Short-Term Real-World Outcomes of Intensive Aflibercept Injection for Refractory Neovascular Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Ophthalmological Examination
2.4. Study Design
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, A.; Rhoades, W.R.; Hanout, M.; Soliman, M.K.; Sarwar, S.; Sadiq, M.A.; Sepah, Y.J.; Do, D.V.; Nguyen, Q.D. Management of neovascular age-related macular degeneration: Current state-of-the-art care for optimizing visual outcomes and therapies in development. Clin. Ophthalmol. 2015, 9, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Ohji, M.; Takahashi, K.; Okada, A.A.; Kobayashi, M.; Matsuda, Y.; Terano, Y. Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend Regimens in Exudative Age-Related Macular Degeneration: 52- and 96-Week Findings from ALTAIR: A Randomized Controlled Trial. Adv. Ther. 2020, 37, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Holz, F.G.; Midena, E.; Souied, E.H.; Lambrou, G.; Machewitz, T.; Allmeier, H.; Mitchell, P. Patients with Neovascular Age-Related Macular Degeneration Requiring Intensive Intravitreal Aflibercept Treatment: An ARIES Post Hoc Analysis. Ophthalmol. Ther. 2022, 11, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Jørstad, Ø.K.; Faber, R.T.; Moe, M.C. Initial improvements when converting eyes with treatment-resistant exudative AMD to aflibercept are substantially diminished after increasing treatment intervals from 4 to 8 weeks. Acta Ophthalmol. 2015, 93, e510–e511. [Google Scholar] [CrossRef]
- Dans, K.C.; Freeman, S.R.; Lin, T.; Meshi, A.; Olivas, S.; Cheng, L.; Amador-Patarroyo, M.J.; Freeman, W.R. Durability of every-8-week aflibercept maintenance therapy in treatment-experienced neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 741–748. [Google Scholar] [CrossRef]
- Chang, A.A.; Li, H.; Broadhead, G.K.; Hong, T.; Schlub, T.E.; Wijeyakumar, W.; Zhu, M. Intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration. Ophthalmology 2014, 121, 188–192. [Google Scholar] [CrossRef]
- Muftuoglu, I.K.; Tsai, F.F.; Gaber, R.; Alam, M.; Meshi, A.; Freeman, W.R. High-frequency aflibercept injections in persistent neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 709–717. [Google Scholar] [CrossRef] [PubMed]
- You, Q.S.; Gaber, R.; Meshi, A.; Ramkumar, H.L.; Alam, M.; Muftuoglu, I.K.; Freeman, W.R. High-dose high-frequency aflibercept for recalcitrant neovascular age-related macular degeneration. Retina 2018, 38, 1156–1165. [Google Scholar] [CrossRef]
- Muftuoglu, I.K.; Arcinue, C.A.; Tsai, F.F.; Alam, M.; Gaber, R.; Camacho, N.; You, Q.; Freeman, W.R. Long-Term Results of Pro Re Nata Regimen of Aflibercept Treatment in Persistent Neovascular Age-Related Macular Degeneration. Am. J. Ophthalmol. 2016, 167, 1–9. [Google Scholar] [CrossRef]
- Bailey, C.; Cackett, P.; Kotagiri, A.; Mahmood, S.; Minos, E.; Narendran, N.; Patwardhan, A.; Sim, D.A.; Morgan-Warren, P.; O’Neil, C.; et al. Practical implementation of a q4-q16 aflibercept treat-and-extend pathway for the treatment of neovascular age-related macular degeneration: Updated guidance from a UK expert panel. Eye 2023, 37, 1916–1921. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Andreoli, C.; Miller, J.B.; Loewenstein, J.I.; Sobrin, L.; Eliott, D.; Vavvas, D.G.; Miller, J.W.; Kim, I.K. Conversion to aflibercept for chronic refractory or recurrent neovascular age-related macular degeneration. Am. J. Ophthalmol. 2013, 156, 29–35.e22. [Google Scholar] [CrossRef] [PubMed]
- Amoaku, W.M.; Chakravarthy, U.; Gale, R.; Gavin, M.; Ghanchi, F.; Gibson, J.; Harding, S.; Johnston, R.L.; Kelly, S.P.; Lotery, A.; et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye 2015, 29, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, Y.; Ohgami, K.; Sasaki, K.; Hirano, K.; Sunaya, T. Long-term surveillance provides real-world evidences of safety and effectiveness in intravitreal aflibercept treatment for age-related macular degeneration. Sci. Rep. 2023, 13, 10597. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Niwa, Y.; Kakinoki, M.; Sawada, T.; Wang, X.; Ohji, M. Ranibizumab and Aflibercept: Intraocular Pharmacokinetics and Their Effects on Aqueous VEGF Level in Vitrectomized and Nonvitrectomized Macaque Eyes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6501–6505. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W.; Rosenfeld, P.J. Predicted biological activity of intravitreal VEGF Trap. Br. J. Ophthalmol. 2008, 92, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Holz, F.G.; Hykin, P.; Midena, E.; Souied, E.; Allmeier, H.; Lambrou, G.; Schmelter, T.; Wolf, S. Efficacy and safety of intravitreal aflibercept using a treat-and-extend regimen for neovascular age-related macular degeneration: The ARIES Study: A Randomized Clinical Trial. Retina 2021, 41, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Arcinue, C.A.; Ma, F.; Barteselli, G.; Sharpsten, L.; Gomez, M.L.; Freeman, W.R. One-year outcomes of aflibercept in recurrent or persistent neovascular age-related macular degeneration. Am. J. Ophthalmol. 2015, 159, 426–436.e422. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Kaiser, P.K.; Thompson, D.; Gibson, A.; Saroj, N.; Vitti, R.; Berliner, A.J.; Heier, J.S. Differential Response to Anti-VEGF Regimens in Age-Related Macular Degeneration Patients with Early Persistent Retinal Fluid. Ophthalmology 2016, 123, 1856–1864. [Google Scholar] [CrossRef]
- Khanani, A.M.; Brown, D.M.; Jaffe, G.J.; Wykoff, C.C.; Adiguzel, E.; Wong, R.; Meng, X.; Heier, J.S. MERLIN: Phase 3a, Multicenter, Randomized, Double-Masked Trial of Brolucizumab in Participants with Neovascular Age-Related Macular Degeneration and Persistent Retinal Fluid. Ophthalmology 2022, 129, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.Y.; Yeh, S.; Olsen, T.W.; Bergstrom, C.S.; Yan, J.; Cribbs, B.E.; Hubbard, G.B., 3rd. Short-term outcomes of aflibercept for neovascular age-related macular degeneration in eyes previously treated with other vascular endothelial growth factor inhibitors. Am. J. Ophthalmol. 2013, 156, 23–28.e22. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Shah, C.P.; Weber, M.; Heier, J.S. Aflibercept for exudative AMD with persistent fluid on ranibizumab and/or bevacizumab. Br. J. Ophthalmol. 2013, 97, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Moutray, T.; Alarbi, M.; Mahon, G.; Stevenson, M.; Chakravarthy, U. Relationships between clinical measures of visual function, fluorescein angiographic and optical coherence tomography features in patients with subfoveal choroidal neovascularisation. Br. J. Ophthalmol. 2008, 92, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Sadda, S.; Holekamp, N.M.; Sarraf, D.; Ebraheem, A.; Fan, W.; Hill, L.; Blotner, S.; Spicer, G.; Gune, S. Relationship between retinal fluid characteristics and vision in neovascular age-related macular degeneration: HARBOR post hoc analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3781–3789. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, G.J.; Martin, D.F.; Toth, C.A.; Daniel, E.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Huang, J.; Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2013, 120, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Song, M.Y.; Yoon, W.; Yoon, J.; Na, S.K.; Lee, J.; Kim, J.; Kim, J.W. Neovascular age-related macular degeneration in which exudation predominantly occurs as a subretinal fluid during anti-vascular endothelial growth factor treatment. Sci. Rep. 2022, 12, 3167. [Google Scholar] [CrossRef] [PubMed]
- Guymer, R.H.; Markey, C.M.; McAllister, I.L.; Gillies, M.C.; Hunyor, A.P.; Arnold, J.J. Tolerating Subretinal Fluid in Neovascular Age-Related Macular Degeneration Treated with Ranibizumab Using a Treat-and-Extend Regimen: FLUID Study 24-Month Results. Ophthalmology 2019, 126, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, D.; Brown, D.M.; Ip, M.; Khanani, A.M.; Figueroa, M.S.; McAllister, I.L.; Laude, A.; Guruprasad, B.; Tang, S.; Gmeiner, B.; et al. Impact of retinal fluid-free months on outcomes in neovascular age-related macular degeneration: A Treatment Agnostic Analysis of the HAWK and HARRIER Studies. Retina 2023, 43, 632–640. [Google Scholar] [CrossRef]
- Cheung, C.M.G.; Laude, A.; Yeo, I.; Tan, S.-P.; Fan, Q.; Mathur, R.; Lee, S.Y.; Chan, C.M.; Tan, G.; Lim, T.H.; et al. Systemic, Ocular and Genetic Risk Factors for Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Singaporeans. Sci. Rep. 2017, 7, 41386. [Google Scholar] [CrossRef]
- Künzel, S.E.; Flesch, L.T.M.; Frentzel, D.P.; Knecht, V.A.; Rübsam, A.; Dreher, F.; Schütte, M.; Dubrac, A.; Lange, B.; Yaspo, M.L.; et al. Systemic Blood Proteome Patterns Reflect Disease Phenotypes in Neovascular Age-Related Macular Degeneration. Int. J. Mol. Sci. 2023, 24, 327. [Google Scholar] [CrossRef] [PubMed]
n = 34 | |
---|---|
Age (years) | 72.03 ± 7.97 |
Sex (M:F) | 20:14 |
Mean follow-up (months) | 57.82 ± 28.59 |
Total number of anti-VEGF before Si4w | 23.64 ± 12.40 |
Duration of fluid before Si4w (months) | 11.12 ± 6.75 |
Mean baseline BCVA (ETDRS letters) | 61.62 ± 20.15 |
Mean baseline CMT (µm) | 464.18 ± 180.12 |
Use of anti-VEGF agent before Si4w | |
Ranibizumab switch to aflibercept | 10 |
Aflibercept only | 18 |
Aflibercept/bevacizumab alternately | 4 |
Brolucizumab switch to aflibercept | 2 |
Complete Resolution (n = 18) | Partial Response (n = 11) | No Response (n = 5) | p Value | |
---|---|---|---|---|
Age | 72.11 ± 7.43 | 72.36 ± 8.55 | 71.00 ± 10.27 | 0.952 |
Sex (male/female) | 12/6 | 6/5 | 4/1 | 0.595 |
PCV (%) | 7/18 (38.9%) | 7/11 (63.6%) | 3/5 (60.0%) | 0.385 |
Injection number/yr before Si4w | 4.45 ± 1.50 | 5.60 ± 1.81 | 8.16 ± 2.13 | 0.006 * |
Dry macula after three monthly injections | 9/18 (50.0%) | 2/11(18.1%) | 1/5(20.0%) | 0.163 |
Maximal injection interval before Si4w (weeks) | 9.33 ± 1.68 | 8.55 ± 0.93 | 8.80 ± 1.78 | 0.380 |
Presence of SRF at 1st visit after Si4w | 5/18 (27.7%) | 8/11 (72.7%) | 3/5 (60.0%) | 0.056 |
Presence of IRF at 1st visit after Si4w | 0/18 (0.0%) | 2/11 (18.1%) | 3/5 (60.0%) | 0.003 † |
Duration of fluid before Si4w (months) | 7.06 ± 2.53 | 15.06 ± 7.94 | 17.08 ± 5.46 | 0.001 * |
Baseline BCVA (ETDRS letters) | 58.33 ± 23.00 | 62.82 ± 17.40 | 70.80 ± 13.64 | 0.473 |
Baseline CMT (µm) | 453.39 ± 206.40 | 444.0 ± 144.41 | 547.40 ± 155.41 | 0.408 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR | p Value | OR | p Value | |
Age | 1.003 | 0.949 | ||
Sex (male/female) | 0.800 | 0.800 | ||
PCV (%) | 0.618 | 0.174 | ||
Injection number/yr before Si4w | 0.538 | 0.017 * | ||
Dry macula after three monthly injections | 4.333 | 0.065 | ||
Maximal injection interval during TAE (weeks) | 1.419 | 0.175 | ||
Presence of IRF at 1st visit after Si4w | 0.001 | 0.997 | ||
Duration of fluid before Si4w (months) | 0.653 | 0.010 * | 0.642 | 0.011 * |
Baseline BCVA (ETDRS letters) | 0.981 | 0.317 | ||
Baseline CMT (µm) | 0.999 | 0.707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, W.; Sagong, M. Short-Term Real-World Outcomes of Intensive Aflibercept Injection for Refractory Neovascular Age-Related Macular Degeneration. J. Clin. Med. 2024, 13, 3503. https://doi.org/10.3390/jcm13123503
Son W, Sagong M. Short-Term Real-World Outcomes of Intensive Aflibercept Injection for Refractory Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine. 2024; 13(12):3503. https://doi.org/10.3390/jcm13123503
Chicago/Turabian StyleSon, Wonyung, and Min Sagong. 2024. "Short-Term Real-World Outcomes of Intensive Aflibercept Injection for Refractory Neovascular Age-Related Macular Degeneration" Journal of Clinical Medicine 13, no. 12: 3503. https://doi.org/10.3390/jcm13123503
APA StyleSon, W., & Sagong, M. (2024). Short-Term Real-World Outcomes of Intensive Aflibercept Injection for Refractory Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine, 13(12), 3503. https://doi.org/10.3390/jcm13123503