrast-enhanced CT: A UK survey. Br. J. Radiol. 2016, 89, 20160077. [Google Scholar] [CrossRef] [Green Version]
- Schnabl, K.L.; Bagherpoor, S.; Diker, P.; Cursio, C.; Dubois, J.; Yip, P.M. Evaluation of the analytical performance of the Nova StatSensor creatinine meter and reagent strip technology for whole blood testing. Clin. Biochem. 2010, 43, 1026–1029. [Google Scholar] [CrossRef]
- Whole Blood Protocol: National Institute of Diabetes and Digestive and Kidney Diseases. Available online: https://www.niddk.nih.gov/research-funding/research-programs/kidney-clinical-research-epidemiology/laboratory/whole-blood-protocol (accessed on 11 January 2023).
- Myers, G.L.; Miller, W.G.; Coresh, J.; Fleming, J.; Greenberg, N.; Greene, T.; Hostetter, T.; Levey, A.S.; Panteghini, M.; Welch, M.; et al. Recommendations for improving serum creatinine measurement: A report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 2006, 52, 5–18. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Assessment of Equivalence or Suitability of Specimen Types for Medical Laboratory Measurement Procedures EP35, 1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- CLSI. Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline EP05, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Tholen, D.W.; Kroll, M.; Astles, J.R.; Caffo, A.L.; Happe, T.M.; Krouwer, J.; Lasky, F. Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline EP06, 1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003. [Google Scholar]
- CLSI. Measurement Procedure Comparison and Bias Estimation Using Patient Samples EP09c, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Mcr: Method Comparison Regression. R Package Version 1.2.2. Available online: https://CRAN.R-project.org/package=mcr (accessed on 7 August 2022).
- Statland, B.E. Clinical Decision Levels for Laboratory Tests, 2nd ed.; Medical Economics Books: Oradell, NJ, USA, 1987. [Google Scholar]
- Kume, T.; Saglam, B.; Ergon, C.; Sisman, A.R. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: Could the old method meet the new requirements? J. Clin. Lab. Anal. 2018, 32, e22168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFLM Biological Variation Database. Available online: https://biologicalvariation.eu/ (accessed on 11 January 2023).
- ESUR Guidelines on Contrast Media. Version. 10.0. Available online: https://www.esur.org/esur-guidelines-on-contrast-agents/ (accessed on 11 January 2023).
- ACR Manual on Contrast Media. Available online: https://www.acr.org/Clinical-Resources/Contrast-Manual (accessed on 11 January 2023).
- Kost, G.J.; Vu, H.T.; Inn, M.; DuPlantier, R.; Fleisher, M.; Kroll, M.H.; Spinosa, J.C. Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit. Care Med. 2000, 28, 2379–2389. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Pucci, M.; Demonte, D.; Gelati, M.; Lippi, G. Analytical evaluation of Radiometer ABL90 FLEX PLUS enzymatic creatinine assay. J. Lab. Precis. Med. 2019, 4, 26. [Google Scholar] [CrossRef]
- McPherson, R.A.; Pincus, M.R. Henry’s Clinical Diagnosis and Management by Laboratory Methods—Electronic, 23rd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Nichols, J.H.; Bartholomew, C.; Bonzagi, A.; Garb, J.L.; Jin, L. Evaluation of the IRMA TRUpoint and i-STAT creatinine assays. Clin. Chim. Acta 2007, 377, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.D.; Ford, L.; Wittmann, B.; Conner, J.; Wulff, J.; Mitchell, M.; Evans, A.M.; Toal, D.R. Global biochemical analysis of plasma, serum and whole blood collected using various anticoagulant additives. PLoS ONE 2021, 16, e0249797. [Google Scholar] [CrossRef]
- Mohri, M.; Rezapoor, H. Effects of heparin, citrate, and EDTA on plasma biochemistry of sheep: Comparison with serum. Res. Vet. Sci. 2009, 86, 111–114. [Google Scholar] [CrossRef]
(A) Cr and BUN Results according to Analyzers | ||||||
Cr | BUN | |||||
Mean (SD), mg/dL | Mean Difference 1 (95% CI), mg/dL | p-Value 2 | Mean (SD), mg/dL | Mean Difference 1 (95% CI), mg/dL | p-Value 2 | |
ABL90 FLEX PLUS | 1.15 (1.08) | - | 0.97 | 22.72 (17.11) | - | 0.73 |
ADVIA 1800 | 1.17 (1.09) | −0.01 (−0.04, 0.01) | 0.97 | 25.41 (19.29) | −2.70 (−3.34, −2.05) | 0.73 |
AU5822 | 1.21 (1.17) | −0.06 (−0.09, −0.04) | 0.97 | 26.23 (20.53) | −3.51 (−4.57, −2.46) | 0.73 |
Cobas 8000 c702 | 1.25 (1.17) | −0.10 (−0.12, −0.07) | 0.97 | 24.45 (18.52) | −1.73 (−2.26, −1.20) | 0.73 |
Hitachi 7600-210 | 1.23 (1.17) | −0.08 (−0.10, −0.05) | 0.97 | 25.21 (19.45) | −2.49 (−3.16, −1.82) | 0.73 |
(B) Cr and BUN results according to specimen type on ABL90 FELX PLUS | ||||||
Cr | BUN | |||||
Mean (SD), mg/dL | Mean Difference 1 (95% CI), mg/dL | p-Value 2 | Mean (SD), mg/dL | Mean Difference 1 (95% CI), mg/dL | p-Value 2 | |
H-WB | 1.15 (1.08) | - | 0.42 | 22.72 (17.11) | - | 0.19 |
Serum | 1.19 (1.11) | 0.04 (0.02, 0.06) | 0.42 | 22.13 (20.29) | −0.58 (−1.52, 0.35) | 0.19 |
C-WB | 1.01 (0.95) | −0.14 (−0.17, −0.11) | 0.42 | 18.71 (13.58) | −4.00 (−4.84, −3.16) | 0.19 |
Analyte | Candidate Specimen Type | Regression Equation | Correlation Coefficient (r) 2 | Systematic Difference of Analytes (95% CI 1), mg/dL, at the Medical Decision Level 3 of: | Systematic Difference of Analytes 4 (95% CI 1) at the Medical Decision Level 3 of: | |||||
---|---|---|---|---|---|---|---|---|---|---|
Slope (95% CI 1) | Intercept (95% CI 1) | Low | Medium | High | Low | Medium | High | |||
Cr | Serum | 1.00 (1.00, 1.00) | 0 (0, 0) | 0.995 | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
C-WB | 0.89 (0.86, 0.93) | −0.01 (−0.05, 0.02) | 0.996 | −0.08 (−0.09, −0.06) | −0.19 (−0.22, −0.16) | −0.68 (−0.84, −0.48) | −12.96 (−15.32, −10.00) | −11.81 (−13.39, −10.10) | −11.30 (−14.05, −8.33) | |
BUN | Serum | 0.98 (0.89, 1.06) | −1.12 (−2.35, −0.14) | 0.981 | −1.26 (−2.09, −0.74) | −1.75 (−2.84, −0.36) | −2.33 (−5.25, 1.12) | −21.03 (−34.84, −12.35) | −6.72 (−10.94, −1.37) | −4.66 (−10.51, 2.25) |
C-WB | 0.83 (0.79, 0.87) | −0.18 (−0.75, 0.58) | 0.987 | −1.19 (−1.52, −0.65) | −4.57 (−5.20, −3.88) | −8.62 (−10.17, −7.05) | −19.87 (−25.38, −10.90) | −17.57 (−19.99, −14.93) | −17.24 (−20.34, −14.10) |
Analyte | Comparator Analyzers | Regression Equation | Correlation Coefficient (r) 2 | Systematic Difference of Analytes (95% CI 1), mg/dL, at the Medical Decision Level 3 of: | Systematic Difference of Analytes 4 (95% CI 1) at the Medical Decision Level 3 of: | |||||
---|---|---|---|---|---|---|---|---|---|---|
Slope (95% CI 1) | Intercept (95% CI 1) | Low | Medium | High | Low | Medium | High | |||
Cr | ADVIA 1800 | 1.00 (1.00, 1.00) | 0 (0, 0) | 0.995 | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
AU5822 | 1.00 (0.95, 1.00) | 0 (0, 0.03) | 0.996 | 0 (0, 0) | 0 (−0.04, 0) | 0 (−0.25, 0) | 0 (0, 0.65) | 0 (−2.68, 0) | 0 (−4.09, 0) | |
Cobas 8000 c702 | 1.00 (0.97, 1.00) | 0 (−0.10, 0.01) | 0.996 | 0 (−0.10, 0) | 0 (−0.10, 0) | 0 (−0.18, 0) | 0 (−16.67, 0) | 0 (−6.25, 0) | 0 (−2.92, 0) | |
Hitachi 7600-210 | 1.00 (1.00, 1.00) | 0 (0, 0) | 0.995 | 0 (0, 0) | 0 (−0.01, 0) | 0 (−0.09, 0) | 0 (0, 0) | 0 (−0.93, 0) | 0 (−1.45, 0) | |
BUN | ADVIA 1800 | 0.85 (0.79, 0.94) | −0.59 (−2.02, 0.26) | 0.989 | −1.47 (−2.45, −0.96) | −4.39 (−5.01, −3.37) | −7.89 (−10.46, −4.69) | −24.46 (−40.81, −15.98) | −16.87 (−20.41, −12.97) | −15.77 (−20.91, −9.37) |
AU5822 | 0.86 (0.80, 0.94) | −0.89 (−2.19, 0.05) | 0.975 | −1.71 (−2.56, −1.16) | −4.45 (−5.42, −3.60) | −7.73 (−10.32, −5.13) | −28.56 (−42.60, −19.33) | −17.12 (−20.84, −13.83) | −15.47 (−20.64, −10.26) | |
Cobas 8000 c702 | 0.88 (0.81, 0.95) | −0.64 (−1.65, 0.34) | 0.989 | −1.37 (−2.01, −0.73) | −3.82 (−4.56, −2.80) | −6.75 (−9.02, −4.05) | −22.87 (−33.43, −12.22) | −14.68 (−17.56, −10.78) | −13.50 (−18.05, −8.09) | |
Hitachi 7600-210 | 0.85 (0.80, 0.93) | −0.40 (−1.73, 0.34) | 0.991 | −1.30 (−2.20, −0.86) | −4.31 (−5.04, −3.33) | −7.91 (−9.97, −5.06) | −21.73 (−36.75, −14.34) | −16.56 (−19.39, −12.81) | −15.82 (−19.94, −10.12) |
(A) SD ratios between primary and candidate specimen for Cr | ||||||
Range of the Subintervals (No. of Subjects) | H-WB (Primary) 1 | Serum | C-WB | SDserum/SDH-WB (95% CI) 2 | SDC-WB/SDH-WB (95% CI) 2 | |
<0.7 mg/dL (34) | Mean | 0.51 | 0.56 | 0.47 | ||
SD | 0.08 | 0.01 | 0.03 | 0.14 (0.10, 0.20) | 0.35 (0.25, 0.49) | |
%CV | 16.54 | 2.15 | 6.35 | |||
0.7–1.7 mg/dL (56) | Mean | 0.98 | 1.00 | 0.84 | ||
SD | 0.01 | 0.02 | 0.03 | 1.41 (1.09, 1.84) | 2.00 (1.54, 2.61) | |
%CV | 1.36 | 1.89 | 3.17 | |||
>1.7 mg/dL (15) | Mean | 3.28 | 3.34 | 2.86 | ||
SD | 0.07 | 0.04 | 0.05 | 0.68 (0.40, 1.15) | 0.73 (0.43, 1.24) | |
%CV | 2.01 | 1.34 | 1.69 | |||
Total (105) | Mean | 1.15 | 1.19 | 1.01 | ||
SD | 0.06 | 0.02 | 0.03 | 0.41 (0.34, 0.50) | 0.57 (0.47, 0.69) | |
%CV | 4.80 | 1.92 | 3.13 | |||
(B) SD ratios between primary and candidate specimens for BUN | ||||||
Range of the Subintervals (No. of Subjects) | H-WB (Primary) 1 | Serum | C-WB | SDserum/SDH-WB (95% CI) 2 | SDC-WB/SDH-WB (95% CI) 2 | |
<20 mg/dL (62) | Mean | 12.71 | 11.15 | 10.66 | ||
SD | 1.04 | 0.06 | 0.07 | 0.05 (0.04, 0.07) | 0.06 (0.05, 0.08) | |
%CV | 8.18 | 0.51 | 0.62 | |||
20–30 mg/dL (22) | Mean | 24.36 | 21.02 | 20.42 | ||
SD | 0.40 | 0.15 | 0.10 | 0.36 (0.24, 0.56) | 0.24 (0.15, 0.36) | |
%CV | 1.66 | 0.70 | 0.47 | |||
>30 mg/dL (21) | Mean | 50.52 | 55.71 | 40.71 | ||
SD | 1.28 | 0.65 | 0.42 | 0.51 (0.33, 0.79) | 0.33 (0.21, 0.51) | |
%CV | 2.53 | 1.17 | 1.03 | |||
Total (105) | Mean | 22.72 | 22.13 | 18.71 | ||
SD | 1.00 | 0.30 | 0.20 | 0.30 (0.25, 0.37) | 0.20 (0.16, 0.24) | |
%CV | 4.40 | 1.37 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.-J.; Lee, S.-Y.; Choi, H.-J. Evaluation of the Accuracy of Cr and BUN Using the ABL90 FLEX PLUS Blood Gas Analyzer and the Equivalence of Candidate Specimens for Assessment of Renal Function. J. Clin. Med. 2023, 12, 1940. https://doi.org/10.3390/jcm12051940
Lim H-J, Lee S-Y, Choi H-J. Evaluation of the Accuracy of Cr and BUN Using the ABL90 FLEX PLUS Blood Gas Analyzer and the Equivalence of Candidate Specimens for Assessment of Renal Function. Journal of Clinical Medicine. 2023; 12(5):1940. https://doi.org/10.3390/jcm12051940
Chicago/Turabian StyleLim, Ha-Jin, Seung-Yeob Lee, and Hyun-Jung Choi. 2023. "Evaluation of the Accuracy of Cr and BUN Using the ABL90 FLEX PLUS Blood Gas Analyzer and the Equivalence of Candidate Specimens for Assessment of Renal Function" Journal of Clinical Medicine 12, no. 5: 1940. https://doi.org/10.3390/jcm12051940
APA StyleLim, H. -J., Lee, S. -Y., & Choi, H. -J. (2023). Evaluation of the Accuracy of Cr and BUN Using the ABL90 FLEX PLUS Blood Gas Analyzer and the Equivalence of Candidate Specimens for Assessment of Renal Function. Journal of Clinical Medicine, 12(5), 1940. https://doi.org/10.3390/jcm12051940