The Impact of a 6-Week Nordic Walking Training Cycle and a 14-Hour Intermittent Fasting on Disease Activity Markers and Serum Levels of Wnt Pathway-Associated Proteins in Patients with Multiple Myeloma
Abstract
:1. Introduction
1.1. Multiple Myeloma
1.2. Wnt Pathway in Multiple Myeloma
1.3. Physical Activity and Wnt Pathway
1.4. Intermittent Fasting
1.5. Nordic Walking
1.6. Aim of the Study
2. Material and Methods
2.1. Study Group Characteristics
2.2. Study Protocol
2.3. Methods
2.3.1. Body Composition Analysis and Anthropometric Measurements
2.3.2. Venous Blood Collections
2.3.3. Measurements of Serum Concentrations of Biochemical Parameters
2.3.4. Nordic Walking Trainings
2.4. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Blood Biochemical Parameters Related with MM
3.3. Blood Biochemical Parameters Related with the Wnt Pathway
3.4. Correlation Analysis of Wnt Pathway Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojciechowska, U.; Czaderny, K.; Ciuba, A.; Didkowska, J. Nowotwory Złośliwe w Polsce w 2016 Roku; Krajowy Rejestr Nowotworów: Warszawa, Poland, 2018. [Google Scholar]
- Giannopoulos, K.; Jamroziak, K.; Usnarska-Zubkiewicz, L.; Dytfeld, D.; Jurczyszyn, A.; Walewski, J.; Lech-Marańda, E.; Walter-Croneck, A.; Pieńkowska-Grela, B.; Wróbel, T.; et al. Recommendations of Polish Myeloma Group Concerning Diagnosis and Therapy of Multiple Myeloma and Other Plasmacytic Dyscrasias for 2018/2019. Acta Haematol. Pol. 2018, 49, 157–206. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Gdula-Argasińska, J.; Kosmaczewska, A.; Skotnicki, A.B. Rola Mikrośrodowiska Szpiku Kostnego w Patogenezie Szpiczaka Plazmocytowego. Postepy Hig. Med. Dosw. 2015, 69, 521–533. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Minter, A.R.; Korde, N.; Tan, E.; Landgren, O. Bone Disease in Multiple Myeloma and Precursor Disease: Novel Diagnostic Approaches and Implications on Clinical Management. Expert Rev. Mol. Diagn. 2011, 11, 593–603. [Google Scholar] [CrossRef]
- Koziński, K.; Dobrzyń, A. Wnt Signaling Pathway—Its Role in Regulation of Cell Metabolism. Postepy Hig. Med. Dosw. 2013, 67, 1098–1108. [Google Scholar] [CrossRef]
- Rossini, M.; Gatti, D.; Adami, S. Involvement of WNT / b -Catenin Signaling in the Treatment of Osteoporosis. Calcif. Tissue Int. 2013, 93, 121–132. [Google Scholar] [CrossRef]
- Glass, D.A.; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, H.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; et al. Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation. Dev. Cell 2005, 8, 751–764. [Google Scholar] [CrossRef]
- Mierzwińska, E.; Hryszko, T.; Szablak-Uliszewska, E.; Naumnik, B. Sclerostin and Chronic Kidney Disease. Postepy Hig. Med. Dosw. 2017, 71, 1098–1106. [Google Scholar] [CrossRef]
- Gooding, S.; Edwards, C.M. New Approaches to Targeting the Bone Marrow Microenvironment in Multiple Myeloma. Curr. Opin. Pharmacol. 2016, 28, 43–49. [Google Scholar] [CrossRef]
- Oshima, T.; Abe, M.; Asano, J.; Hara, T.; Kitazoe, K.; Sekimoto, E.; Tanaka, Y.; Shibata, H.; Hashimoto, T.; Ozaki, S.; et al. Myeloma Cells Suppress Bone Formation by Secreting a Soluble Wnt Inhibitor, SFRP-2. Blood 2005, 106, 3160–3165. [Google Scholar] [CrossRef]
- Heider, U.; Kaiser, M.; Mieth, M.; Lamottke, B.; Rademacher, J.; Jakob, C.; Braendle, E.; Stover, D.; Sezer, O. Serum Concentrations of DKK-1 Decrease in Patients with Multiple Myeloma Responding to Anti-Myeloma Treatment. Eur. J. Haematol. 2009, 82, 31–38. [Google Scholar] [CrossRef]
- Tian, E.; Zhan, F.; Walker, R.; Rasmussen, E.; Ma, Y.; Barlogie, B.; Shaughnessy, J.D. The Role of the Wnt-Signaling Antagonist DKK1 in the Development of Osteolytic Lesions in Multiple Myeloma. N. Engl. J. Med. 2003, 349, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.; Dubourg, L.; Carlier, M.C.; Hadj-Aissa, A.; Fouque, D. The Relation between Renal Function and Serum Sclerostin in Adult Patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Robling, A.G.; Niziolek, P.J.; Baldridge, L.A.; Condon, K.W.; Allen, M.R.; Alam, I.; Mantila, S.M.; Gluhak-Heinrich, J.; Bellido, T.M.; Harris, S.E.; et al. Mechanical Stimulation of Bone in Vivo Reduces Osteocyte Expression of Sost/Sclerostin. J. Biol. Chem. 2008, 283, 5866–5875. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. The RANKL/RANK/OPG Pathway. Curr. Osteoporos. Rep. 2007, 5, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.S.; Bhatta, S.; Terpos, E. Role of the RANK/RANKL Pathway in Multiple Myeloma. Clin. Cancer Res. 2019, 25, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Zamagni, E.; Lentzsch, S.; Drake, M.T.; García-Sanz, R.; Abildgaard, N.; Ntanasis-Stathopoulos, I.; Schjesvold, F.; de la Rubia, J.; Kyriakou, C.; et al. Treatment of Multiple Myeloma-Related Bone Disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021, 22, e119–e130. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Rhee, Y.; Condon, K.W.; Bivi, N.; Allen, M.R.; Dwyer, D.; Stolina, M.; Turner, C.H.; Robling, A.G.; Plotkin, L.I.; et al. Sost Downregulation and Local Wnt Signaling Are Required for the Osteogenic Response to Mechanical Loading. Bone 2012, 50, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Uher, I.; Kűchelová, Z.; Cimboláková, I.; Pivovarník, J. Intermittent Fasting and Its Influence on Health. Phys. Act. Rev. 2016, 4, 184–191. [Google Scholar] [CrossRef]
- Cho, Y.; Hong, N.; Kim, K.; Cho, S.; Lee, M.; Lee, Y.; Lee, Y.; Kang, E.; Cha, B.-S.; Lee, B.-W. The Effectiveness of Intermittent Fasting to Reduce Body Mass Index and Glucose Metabolism: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1645. [Google Scholar] [CrossRef]
- Veronese, N.; Reginster, J.Y. The Effects of Calorie Restriction, Intermittent Fasting and Vegetarian Diets on Bone Health. Aging Clin. Exp. Res. 2019, 31, 753–758. [Google Scholar] [CrossRef]
- Xu, X.; Ding, J.; Wu, X.; Huang, Z.; Kong, G.; Liu, Q.; Yang, Z.; Huang, Z.; Zhu, Q. Bone Microstructure and Metabolism Changes under the Combined Intervention of Ketogenic Diet with Intermittent Fasting: An in Vivo Study of Rats. Exp. Anim. 2019, 68, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Ledwig, O.; Szaporów, T.; Majcher, P.; Jurczyszyn, A. Problemy Rehabilitacji Pacjentów Ze Szpiczakiem Plazmocytowym. Przegl. Lek. 2018, 75, 131–135. [Google Scholar]
- Czerwińska-Ledwig, O.; Gradek, J.; Deląg, J.; Jurczyszyn, A. The Effect of a 6-Week Nordic Walking Training Cycle on Myeloma-Related Blood Parameters, Vitamin 25(OH)D3 Serum Concentration and Peripheral Polyneuropathy Symptoms in Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2021, 21, S114–S115. [Google Scholar] [CrossRef]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-Predicted Maximal Heart Rate in Healthy Subjects: The HUNT Fitness Study. Scand. J. Med. Sci. Sports 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Emery, A.; Moore, S.; Crowe, J.; Murray, J.; Peacock, O.; Thompson, D.; Betts, F.; Rapps, S.; Ross, L.; Rothschild-Rodriguez, D.; et al. The Effects of Short-Term, Progressive Exercise Training on Disease Activity in Smouldering Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance: A Single-Arm Pilot Study. BMC Cancer 2024, 24, 174. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Ledwig, O.; Vesole, D.H.; Piotrowska, A.; Gradek, J.; Pilch, W.; Jurczyszyn, A. Effect of a 6-Week Cycle of Nordic Walking Training on Vitamin 25(OH)D3, Calcium-Phosphate Metabolism and Muscle Damage in Multiple Myeloma Patients-Randomized Controlled Trial. J. Clin. Med. 2022, 11, 6534. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Ledwig, O.; Jurczyszyn, A.; Piotrowska, A.; Pilch, W.; Antosiewicz, J.; Żychowska, M. The Effect of a Six-Week Nordic Walking Training Cycle on Oxidative Damage of Macromolecules and Iron Metabolism in Older Patients with Multiple Myeloma in Remission—Randomized Clinical Trial. Int. J. Mol. Sci. 2023, 24, 15358. [Google Scholar] [CrossRef]
- Pilch, W.; Tyka, A.; Cebula, A.; Śliwicka, E.; Pilaczyńska-Szcześniak, Ł.; Tyka, A. Effects of a 6-Week Nordic Walking Training on Changes in 25(OH)D Blood Concentration in Women Aged over 55. J. Sports Med. Phys. Fit. 2017, 57, 124–129. [Google Scholar] [CrossRef]
- Pilch, W.; Kita, B.; Piotrowska, A.; Tota, Ł.; Maciejczyk, M.; Czerwińska-Ledwig, O.; Sadowska- Krepa, E.; Kita, S.; Pałka, T. The Effect of Vitamin D Supplementation on the Muscle Damage after Eccentric Exercise in Young Men: A Randomized, Control Trial. J. Int. Soc. Sports Nutr. 2020, 17, 53. [Google Scholar] [CrossRef]
- Prusik, K.; Kortas, J.; Prusik, K.; Mieszkowski, J.; Jaworska, J.; Skrobot, W.; Lipinski, M.; Ziemann, E.; Antosiewicz, J. Nordic Walking Training Causes a Decrease in Blood Cholesterol in Elderly Women Supplemented with Vitamin D. Front. Endocrinol. 2018, 9, 42. [Google Scholar] [CrossRef]
- Alrowaili, M.G.; Hussein, A.M.; Eid, E.A.; Serria, M.S.; Abdellatif, H.; Sakr, H.F. Effect of Intermittent Fasting on Glucose Homeostasis and Bone Remodeling in Glucocorticoid-Induced Osteoporosis Rat Model. J. Bone Metab. 2021, 28, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Janckila, A.J.; Nakasato, Y.R.; Neustadt, D.H.; Yam, L.T. Disease-Specific Expression of Tartrate-Resistant Acid Phosphatase Isoforms. J. Bone Miner. Res. 2003, 18, 1916–1919. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; De La Fuente, J.; Szydlo, R.; Hatjiharissi, E.; Viniou, N.; Meletis, J.; Yataganas, X.; Goldman, J.M.; Rahemtulla, A. Tartrate-Resistant Acid Phosphatase Isoform 5b: A Novel Serum Marker for Monitoring Bone Disease in Multiple Myeloma. Int. J. Cancer 2003, 106, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. Wnt Signaling and Osteoporosis. Maturitas 2014, 78, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Chang, J.S.; Park, K.S.; Park, J.; Kim, N.; Lee, J.I.; Kong, I.D. Effects of Exercise Training on Circulating Levels of Dickkpof-1 and Secreted Frizzledrelated Protein-1 in Breast Cancer Survivors: A Pilot Single-Blind Randomized Controlled Trial. PLoS ONE 2017, 12, e0171771. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.; Stuss, M.; Michalska-Kasiczak, M.; Jegier, A.; Sewerynek, E. Effects of Physical Activity on Sclerostin Concentrations. Endokrynol. Pol. 2018, 69, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Seefried, L.; Genest, F.; Strömsdörfer, J.; Engelmann, B.; Lapa, C.; Jakob, F.; Baumann, F.T.; Sperlich, B.; Jundt, F. Impact of Whole-Body Vibration Exercise on Physical Performance and Bone Turnover in Patients with Monoclonal Gammopathy of Undetermined Significance. J. Bone Oncol. 2020, 25, 100323. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.D.J.; de Oliveira, R.G.; de Oliveira, L.C.; Santos-Filho, S.D.; Sá-Caputo, D.C.; Bernardo-Filho, M. Effectiveness of Whole-Body Vibration on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Osteoporos. Int. 2023, 34, 29–52. [Google Scholar] [CrossRef]
- Cochrane, D.J. Vibration Exercise: The Potential Benefits. Int. J. Sports Med. 2011, 32, 75–99. [Google Scholar] [CrossRef]
- Miyakoshi, N.; Masutani, N.; Kasukawa, Y.; Kudo, D.; Saito, K.; Matsunaga, T.; Shimada, Y. Comparison of the Effects of Native Vitamin D and Eldecalcitol on Muscular Strength and Dynamic Balance in Patients with Postmenopausal Osteoporosis. Prog. Rehabil. Med. 2020, 5, 20200026. [Google Scholar] [CrossRef]
- Mindikoglu, A.L.; Abdulsada, M.M.; Jain, A.; Jalal, P.K.; Devaraj, S.; Wilhelm, Z.R.; Opekun, A.R.; Jung, S.Y. Intermittent Fasting from Dawn to Sunset for Four Consecutive Weeks Induces Anticancer Serum Proteome Response and Improves Metabolic Syndrome. Sci. Rep. 2020, 10, 18341. [Google Scholar] [CrossRef]
- Descamps, O.; Riondel, J.; Ducros, V.; Roussel, A.M. Mitochondrial Production of Reactive Oxygen Species and Incidence of Age-Associated Lymphoma in OF1 Mice: Effect of Alternate-Day Fasting. Mech. Ageing Dev. 2005, 126, 1185–1191. [Google Scholar] [CrossRef]
- Lu, Z.; Xie, J.; Wu, G.; Shen, J.; Collins, R.; Chen, W.; Kang, X.; Luo, M.; Zou, Y.; Huang, L.J.-S.; et al. Fasting Selectively Blocks Development of Acute Lymphoblastic Leukemia via Leptin-Receptor Upregulation. Nat. Med. 2017, 23, 79–90. [Google Scholar] [CrossRef]
- de Groot, S.; Vreeswijk, M.P.G.; Welters, M.J.P.; Gravesteijn, G.; Boei, J.J.W.A.; Jochems, A.; Houtsma, D.; Putter, H.; van der Hoeven, J.J.M.; Nortier, J.W.R.; et al. The Effects of Short-Term Fasting on Tolerance to (Neo) Adjuvant Chemotherapy in HER2-Negative Breast Cancer Patients: A Randomized Pilot Study. BMC Cancer 2015, 15, 652. [Google Scholar] [CrossRef]
- Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.W.; Brandhorst, S.; Cohen, P.; Wei, M.; et al. Safety and Feasibility of Fasting in Combination with Platinum-Based Chemotherapy. BMC Cancer 2016, 16, 360. [Google Scholar] [CrossRef]
- Badar, T.; Ismail, A.; AlShanqeeti, A. Safety and Feasability of Muslim Fasting While Receiving Chemotherapy. IOSR J. Pharm. 2014, 4, 15–20. [Google Scholar] [CrossRef]
- Marinac, C.R.; Nelson, S.H.; Breen, C.I.; Hartman, S.J.; Natarajan, L.; Pierce, J.P.; Flatt, S.W.; Sears, D.D.; Patterson, R.E. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016, 2, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
Non-Training (n = 14) | Training (n = 21) | |||
---|---|---|---|---|
CG (n = 7) | IF (n = 7) | NW (n = 10) | IF NW (n = 11) | |
Age [years] | 65.2 ± 4.8 | 65.4 ± 5.5 | ||
65.3 ± 5.0 | 65.1 ± 4.9 | 65.70 ± 6.9 | 65.18 ± 4.2 | |
BMI [kg/m2] | 28.6 ± 4.2 | 30.2 ± 3.5 | ||
29.0 ± 4.4 | 28.2 ± 4.4 | 28.6 ± 3.6 | 31.7 ± 2.8 | |
Body height [cm] | 166.1 ± 5.2 | 163.5 ± 10.3 | ||
164.9 ± 4.4 | 167.3 ± 5.9 | 164.6 ± 10.5 | 162.5 ± 10.6 | |
MM duration [months] | 56.8 ± 10.7 | 57.2 ± 12.8 | ||
Disease duration [months] | 54.4 ± 12.2 | 59.1 ± 9.2 | 57.5 ± 11.6 | 57.0 ± 14.3 |
Type of MM | ||||
IgG: | (n = 8) | (n = 11) | ||
IgA: | (n = 5) | (n = 8) | ||
Other: | light chains (n = 1) | light chains (n = 2) | ||
Type of MM | κ-chains (n = 2) | κ-chains (n = 2) | κ-chains (n = 4) | κ-chains (n = 2) |
λ-chains (n = 1) | λ-chains (n = 3) | λ-chains (n = 2) | λ-chains (n = 3) | |
κ-chains (n = 2) | κ-chains (n = 1) | κ-chains (n = 1) | κ-chains (n = 4) | |
λ-chains (n = 1) | λ-chains (n = 1) | λ-chains (n = 1) | λ-chains (n = 2) | |
light chains (n = 1) | - | light chains (n = 2) | - | |
Cycles of therapy | median = 6 (min = 3, max = 7) | median = 4 (min = 3, max = 8) | ||
Cycles of therapy | median = 6 (min = 3, max = 7) | median = 5 (min = 4, max = 7) | median = 4 (min = 3, max = 6) | median = 5 (min = 3, max = 8) |
auto-HSCT | 100% 75%—1 procedure 25%—2 procedures | 100% 80%—1 procedure 20%—2 procedures |
Time | Non-Training (n = 14) | Training (n = 21) | |||
---|---|---|---|---|---|
CG (n = 7) | IF CG (n = 7) | NW (n = 10) | IF NW (n = 11) | ||
Body mass [kg] | I | 79.4 ± 15.5 | 79.1 ± 12.3 | ||
79.1 ± 14.0 | 79.7 ± 18.1 | 80.6 ± 14.0 | 77.7 ± 11.0 | ||
II | 79.8 ± 15.6 | 79.0 ± 12.2 | |||
79.6 ± 13.6 | 80.1 ± 18.5 | 80.8 ± 13.9 | 77.4 ± 10.8 | ||
LBM [kg] | I | 52.6 ± 9.8 | 51.4 ± 9.6 | ||
52.7 ± 10.1 | 52.5 ± 10.4 | 52.5 ± 9.1 | 50.4 ± 10.3 | ||
II | 55.2 ± 11.5 | 51.8 ± 9.6 | |||
56.5 ± 12.4 | 53.9 ± 11.4 | 53.3 ± 9.3 | 50.5 ± 10.2 | ||
SLM [kg] | I | 50.0 ± 9.4 | 47.4 ± 9.0 | ||
50.1 ± 9.6 | 49.8 ± 9.9 | 48.5 ± 8.7 | 46.5 ± 9.7 | ||
II | 50.5 ± 9.7 | 47.9 ± 9.2 | |||
49.8 ± 9.1 | 51.1 ± 11.0 | 49.4 ± 9.1 | 46.5 ± 9.5 | ||
TBW [%] | I | 46.4 ± 4.7 | 46.3 ± 4.6 | ||
46.3 ± 5.2 | 46.5 ± 4.4 | 46.4 ± 3.8 | 46.2 ± 5.5 | ||
II | 46.6 ± 4.6 | 47.0 ± 5.2 | |||
46.6 ± 5.5 | 46.6 ± 3.9 | 47.5 ± 5.5 | 46.5 ± 5.2 | ||
BMI [kg/m2] | I | 28.6 ± 4.2 | 30.2 ± 3.5 | ||
29.0 ± 4.4 | 28.2 ± 4.4 | 28.6 ± 3.6 | 31.7 ± 2.8 | ||
II | 28.7 ± 4.3 | 30.2 ± 3.4 | |||
29.2 ± 4.4 | 28.3 ± 4.5 | 28.7 ± 3.6 | 31.4 ± 2.7 | ||
PBF [%] | I | 33.1 ± 7.5 | 31.0 ± 3.9 | ||
32.9 ± 8.2 | 33.3 ± 7.3 | 30.9 ± 3.1 | 31.2 ± 4.7 | ||
II | 32.8 ± 6.2 | 30.9 ± 3.7 | |||
33.5 ± 8.0 | 32.2 ± 4.3 | 30.8 ± 2.9 | 31.0 ± 4.4 | ||
Waist circumference | I | 97.6 ± 15.7 | 99.5 ± 10.9 | ||
98.3 ± 15.7 | 97.0 ± 16.9 | 101.8 ± 13.0 | 97.4 ± 8.8 | ||
II | 97.9 ± 16.1 | 97.6 ± 10.7 | |||
98.7 ± 15.8 | 97.1 ± 17.7 | 100.2 ± 13.6 | 95.3 ± 7.6 | ||
Hip circumference | I | 103.7 ± 10.9 | 106.8 ± 8.9 | ||
106.2 ± 12.3 | 101.3 ± 9.5 | 106.9 ± 8.0 | 106.7 ± 10.1 | ||
II | 103.6 ± 10.8 | 105.2 ± 7.5 | |||
105.0 ± 12.2 | 102.2 ± 9.9 | 104.5 ± 7.1 | 105.8 ± 8.0 | ||
WHR | I | 0.9 ± 0.1 | 0.9 ± 0.1 | ||
0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | ||
II | 0.9 ± 0.1 | 0.9 ± 0.1 | |||
0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
Time | Non-Training (n = 14) | Training (n = 21) | |||
---|---|---|---|---|---|
CG (n = 7) | IF CG (n = 7) | NW (n = 10) | IF NW (n = 11) | ||
Ca [mmol/L] | I | 2.37 ± 0.13 | 2.39 ± 0.15 | ||
2.36 ± 0.15 | 2.37 ± 0.13 | 2.39 ± 0.10 | 2.38 ± 0.18 | ||
II | 2.37 ± 0.10 | 2.38 ± 0.19 | |||
2.35 ± 0.11 | 2.41 ± 0.07 | 2.36 ± 0.12 | 2.39 ± 0.25 | ||
P [mmol/L] | I | 0.97 ± 0.20 | 1.04 ± 0.24 | ||
0.95 ± 0.28 | 0.98 ± 0.12 | 1.01 ± 0.25 | 1.06 ± 0.22 | ||
II | 0.98 ± 0.19 | 1.04 ± 0.21 | |||
0.95 ± 0.24 | 1.03 ± 0.12 | 1.02 ± 0.20 | 1.07 ± 0.21 | ||
25(OH)D [ng/mL] | I | 27.87 ± 6.11 | 27.49 ± 7.10 # | ||
26.96 ± 5.06 | 28.79 ± 7.31 | 28.37 ± 8.69 * | 26.68 ± 5.61 * | ||
II | 28.66 ± 7.31 | 34.32 ± 10.07 # | |||
27.92 ± 6.04 | 29.39 ± 8.83 | 34.33 ± 11.90 * | 34.31 ± 8.67 * | ||
B2M [mg/L] | I | 2.15 ± 0.47 | 2.06 ± 0.36 | ||
2.20 ± 0.60 | 2.10 ± 0.35 | 2.12 ± 0.43 | 2.01 ± 0.30 | ||
II | 2.10 ± 0.44 | 2.02 ± 0.41 | |||
2.09 ± 0.54 | 2.12 ± 0.35 | 2.08 ± 0.45 | 1.97 ± 0.37 | ||
Albumin [g/L] | I | 40.53 ± 2.06 | 40.30 ± 2.52 | ||
40.79 ± 1.81 | 40.27 ± 2.41 | 40.17 ± 2.67 | 40.41 ± 2.51 | ||
II | 40.75 ± 2.28 | 41.42 ± 3.20 | |||
40.99 ± 2.10 | 40.51 ± 2.59 | 41.58 ± 3.06 | 41.28 ± 3.46 |
Time | Non-Training (n = 14) | Training (n = 21) | |||
---|---|---|---|---|---|
CG (n = 7) | IF CG (n = 7) | NW (n = 10) | IF NW (n = 11) | ||
SOST [pg/mL] | I | 266.8 ± 100.2 | 258.4 ± 103.3 | ||
273.8 ± 93.0 | 259.8 ± 113.9 | 255.0 ± 106.2 | 261.5 ± 105.8 | ||
II | 265.5 ± 102.8 | 213.9 ± 86.0 * | |||
276.1 ± 99.5 | 254.9 ± 112.8 | 209.0 ± 69.37 | 218.3 ± 102.1 | ||
DKK-1 [pg/mL] | I | 4964.9 ± 906.0 | 4866.4 ± 1264.7 | ||
5252.2 ± 501.3 | 4677.5 ± 1155.2 | 4704.6 ± 1472.9 | 5013.5 ± 1093.9 | ||
II | 5099.4 ± 786.6 | 4845.5 ± 1362.2 | |||
5238.2 ± 591.9 | 4960.5 ± 972.3 | 4750.2 ± 1553.7 | 4932.0 ± 1233.4 | ||
OPG [pg/mL] | I | 1155.9 ± 309.7 | 1096.6 ± 316.2 | ||
1039.4 ± 269.3 | 1272.5 ± 321.7 | 1109.1 ± 323.3 | 1085.3 ± 325.0 | ||
II | 1152.1 ± 312.7 | 1083.7 ± 262.4 | |||
1037.4 ± 266.2 | 1266.8 ± 332.1 | 1089.8 ± 248.3 | 1078.2 ± 286.6 | ||
OPN [pg/mL] | I | 21,492.6 ± 9121.2 | 21,906.5 ± 7420.7 | ||
25,072.9 ± 5371.4 | 17,912.4 ± 9022.6 | 24,160.1 ± 6993.5 | 19,857.8 ± 7511.3 | ||
II | 21,328.3 ± 8940.6 | 19,849.1 ± 8418.0 | |||
25,313.1 ± 5038.6 | 17,343.4 ± 9523.8 | 21,344.2 ± 5906.7 | 184,890 ± 9298.4 | ||
TRACP-5b [pg/mL] | I | 5752.8 ± 1375.1 | 5610.2 ± 1281.4 | ||
5065.9 ± 1398.6 | 6439.8 ± 1019.7 | 5527.2 ± 1333.6 | 5685.7 ± 1292.3 | ||
II | 5745.2 ± 1302.5 | 5140.3 ± 1169.5 * | |||
5110.1 ± 1338.1 | 6380.4 ± 971.4 | 5153.2 ± 1182.5 * | 5128.6 ± 1215.3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwińska-Ledwig, O.; Żychowska, M.; Jurczyszyn, A.; Kryst, J.; Deląg, J.; Borkowska, A.; Reczkowicz, J.; Pałka, T.; Bujas, P.; Piotrowska, A. The Impact of a 6-Week Nordic Walking Training Cycle and a 14-Hour Intermittent Fasting on Disease Activity Markers and Serum Levels of Wnt Pathway-Associated Proteins in Patients with Multiple Myeloma. J. Clin. Med. 2024, 13, 2771. https://doi.org/10.3390/jcm13102771
Czerwińska-Ledwig O, Żychowska M, Jurczyszyn A, Kryst J, Deląg J, Borkowska A, Reczkowicz J, Pałka T, Bujas P, Piotrowska A. The Impact of a 6-Week Nordic Walking Training Cycle and a 14-Hour Intermittent Fasting on Disease Activity Markers and Serum Levels of Wnt Pathway-Associated Proteins in Patients with Multiple Myeloma. Journal of Clinical Medicine. 2024; 13(10):2771. https://doi.org/10.3390/jcm13102771
Chicago/Turabian StyleCzerwińska-Ledwig, Olga, Małgorzata Żychowska, Artur Jurczyszyn, Joanna Kryst, Jakub Deląg, Andżelika Borkowska, Joanna Reczkowicz, Tomasz Pałka, Przemysław Bujas, and Anna Piotrowska. 2024. "The Impact of a 6-Week Nordic Walking Training Cycle and a 14-Hour Intermittent Fasting on Disease Activity Markers and Serum Levels of Wnt Pathway-Associated Proteins in Patients with Multiple Myeloma" Journal of Clinical Medicine 13, no. 10: 2771. https://doi.org/10.3390/jcm13102771