Comparison of Morbidity and Mortality Outcomes between Hybrid Palliation and Norwood Palliation Procedures for Hypoplastic Left Heart Syndrome: Meta-Analysis and Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Search Selection
2.3. Data Extraction
2.4. Risk of Bias and Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias and Quality Assessment
3.3. Baseline Patient Demographics
3.4. Primary Outcomes: Mortality
3.5. Secondary Outcomes: Morbidity
3.6. Qualitative Analysis
3.6.1. Ventricular Dysfunction at Stage III Palliation
3.6.2. Length of ICU and Hospital Stays after Stage II Palliation
3.7. Neurodevelopmental Outcomes
4. Discussion
Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef]
- Ohye, R.G.; Sleeper, L.A.; Mahony, L.; Newburger, J.W.; Pearson, G.D.; Lu, M.; Goldberg, C.S.; Tabbutt, S.; Frommelt, P.C.; Ghanayem, N.S.; et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N. Engl. J. Med. 2010, 362, 1980–1992. [Google Scholar] [CrossRef]
- Lev, M. Pathologic anatomy and interrelationship of hypoplasia of the aortic tract complexes. Lab. Investig. 1952, 1, 61–70. [Google Scholar]
- Noonan, J.A.; Nadas, A.S. The hypoplastic left heart syndrome; an analysis of 101 cases. Pediatr. Clin. N. Am. 1958, 5, 1029–1056. [Google Scholar] [CrossRef]
- Dave, H.; Rosser, B.; Knirsch, W.; Hubler, M.; Pretre, R.; Kretschmar, O. Hybrid approach for hypoplastic left heart syndrome and its variants: The fate of the pulmonary arteries. Eur. J. Cardiothorac. Surg. 2014, 46, 14–19. [Google Scholar] [CrossRef]
- Rai, V.; Gładki, M.; Dudynska, M.; Skalski, J. Hypoplastic left heart syndrome [HLHS]: Treatment options in present era. Indian J. Thorac. Cardiovasc. Surg. 2019, 35, 196–202. [Google Scholar] [CrossRef]
- Karamlou, T.; Diggs, B.S.; Ungerleider, R.M.; Welke, K.F. Evolution of treatment options and outcomes for hypoplastic left heart syndrome over an 18-year period. J. Thorac. Cardiovasc. Surg. 2010, 139, 119–126. [Google Scholar] [CrossRef]
- Carvajal, H.; Canter, M.W.; Wan, F.; Eghtesady, P. Hypoplastic left heart syndrome with low birth weight or prematurity: What is the optimal approach? Ann. Thorac. Surg. 2023, 116, 988–995. [Google Scholar] [CrossRef]
- West, L.J.; Pollock-Barziv, S.M.; Dipchand, A.I.; Lee, K.J.; Cardella, C.J.; Benson, L.N.; Rebeyka, I.M.; Coles, J.G. ABO-incompatible heart transplantation in infants. N. Engl. J. Med. 2001, 344, 793–800. [Google Scholar] [CrossRef]
- Gandhi, R.; Almond, C.; Singh, T.P.; Gauvreau, K.; Piercey, G.; Thiagarajan, R.R. Factors associated with in-hospital mortality in infants undergoing heart transplantation in the United States. J. Thorac. Cardiovasc. Surg. 2011, 141, 531–536. [Google Scholar] [CrossRef]
- Chiavarelli, M.; Gundry, S.R.; Razzouk, A.J.; Bailey, L.L. Cardiac transplantation for infants with hypoplastic left-heart syndrome. JAMA 1993, 270, 2944–2947. [Google Scholar]
- Norwood, W.I.; Kirklin, J.K.; Sanders, S.P. Hypoplastic left heart syndrome: Experience with palliative surgery. Am. J. Cardiol. 1980, 45, 87–91. [Google Scholar] [CrossRef]
- Norwood, W.I.; Lang, P.; Hansen, D.D. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N. Engl. J. Med. 1983, 308, 23–26. [Google Scholar] [PubMed]
- Karamlou, T.; Overman, D.; Hill, K.D.; Wallace, A.; Pasquali, S.K.; Jacobs, J.P.; Jacobs, M.L.; Caldarone, C.A. Stage 1 hybrid palliation for hypoplastic left heart syndrome-assessment of contemporary patterns of use: An analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. J. Thorac. Cardiovasc. Surg. 2015, 149, 195–201. [Google Scholar] [CrossRef]
- Wilder, T.J.; McCrindle, B.W.; Hickey, E.J.; Ziemer, G.; Tchervenkov, C.I.; Jacobs, M.L.; Gruber, P.J.; Blackstone, E.H.; Williams, W.G.; DeCampli, W.M.; et al. Is a hybrid strategy a lower-risk alternative to stage 1 Norwood operation? J. Thorac. Cardiovasc. Surg. 2017, 153, 163–172. [Google Scholar]
- Alphonso, N.; Angelini, A.; Barron, D.J.; Bellsham-Revell, H.; Blom, N.A.; Brown, K.; Davis, D.; Duncan, D.; Fedrigo, M.; Galletti, L.; et al. Guidelines for the management of neonates and infants with hypoplastic left heart syndrome: The European Association for Cardio-Thoracic Surgery (EACTS) and the Association for European Paediatric and Congenital Cardiology (AEPC) Hypoplastic Left Heart Syndrome Guidelines Task Force. Eur. J. Cardiothorac. Surg. 2020, 58, 416–499. [Google Scholar]
- Mahle, W.T.; Spray, T.L.; Wernovsky, G.; Gaynor, J.W.; Clark, B.J., III. Survival after reconstructive surgery for hypoplastic left heart syndrome: A 15-year experience from a single institution. Circulation 2000, 102, III136–III141. [Google Scholar] [PubMed]
- Newburger, J.W.; Sleeper, L.A.; Frommelt, P.C.; Pearson, G.D.; Mahle, W.T.; Chen, S.; Dunbar-Masterson, C.; Mital, S.; Williams, I.A.; Ghanayem, N.S.; et al. Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation 2014, 129, 2013–2020. [Google Scholar] [PubMed]
- Hirsch, J.C.; Copeland, G.; Donohue, J.E.; Kirby, R.S.; Grigorescu, V.; Gurney, J.G. Population-based analysis of survival for hypoplastic left heart syndrome. J. Pediatr. 2011, 159, 57–63. [Google Scholar]
- Roeleveld, P.P.; Axelrod, D.M.; Klugman, D.; Jones, M.B.; Chanani, N.K.; Rossano, J.W.; Costello, J.M. Hypoplastic left heart syndrome: From fetus to fontan. Cardiol. Young 2018, 28, 1275–1288. [Google Scholar]
- Ohye, R.G.; Schranz, D.; D’Udekem, Y. Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation 2016, 134, 1265–1279. [Google Scholar] [CrossRef] [PubMed]
- Mascio, C.E.; Irons, M.L.; Ittenbach, R.F.; Gaynor, J.W.; Fuller, S.M.; Kaplinski, M.; Kennedy, A.T.; Steven, J.M.; Nicolson, S.C.; Spray, T.L. Thirty years and 1663 consecutive Norwood procedures: Has survival plateaued? J. Thorac. Cardiovasc. Surg. 2019, 158, 220–229. [Google Scholar] [CrossRef]
- Pisesky, A.; Shah, S.; Seed, M.; Schwartz, S.M.; Russell, J.; Pereira-Solomos, P.; Thomas, J.; van Arsdell, G.; Floh, A. Standardisation of management after Norwood operation has not improved 1-year outcomes. Cardiol. Young 2021, 3, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.E., Jr.; Hill, K.; Jacobs, J.P.; Overman, D.M.; Kumar, S.R. The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2020 Update on outcomes and research. Ann. Thorac. Surg. 2020, 110, 1809–1818. [Google Scholar] [PubMed]
- Iyengar, A.J.; Winlaw, D.S.; Galati, J.C.; Wheaton, G.R.; Gentles, T.L.; Grigg, L.E.; Justo, R.N.; Radford, D.J.; Weintraub, R.G.; Bullock, A.; et al. The extracardiac conduit Fontan procedure in Australia and New Zealand: Hypoplastic left heart syndrome predicts worse early and late outcomes. Eur. J. Cardiothorac. Surg. 2014, 46, 465–473. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Trachtenberg, F.; William, G.J.; Mahle, W.T.; Ravishankar, C.; Schwartz, S.M.; Cnota, J.F.; Ohye, R.G.; Gongwer, R.; Taylor, M.; et al. Longitudinal follow-up of children With HLHS and association between Norwood shunt type and long-term outcomes: The SVR III study. Circulation 2023, 148, 1330–1339. [Google Scholar]
- Tanem, J.; Rudd, N.; Rauscher, J.; Scott, A.; Frommelt, M.A.; Hill, G.D. Survival after Norwood procedure in high-risk patients. Ann. Thorac. Surg. 2020, 109, 828–833. [Google Scholar]
- Tabbutt, S.; Dominguez, T.E.; Ravishankar, C.; Marino, B.S.; Gruber, P.J.; Wernovsky, G.; Gaynor, J.W.; Nicolson, S.C.; Spray, T.L. Outcomes after the stage I reconstruction comparing the right ventricular to pulmonary artery conduit with the modified Blalock Taussig shunt. Ann. Thorac. Surg. 2005, 80, 1582–1590. [Google Scholar]
- Mahle, W.T.; Wernovsky, G. Neurodevelopmental outcomes in hypoplastic left heart syndrome. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2004, 7, 39–47. [Google Scholar]
- Gibbs, J.L.; Wren, C.; Watterson, K.G.; Hunter, S.; Hamilton, J.R. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: A new approach to palliation for the hypoplastic left heart syndrome. Br. Heart J. 1993, 69, 551–555. [Google Scholar] [CrossRef]
- Akintuerk, H.; Michel-Behnke, I.; Valeske, K.; Mueller, M.; Thul, J.; Bauer, J.; Hagel, K.J.; Kreuder, J.; Vogt, P.; Schranz, D. Stenting of the arterial duct and banding of the pulmonary arteries: Basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 2002, 105, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Miyata, H.; Hirahara, N.; Murakami, A.; Kado, H.; Sakamoto, K.; Sano, S.; Takamoto, S. Long-term results of bilateral pulmonary artery banding versus primary Norwood procedure. Pediatr. Cardiol. 2018, 39, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Hirata, Y.; Inuzuka, R.; Tachimori, H.; Hirano, A.; Sakurai, T.; Shiraishi, S.; Matsui, H.; Ayusawa, M.; Nakano, T.; et al. Effect of procedural volume on the outcomes of congenital heart surgery in Japan. J. Thorac. Cardiovasc. Surg. 2023, 165, 1541–1550. [Google Scholar] [CrossRef]
- Galantowicz, M.; Yates, A.R. Improved outcomes with the comprehensive stage 2 procedure after an initial hybrid stage 1. J. Thorac. Cardiovasc. Surg. 2016, 151, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Yerebakan, C.; Valeske, K.; Elmontaser, H.; Yoruker, U.; Mueller, M.; Thul, J.; Mann, V.; Latus, H.; Villanueva, A.; Hofmann, K.; et al. Hybrid therapy for hypoplastic left heart syndrome: Myth, alternative, or standard? J. Thorac. Cardiovasc. Surg. 2016, 15, 1112–1121. [Google Scholar] [CrossRef]
- Lim, D.S.; Peeler, B.B.; Matherne, G.P.; Kron, I.L.; Gutgesell, H.P. Risk-stratified approach to hybrid transcatheter-surgical palliation of hypoplastic left heart syndrome. Pediatr. Cardiol. 2006, 27, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, C.; Derby, C.D.; Baffa, J.M.; Murdison, K.A.; Radtke, W.A. Improving the outcome of high-risk neonates with hypoplastic left heart syndrome: Hybrid procedure or conventional surgical palliation? Eur. J. Cardiothorac. Surg. 2008, 33, 613–618. [Google Scholar] [CrossRef]
- Sakurai, T.; Kado, H.; Nakano, T.; Hinokiyama, K.; Shiose, A.; Kajimoto, M.; Joo, K.; Ueda, Y. Early results of bilateral pulmonary artery banding for hypoplastic left heart syndrome. Eur. J. Cardiothorac. Surg. 2009, 36, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Kotani, Y.; Chetan, D.; Chaturvedi, R.R.; Lee, K.J.; Benson, L.N.; Grosse-Wortmann, L.; van Arsdell, G.S.; Caldarone, C.A.; Honjo, O. Hybrid versus Norwood strategies for single-ventricle palliation. Circulation 2012, 126, S123–S131. [Google Scholar]
- Brescia, A.A.; Jureidini, S.; Danon, S.; Armbrecht, E.; Fiore, A.C.; Huddleston, C.B. Hybrid versus Norwood procedure for hypoplastic left heart syndrome: Contemporary series from a single center. J. Thorac. Cardiovasc. Surg. 2014, 147, 1777–1782. [Google Scholar]
- Davies, R.R.; Radtke, W.A.; Klenk, D.; Pizarro, C. Bilateral pulmonary arterial banding results in an increased need for subsequent pulmonary artery interventions. J. Thorac. Cardiovasc. Surg. 2014, 147, 706–712. [Google Scholar] [CrossRef]
- Lloyd, D.F.; Cutler, L.; Tibby, S.M.; Vimalesvaran, S.; Qureshi, S.A.; Rosenthal, E.; Anderson, D.; Austin, C.; Bellsham-Revell, H.; Krasemann, T. Analysis of preoperative condition and interstage mortality in Norwood and hybrid procedures for hypoplastic left heart syndrome using the Aristotle scoring system. Heart 2014, 100, 775–780. [Google Scholar] [CrossRef]
- Knirsch, W.; Bertholdt, S.; Stoffel, G.; Stiasny, B.; Weber, R.; Dave, H.; Pretre, R.; von Rhein, M.; Kretschmar, O. Clinical course and interstage monitoring after the Norwood and hybrid procedures for hypoplastic left heart syndrome. Pediatr. Cardiol. 2014, 35, 851–856. [Google Scholar] [CrossRef]
- DiBardino, D.J.; Gomez-Arostegui, J.; Kemp, A.; Raviendran, R.; Hegde, S.; Devaney, E.J.; Lamberti, J.J.; El-Said, H. Intermediate results of hybrid versus primary Norwood operation. Ann. Thorac. Surg. 2015, 99, 2141–2147. [Google Scholar] [CrossRef]
- Dodge-Khatami, A.; Chancellor, W.Z.; Gupta, B.; Seals, S.R.; Ebeid, M.R.; Batlivala, S.P.; Taylor, M.B.; Salazar, J.D. Achieving benchmark results for neonatal palliation of hypoplastic left heart syndrome and related anomalies in an emerging program. World. J. Pediatr. Congenit. Heart Surg. 2015, 6, 393–400. [Google Scholar] [CrossRef]
- Nwankwo, U.T.; Morell, E.M.; Trucco, S.M.; Morell, V.O.; Kreutzer, J. Hybrid strategy for neonates with ductal-dependent systemic circulation at high risk for Norwood. Ann. Thorac. Surg. 2018, 106, 595–601. [Google Scholar] [CrossRef]
- Latus, H.; Nassar, M.S.; Wong, J.; Hachmann, P.; Bellsham-Revell, H.; Hussain, T.; Apitz, C.; Salih, C.; Austin, C.; Anderson, D.; et al. Ventricular function and vascular dimensions after Norwood and hybrid palliation of hypoplastic left heart syndrome. Heart 2018, 104, 244–252. [Google Scholar] [CrossRef]
- Sower, C.T.; Romano, J.C.; Yu, S.; Lowery, R.; Pasquali, S.K.; Zampi, J.D. Early and midterm outcomes in high-risk single-ventricle patients: Hybrid Vs Norwood palliation. Ann. Thorac. Surg. 2019, 108, 1849–1855. [Google Scholar] [CrossRef]
- Erek, E.; Aydin, S.; Temur, B.; Onalan, M.A.; Suzan, D.; Iyigun, M.; Demir, I.H.; Odemiş, E. Outcomes of hybrid and Norwood Stage I procedures for the treatment of hypoplastic left heart syndrome and its variants. Turk. Gogus. Kalp. Damar. Cerrahisi. Derg. 2020, 28, 282–293. [Google Scholar]
- Ho, A.B.; Hribernik, I.; Shillaker, D.; Thomson, J.; Salam, A.; Dedieu, N.; Giardini, A.; Derrick, G.; O’Callaghan, B.; Gibb, J.; et al. Hybrid Palliation for Hypoplastic Left Heart Syndrome: Association with contemporary outcomes. Circulation 2021, 144, 1189–1191. [Google Scholar]
- Matsunaga, Y.; Shikata, F.; Oka, N.; Okamura, T.; Tomoyasu, T.; Kaneko, M.; Inoue, T.; Matsui, K.; Miyaji, K. Long-term outcomes of hypoplastic left heart syndrome with analysis of the Norwood procedure in infants following bilateral pulmonary artery banding. JTCVS Open 2023, 16, 675–688. [Google Scholar] [CrossRef]
- Davies, R.R.; Carver, S.W.; Schmidt, R.; Keskeny, H.; Hoch, J.; Pizarro, C. Gastrointestinal complications after stage I Norwood versus hybrid procedures. Ann. Thorac. Surg. 2013, 95, 189–195. [Google Scholar] [CrossRef]
- Grotenhuis, H.B.; Ruijsink, B.; Chetan, D.; Dragulescu, A.; Friedberg, M.K.; Kotani, Y.; Caldarone, C.A.; Honjo, O.; Mertens, L.L. Impact of Norwood versus hybrid palliation on cardiac size and function in hypoplastic left heart syndrome. Heart 2016, 102, 966–974. [Google Scholar] [CrossRef]
- Chetan, D.; Kotani, Y.; Jacques, F.; Poynter, J.A.; Benson, L.N.; Lee, K.J.; Chaturvedi, R.R.; Friedberg, M.K.; van Arsdell, G.S.; Caldarone, C.A.; et al. Surgical palliation strategy does not affect interstage ventricular dysfunction or atrioventricular valve regurgitation in children with hypoplastic left heart syndrome and variants. Circulation 2013, 128, S205–S212. [Google Scholar] [CrossRef]
- Honjo, O.; Benson, L.N.; Mewhort, H.E.; Predescu, D.; Holtby, H.; van Arsdell, G.S.; Caldarone, C.A. Clinical outcomes, program evolution, and pulmonary artery growth in single ventricle palliation using hybrid and Norwood palliative strategies. Ann. Thorac. Surg. 2009, 87, 1885–1892. [Google Scholar] [CrossRef]
- Knirsch, W.; Liamlahi, R.; Hug, M.I.; Hoop, R.; von Rhein, M.; Pretre, R.; Kretschmar, O.; Latal, B. Mortality and neurodevelopmental outcome at 1 year of age comparing hybrid and Norwood procedures. Eur. J. Cardiothorac. Surg. 2012, 42, 33–39. [Google Scholar] [CrossRef]
- Malik, S.; Bird, T.M.; Jaquiss, R.D.; Morrow, W.R.; Robbins, J.M. Comparison of in-hospital and longer-term outcomes of hybrid and Norwood stage 1 palliation of hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 2015, 150, 474–480. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Knirsch, W.; Liamlahi, R.; Dave, H.; Kretschmar, O.; Latal, B. Neurodevelopmental outcome of children with hypoplastic left heart syndrome at one and four years of age comparing hybrid and Norwood procedure. Ann. Thorac. Cardiovasc. Surg. 2016, 22, 375–377. [Google Scholar]
- Khalid, O.M.; Harrison, T.M. Early neurodevelopmental outcomes in children with hypoplastic left heart syndrome and related anomalies after hybrid procedure. Pediatr. Cardiol. 2019, 40, 1591–1598. [Google Scholar] [CrossRef]
- Reich, B.; Heye, K.; Tuura, R.; Beck, I.; Wetterling, K.; Hahn, A.; Hofmann, K.; Schranz, D.; Akinturk, H.; Latal, B.; et al. Neurodevelopmental outcome and health-related quality of life in children with single-ventricle heart disease before fontan procedure. Semin. Thorac. Cardiovasc. Surg. 2017, 29, 504–513. [Google Scholar] [CrossRef]
- Newburger, J.W.; Sleeper, L.A.; Bellinger, D.C.; Goldberg, C.S.; Tabbutt, S.; Lu, M.; Mussatto, K.A.; Williams, I.A.; Gustafson, K.E.; Mital, S.; et al. Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: The single ventricle reconstruction trial. Circulation 2012, 125, 2081–2091. [Google Scholar]
- Knirsch, W.; Heye, K.N.; Tuura, R.O.; Hahn, A.; Wetterling, K.; Latal, B.; Schranz, D.; Reich, B. Smaller brain volumes at two years of age in patients with hypoplastic left heart syndrome—Impact of surgical approach. Int. J. Cardiol. 2019, 291, 42–44. [Google Scholar]
- Evans, W.N.; Galindo, A.; Rothman, A.; Ciccolo, M.L.; Carrillo, S.A.; Acherman, R.J.; Mayman, G.A.; Cass, K.A.; Kip, K.T.; Luna, C.F.; et al. Hybrid palliation for ductal-dependent systemic circulation. Pediatr. Cardiol. 2016, 37, 868–877. [Google Scholar] [CrossRef]
- Simsic, J.M.; Bradley, S.M.; Stroud, M.R.; Atz, A.M. Risk factors for interstage death after the Norwood procedure. Pediatr. Cardiol. 2005, 26, 400–403. [Google Scholar] [CrossRef]
- Hehir, D.A.; Dominguez, T.E.; Ballweg, J.A.; Ravishankar, C.; Marino, B.S.; Bird, G.L.; Nicolson, S.C.; Spray, T.L.; Gaynor, J.W.; Tabbutt, S. Risk factors for interstage death after stage 1 reconstruction of hypoplastic left heart syndrome and variants. J. Thorac. Cardiovasc. Surg. 2008, 136, 94–99. [Google Scholar] [CrossRef]
- Rahkonen, O.; Chaturvedi, R.R.; Benson, L.; Honjo, O.; Caldarone, C.A.; Lee, K.J. Pulmonary artery stenosis in hybrid single-ventricle palliation: High incidence of left pulmonary artery intervention. J. Thorac. Cardiovasc. Surg. 2015, 149, 1102–1110. [Google Scholar] [CrossRef]
- Bacha, E.A.; Daves, S.; Hardin, J.; Abdulla, R.I.; Anderson, J.; Kahana, M.; Koenig, P.; Mora, B.N.; Gulecyuz, M.; Starr, J.P.; et al. Single-ventricle palliation for high-risk neonates: The emergence of an alternative hybrid stage I strategy. J. Thorac. Cardiovasc. Surg. 2006, 131, 163–171. [Google Scholar] [CrossRef]
- Ghanayem, N.S.; Hoffman, G.M.; Mussatto, K.A.; Cava, J.R.; Frommelt, P.C.; Rudd, N.A.; Steltzer, M.M.; Bevandic, S.M.; Frisbee, S.S.; Jaquiss, R.D.; et al. Home surveillance program prevents interstage mortality after the Norwood procedure. J. Thorac. Cardiovasc. Surg. 2003, 126, 1367–1377. [Google Scholar] [CrossRef]
- Hsia, T.Y.; Cosentino, D.; Corsini, C.; Pennati, G.; Dubini, G.; Migliavacca, F.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 2011, 124, S204–S210. [Google Scholar] [CrossRef]
- Cua, C.L.; McConnell, P.I.; Meza, J.M.; Hill, K.D.; Zhang, S.; Hersey, D.; Karamlou, T.; Jacobs, J.P.; Jacobs, M.L.; Galantowicz, M. Hybrid palliation: Outcomes after the comprehensive stage 2 procedure. Ann. Thorac. Surg. 2018, 105, 1455–1460. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Mayer, J.E., Jr.; Mavroudis, C.; O’Brien, S.M.; Austin, E.H., III.; Pasquali, S.K.; Hill, K.D.; Overman, D.M.; St Louis, J.D.; Karamlou, T.; et al. The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2017 Update on outcomes and quality. Ann. Thorac. Surg. 2017, 103, 699–709. [Google Scholar] [CrossRef]
- Feinstein, J.A.; Benson, D.W.; Dubin, A.M.; Cohen, M.S.; Maxey, D.M.; Mahle, W.T.; Pahl, E.; Villafane, J.; Bhatt, A.B.; Peng, L.F.; et al. Hypoplastic left heart syndrome: Current considerations and expectations. J. Am. Coll. Cardiol. 2012, 59, S1–S42. [Google Scholar]
- Newburger, J.W.; Sleeper, L.A.; Gaynor, J.W.; Hollenbeck-Pringle, D.; Frommelt, P.C.; Li, J.S.; Mahle, W.T.; Williams, I.A.; Atz, A.M.; Burns, K.M.; et al. Transplant-Free Survival and Interventions at 6 Years in the SVR Trial. Circulation 2018, 137, 2246–2253. [Google Scholar] [CrossRef]
- Hamzah, M.; Othman, H.F.; Elsamny, E.; Agarwal, H.; Aly, H. Clinical outcomes and risk factors for in-hospital mortality in neonates with hypoplastic left heart syndrome. Pediatr. Cardiol. 2020, 41, 781–788. [Google Scholar] [CrossRef]
- Tabbutt, S.; Ghanayem, N.; Ravishankar, C.; Sleeper, L.A.; Cooper, D.S.; Frank, D.U.; Lu, M.; Pizarro, C.; Frommelt, P.; Goldberg, C.S.; et al. Risk factors for hospital morbidity and mortality after the Norwood procedure: A report from the Pediatric Heart Network Single Ventricle Reconstruction trial. J. Thorac. Cardiovasc. Surg. 2012, 144, 882–895. [Google Scholar] [CrossRef]
- Hickey, E.J.; Nosikova, Y.; Zhang, H.; Caldarone, C.A.; Benson, L.; Redington, A.; van Arsdell, G.S. Very low-birth-weight infants with congenital cardiac lesions: Is there merit in delaying intervention to permit growth and maturation? J. Thorac. Cardiovasc. Surg. 2012, 143, 126–136. [Google Scholar]
- Selenius, S.; Ilvesvuo, J.; Ruotsalainen, H.; Mattila, I.; Patila, T.; Helle, E.; Ojala, T. Risk factors for mortality in patients with hypoplastic left heart syndrome after the Norwood procedure. Interdiscip. Cardiovasc. Thorac. Surg. 2023, 37, ivad127. [Google Scholar] [CrossRef]
- Argo, M.B.; Barron, D.J.; Eghtesady, P.; Alsoufi, B.; Honjo, O.; Yerebakan, C.; DeCampli, W.M.; Jacobs, J.P.; Carrillo, S.A.; Jegatheeswaran, A.; et al. Norwood operation versus comprehensive stage II after bilateral pulmonary artery banding palliation for infants with critical left heart obstruction. J. Thorac. Cardiovasc. Surg. 2023, 166, 943–954. [Google Scholar]
- Davies, R.R.; Radtke, W.; Bhat, M.A.; Baffa, J.M.; Woodford, E.; Pizarro, C. Hybrid palliation for critical systemic outflow obstruction: Neither rapid stage 1 Norwood nor comprehensive stage 2 mitigate consequences of early risk factors. J. Thorac. Cardiovasc. Surg. 2015, 149, 182–191. [Google Scholar]
- Yoruker, U.; Akinturk, H. Giessen procedure as Comprehensive Stage II palliation with aortic arch reconstruction after hybrid bilateral pulmonary artery banding and ductal stenting for hypoplastic left heart syndrome. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2018, 21, 19–27. [Google Scholar]
- Stark, J.; Berry, C.L.; Silove, E.D. The evaluation of materials used for pulmonary artery banding. Experimental study in piglets. Ann. Thorac. Surg. 1972, 13, 163–169. [Google Scholar]
- Bichell, D.P.; Lamberti, J.J.; Pelletier, G.J.; Hoecker, C.; Cocalis, M.W.; Ing, F.F.; Jensen, R.A. Late left pulmonary artery stenosis after the Norwood procedure is prevented by a modification in shunt construction. Ann. Thorac. Surg. 2005, 79, 1656–1660. [Google Scholar]
- Barron, D.J.; Brooks, A.; Stickley, J.; Woolley, S.M.; Stumper, O.; Jones, T.J.; Brawn, W.J. The Norwood procedure using a right ventricle-pulmonary artery conduit: Comparison of the right-sided versus left-sided conduit position. J. Thorac. Cardiovasc. Surg. 2009, 138, 528–537. [Google Scholar]
- Sano, S.; Ishino, K.; Kawada, M.; Honjo, O. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2004, 7, 22–31. [Google Scholar] [CrossRef]
- Shimizu, S.; Kawada, T.; Une, D.; Shishido, T.; Kamiya, A.; Sano, S.; Sugimachi, M. Hybrid stage I palliation for hypoplastic left heart syndrome has no advantage on ventricular energetics: A theoretical analysis. Heart Vessel. 2016, 31, 105–113. [Google Scholar] [CrossRef]
- Son, J.S.; James, A.; Fan, C.S.; Mertens, L.; McCrindle, B.W.; Manlhiot, C.; Friedberg, M.K. Prognostic Value of Serial Echocardiography in Hypoplastic Left Heart Syndrome. Circ. Cardiovasc. Imaging 2018, 11, e006983. [Google Scholar] [CrossRef]
- Galli, K.K.; Zimmerman, R.A.; Jarvik, G.P.; Wernovsky, G.; Kuypers, M.K.; Clancy, R.R.; Montenegro, L.M.; Mahle, W.T.; Newman, M.F.; Saunders, A.M.; et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 2004, 127, 692–704. [Google Scholar] [CrossRef]
- Gaynor, J.W. Periventricular leukomalacia following neonatal and infant cardiac surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2004, 7, 133–140. [Google Scholar] [CrossRef]
- Soul, J.S.; Robertson, R.L.; Wypij, D.; Bellinger, D.C.; Visconti, K.J.; du Plessis, A.J.; Kussman, B.D.; Scoppettuolo, L.A.; Pigula, F.; Jonas, R.A.; et al. Subtle hemorrhagic brain injury is associated with neurodevelopmental impairment in infants with repaired congenital heart disease. J. Thorac. Cardiovasc. Surg. 2009, 138, 374–381. [Google Scholar] [CrossRef]
- Glauser, T.A.; Rorke, L.B.; Weinberg, P.M.; Clancy, R.R. Congenital brain anomalies Associated with the hypoplastic left heart syndrome. Pediatrics 1990, 85, 984–990. [Google Scholar] [CrossRef]
- McQuillen, P.S.; Goff, D.A.; Licht, D.J. Effects of congenital heart disease on brain development. Prog. Pediatr. Cardiol. 2010, 29, 79–85. [Google Scholar] [CrossRef]
- Herberg, U.; Hovels-Gurich, H. Neurological and psychomotor development of foetuses and children with congenital heart disease—Causes and prevalence of disorders and long-term prognosis. Z. Geburtshilfe. Neonatol. 2012, 216, 132–140. [Google Scholar]
- Ceneri, N.M.; Desai, M.H.; Tongut, A.; Ozturk, M.; Ramakrishnan, K.; Staffa, S.J.; Zurakowski, D.; Donofrio, M.T.; Downing, T.; d’Udekem, Y.; et al. Hybrid strategy in neonates with ductal-dependent systemic circulation and multiple risk factors. J. Thorac. Cardiovasc. Surg. 2022, 164, 1291–1303. [Google Scholar] [CrossRef]
- Hoffman, G.M.; Ghanayem, N.S.; Scott, J.P.; Tweddell, J.S.; Mitchell, M.E.; Mussatto, K.A. Postoperative cerebral and somatic near-infrared spectroscopy saturations and outcome in hypoplastic left heart syndrome. Ann. Thorac. Surg. 2017, 103, 1527–1535. [Google Scholar] [CrossRef]
- Yu, P.; Esangbedo, I.; Li, X.; Wolovits, J.; Thiagarajan, R.; Raman, L. Early changes in near-infrared spectroscopy are associated with cardiac arrest in children with congenital heart disease. Front. Pediatr. 2022, 10, 894125. [Google Scholar] [CrossRef] [PubMed]
- Tweddell, J.S.; Hoffman, G.M.; Mussatto, K.A.; Fedderly, R.T.; Berger, S.; Jaquiss, R.D.; Ghanayem, N.S.; Frisbee, S.J.; Litwin, S.B. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: Lessons learned from 115 consecutive patients. Circulation 2002, 106, I82–I89. [Google Scholar] [CrossRef] [PubMed]
- Tweddell, J.S.; Hoffman, G.M.; Fedderly, R.T.; Berger, S.; Thomas, J.P., Jr.; Ghanayem, N.S.; Kessel, M.W.; Litwin, S.B. Phenoxybenzamine improves systemic oxygen delivery after the Norwood procedure. Ann. Thorac. Surg. 1999, 67, 161–167. [Google Scholar] [CrossRef]
- Baird, C.W.; Myers, P.O.; Borisuk, M.; Pigula, F.A.; Emani, S.M. Ring-reinforced Sano conduit at Norwood stage I reduces proximal conduit obstruction. Ann. Thorac. Surg. 2015, 99, 171–179. [Google Scholar] [CrossRef] [PubMed]
Study | Publication Year | Study Period | Study Location | HLHS (n) | HP (n) | NP (n) |
---|---|---|---|---|---|---|
Lim et al. [36] | 2006 | 2002–2005 | Virginia, USA | 22 | 5 | 17 |
Pizzaro et al. [37] | 2008 | 2001–2006 | Nemours, Wilmington, DE, USA | 33 | 14 | 19 |
Sakurai et al. [38] | 2009 | 2004–2007 | Fukuoka, Japan | 43 | 18 | 25 |
Baba et al. [39] * | 2012 | 2004–2010 | Toronto, ON, Canada | 110 | 47 | 63 |
Brescia et al. [40] | 2013 | 2007–2012 | Saint Louis, MO, USA | 40 | 24 | 16 |
Davies et al. [41] # | 2014 | 2001–2013 | Nemours, USA | 104 | 50 | 54 |
Lloyd et al. [42] | 2014 | 2005–2011 | London, UK | 138 | 27 | 111 |
Knirsch et al. [43] § | 2014 | 2008–2011 | Zurich, Switzerland | 26 | 14 | 12 |
DiBardino et al. [44] | 2015 | 2007–2012 | San Diego, CA, USA | 68 | 26 | 42 |
Dodge-Khatami et al. [45] | 2015 | 2010–2014 | Jackson, MS, USA | 47 | 17 | 30 |
Nwankwo et al. [46] | 2018 | 2004–2015 | Pittsburgh, PA, USA | 40 | 24 | 16 |
Latus et al. [47] | 2018 | 2008–2015 | Giessen, Germany and London, UK | 86 | 44 | 42 |
Sower et al. [48] | 2019 | 2000–2016 | Michigan, USA | 96 | 35 | 61 |
Erek et al. [49] | 2020 | 2011–2018 | Istanbul, Turkey | 97 | 65 | 32 |
Ho et al. [50] | 2021 | 2013–2020 | Southampton, Leeds, Sheffield, Great Ormond Street, Bristol, UK | 186 | 46 | 140 |
Matsunaga et al. [51] | 2023 | 2004–2022 | Kitasato, Gunma, Juichi, Japan | 46 | 23 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskander, C.; Nwankwo, U.; Kumanan, K.K.; Chiwane, S.; Exil, V.; Lowrie, L.; Tan, C.; Huddleston, C.; Agarwal, H.S. Comparison of Morbidity and Mortality Outcomes between Hybrid Palliation and Norwood Palliation Procedures for Hypoplastic Left Heart Syndrome: Meta-Analysis and Systematic Review. J. Clin. Med. 2024, 13, 4244. https://doi.org/10.3390/jcm13144244
Iskander C, Nwankwo U, Kumanan KK, Chiwane S, Exil V, Lowrie L, Tan C, Huddleston C, Agarwal HS. Comparison of Morbidity and Mortality Outcomes between Hybrid Palliation and Norwood Palliation Procedures for Hypoplastic Left Heart Syndrome: Meta-Analysis and Systematic Review. Journal of Clinical Medicine. 2024; 13(14):4244. https://doi.org/10.3390/jcm13144244
Chicago/Turabian StyleIskander, Christopher, Ugonna Nwankwo, Krithika K. Kumanan, Saurabh Chiwane, Vernat Exil, Lia Lowrie, Corinne Tan, Charles Huddleston, and Hemant S. Agarwal. 2024. "Comparison of Morbidity and Mortality Outcomes between Hybrid Palliation and Norwood Palliation Procedures for Hypoplastic Left Heart Syndrome: Meta-Analysis and Systematic Review" Journal of Clinical Medicine 13, no. 14: 4244. https://doi.org/10.3390/jcm13144244
APA StyleIskander, C., Nwankwo, U., Kumanan, K. K., Chiwane, S., Exil, V., Lowrie, L., Tan, C., Huddleston, C., & Agarwal, H. S. (2024). Comparison of Morbidity and Mortality Outcomes between Hybrid Palliation and Norwood Palliation Procedures for Hypoplastic Left Heart Syndrome: Meta-Analysis and Systematic Review. Journal of Clinical Medicine, 13(14), 4244. https://doi.org/10.3390/jcm13144244