Next Article in Journal
Adolescents Hospitalized in an Acute Psychiatric Ward: The Difference between Males and Females in the Pre- and Pandemic/Post-Pandemic Periods
Previous Article in Journal
[15O]H2O PET/MRI for Assessment of Complete Response to Neoadjuvant or Induction Chemotherapy in Patients with Muscle-Invasive Bladder Cancer: A Pilot Study
Previous Article in Special Issue
Evaluating Imaging Techniques for Diagnosing and Drainage Guidance of Psoas Muscle Abscess: A Systematic Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Graft Infections in Biologic Reconstructions in the Oncologic Setting: A Systematic Review of the Literature

Orthopedic and Traumatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2024, 13(16), 4656; https://doi.org/10.3390/jcm13164656
Submission received: 25 July 2024 / Revised: 3 August 2024 / Accepted: 6 August 2024 / Published: 8 August 2024
(This article belongs to the Special Issue Musculoskeletal Infections: Clinical Diagnosis and Treatment)

Abstract

:
Background: Biologic graft infection (BGI) is one of the main complications in graft reconstructions. However, very little evidence exists regarding the epidemiology of BGI, as most of the data come from sparse reports. Moreover, most of the series did not detail the treatment and outcome of graft infections. The aim of this systematic review of the literature is to provide a comprehensive data collection on BGI after oncologic resections. Methods: Three different databases (PubMed, Scopus, and Web of Science) were searched for relevant articles, and further references were obtained by cross-referencing. Results: 139 studies met the inclusion criteria. A total of 9824 grafts were retrieved. Among these, 684 (6.9%) were in the humerus, 365 (3.7%) in the pelvis, 2041 (20.7%) in the femur and 1660 (16.8%) in the tibia. Most grafts were osteoarticular (2481, 26.7%) and intercalary 2112 (22.7%) allografts. In 461 (5.0%), vascularized fibula grafts (VFGs) were used in combination with recycled autografts. Recycled grafts were reported in 1573 (16.9%) of the cases, and allograft-prosthetic composites in 1673 (18.0%). The pelvis and the tibia had the highest incidence of BGI (20.4% and 11.0%, respectively). The most reported first treatment was debridement and implant retention (DAIR) in 187 (42.8%) cases and two-stage revision with graft removal in 152 (34.8%). Very little data are reported on the final outcome specified by site or type of graft. Conclusions: This systematic review of the literature confirms a high incidence of infections in biologic reconstructions after resections of primary bone tumors. Despite DAIR being a viable attempt, in most cases, a two-stage approach with graft removal and reconstruction with endoprosthesis presented the highest chance to overcome infection, guaranteeing a reconstruction. We emphasize the need for future multicentric studies to focus on the management of infections after biological reconstructions in bone sarcomas.

1. Introduction

Massive bone grafts have been used for several decades in orthopedic oncology [1]. The most popular biological reconstructions after segmental resection of a bone sarcoma include allografts [2,3,4], vascularized fibula graft (VFG) [5,6], combined allograft and VFG [7,8,9], extracorporeal devitalized (recycled) autograft [10], and massive grafts in combination with a prosthesis (allograft-prosthetic composite, APC) [11].
Bone allografts have many advantages, as they allow adequate attachment of salvaged tendons and provide initial mechanical strength [12]. The graft is progressively incorporated by the host during healing through creeping substitution and may survive for decades. Moreover, it is possible to preserve host bone stock without donor site morbidity [13,14] either in osteoarticular or intercalary diaphyseal bone defects.
On the other hand, vascularized bone grafts do not undergo resorption by creeping substitution due to their intact vascularity, but they require microvascular reconstruction, which requires prolonged surgical procedures and surgical expertise, difficult to be easily reproducible. VFG can be used in three forms of reconstructive options: 1. single vascularized fibular graft, which is mainly indicated for reconstruction of areas with lower mechanical load as in upper extremity reconstruction, segmental defects of the mid-tibia, and intercalary defects in pediatric patients; 2. vascularized double-barreled fibula, which can be indicated for areas with intermediate mechanical stress such as femur and pelvis; and 3. in combination with an allograft or recycled autograft [6,7]. However, donor site morbidity is high, including bleeding, peroneal nerve palsy, contracture of flexor hallucis longus, and ankle pain [15].
Contrarily, allograft-prosthetic composites present several advantages to reconstructing articular segments: they allow for a biologic restoration of the bone defect, they share the load with the prosthesis once bone union is achieved, and they allow soft tissue attachments around the reconstructed joint [11]. However, the results of APCs seem to vary greatly, given the anatomic site involved.
Additionally, biological reconstruction performed via reuse of the devitalized resected tumor-bearing bone is common in certain Asian countries as the concept of bone donation is not widely accepted. The basic idea behind implanting devitalized (recycled) bone is to reimplant the resected bone after extracorporeal devitalization of the tumor. [16,17]. The techniques of devitalizing procedures include irradiation, autoclaving, pasteurization, or freezing with liquid nitrogen. Reconstruction is performed by reimplantation of the devitalized autograft and stabilization by suitable osteosynthesis [18,19].
In general, biologic graft infection (BGI) is one of the main complications in graft reconstructions, usually resulting in early failure of the reconstruction [1]. Innocenti et al. [20] suggested that VFG is more resistant to infection (owing to its vascularity). However, very little evidence exists regarding the epidemiology of BGI, as most of the data come from sparse reports. Moreover, most of the series did not detail the treatment and outcome of graft infections.
The aim of this systematic review of the literature is to provide a comprehensive data collection on infections of graft reconstructions after oncologic resections and to provide an overview of this topic, especially from an epidemiologic point of view.

2. Materials and Methods

This systematic review was conducted in accordance with the 2020 PRISMA guidelines (Preferred Reporting Items of Systematic Reviews) [21].
All studies (randomized controlled trials (RCT), prospective (PCCS) and retrospective comparative studies (RCCS), prospective (PCS) and retrospective case series (RCS)) reporting on deep infection cases of graft reconstructions were included. Biomechanical studies, cadaveric studies, “in vitro” studies, and animal model studies were excluded. Only articles written in English and published in a peer-reviewed journal were included. Articles published prior to 1985 were also excluded.
The criteria used to select articles allowed for the extrapolation of data about infections of graft reconstructions. Studies eligible for this systematic review were identified through an electronic systematic search of PubMed, Scopus, and Web of Science until 31 July 2024. The search string used was as follows: (graft OR allograft OR autograft OR vascularized fibula) AND (sarcoma OR bone tumour) AND (infection OR deep infection OR failure OR complication). Articles without an abstract were excluded from the study. Screening of the articles was conducted by considering the relevance of titles and abstracts and looking for the full-text article when the abstract provided insufficient information about inclusion and exclusion criteria.
Articles that were considered relevant by electronic search were retrieved in full text, and a cross-referencing search of their bibliographies was performed to find further related articles. Reviews and meta-analyses were also analyzed in order to broaden the search to studies that might have been missed through the electronic search. All duplicates were removed, and all the articles retrieved have been analyzed. After the first screening, records without eligibility criteria were excluded.
Remnant studies were categorized by type, according to the Oxford Centre for Evidence-Based Medicine (OCEBM).
Each study was assessed by two reviewers (R.Z., L.M.) independently and in duplicate; disagreement was resolved by the senior author (A.S). All the included studies were analyzed, and data related to topics of interest were extracted and summarized.
In detail, the data extracted included study type, mean age, site, mean follow-up, deep infections, type of graft, and type of treatment of infections. Graft infections were subclassified as early (A) and late (B) and defined as within or beyond six months of implantation [22].
Only homogeneous series that specified the number of infections for each site and/or type of graft were considered to assess cumulative data. The study is descriptive, and data are presented as total frequencies and percentages. The heterogeneity of most of the included studies did not allow any statistical analysis.

3. Results

A total of 139 studies were found through the electronic search, and 67 studies were added after the cross-referenced research on the bibliographies of the examined full-text articles (Figure 1).
After a preliminary analysis, a total of 152 studies reporting deep infections of graft reconstructions were included in this systematic review (16 retrospective comparative studies, 131 retrospective cohort studies, and 15 retrospective case series).
The mean age across all studies was 26.1 ± 7.3 years.
A total of 9824 grafts were retrieved. Among these, 684 (6.9%) were in the humerus (443 in the proximal segment and 220 in the diaphysis), 365 (3.7%) in the pelvis, 2041 (20.7%) in the femur (363 in the proximal segment, 940 in the diaphysis, and 738 in the distal femur), 1660 (16.8%) in the tibia (740 in the proximal tibia, 694 in the diaphysis, and 226 in the distal segment) (Table 1).
The type of graft was detailed in 9286 cases. Among these, 2481 (26.7%) were osteoarticular allografts and 2112 (22.7%) intercalary allografts. In 461 (5.0%), VFG was used in combination with recycled autografts. Recycled grafts were reported in 1573 (16.9%) of the cases and APCs in 1673 (18.0%). Four series [24,25,26,27] reported about APCs with recycled grafts (Table 2).
The mean follow-up period was 74.3 months, ranging between 10 and 198 months. However, not all the included studies reported on the duration of follow-up.
Overall, infections occurred in a total of 870 cases, with a cumulative incidence of 8.8% (Table 3).
Only a minority of the series classified the timing of infection occurrence (early in 18.4%, late in 4.8%).
Also, information regarding BGI treatment is imprecise in most of the series, being detailed in only 437 out of 870 BGI (50.2%). The most reported first treatment was debridement and implant retention (DAIR) in 187 (42.8%) cases and two-stage revision with graft removal in 152 (34.8%). Sixty-one cases (14.0%) required an amputation as the first treatment of infection. One-stage revision was attempted in only 24 (5.5%) cases, and 13 (2.9%) cases were treated with chronic suppressive antibiotics.
However, at the end of the infection treatment, only 62 (14.2%) patients were reported to have the original graft in site. One-hundred and twenty-two (27.9%) patients required an amputation; 39 (8.9%) remained with a definitive cemented spacer, whereas 224 (51.3%) received a second reconstruction (with a novel graft in 59 patients, with an APC in 68 and with a megaprosthesis in 97).
By subanalysis of homogeneous series which specified the number of infections for each site, the pelvis showed the highest incidence (20.4%, range 0–42.3%), compared to the tibia (11.0%, 0–33.3%), femur (7.3%, 0–27.8%), and humerus (3.7%, 0–9.1%).
In the pelvis subgroup, most of the cases underwent either a DAIR (43.2%) or an amputation (11.4%), compared to the higher prevalence of two-stage in the tibia (56.4%), femur (42.6%) and humerus (76.9%). However, approximately 20% of BGI in the tibia eventually required an amputation.
The subanalysis of the homogeneous series, which specified the number of infections for each type of graft, showed a cumulative incidence similar in all types of grafts: homologous 9% (range 0–33.3%), VFG 7.7% (range 0–32.0%), APC 11.0%, (range 0–42.3%), and recycled 9.3% (range 0–18.8%). The cumulative incidence of BGI was lower when homologous grafts and VFG were combined at 4.5% (range 0–25%).
Only a few data are reported on the final outcome specified by site or type of graft.

4. Discussion

Massive structural allografts have been most frequently used for limb reconstruction but are associated with complications such as allograft fracture, infection, and non-union because of the avascular nature of the graft.
Infection is a major cause of failure in this type of reconstruction, with many series on graft reconstructions reporting the frequency of infections. However, only a few series reported more than 10 BGI, with an infection rate ranging between 8.9–13.8%, similar to the cumulative incidence of 8.8% found in this review.
Also, the cumulative results showed a higher graft infection incidence in the pelvis and tibia, as previously reported by Beadel et al. [170], m Donati et al. [53], and Aponte-Tinao et al. [32], respectively.
A meta-analysis by Aurégan et al. [171] on APCs found that the infection rate was significantly different depending on the anatomical sites. Actually, proximal humerus APCs showed the lowest infection rate (8%) compared to the acetabulum (23%), proximal femur (10%), and proximal tibia (23%) APCs. The reasons for these differences are unknown. However, the long surgical times and poor soft tissue coverage may explain the increased infection rates for APCs of the acetabulum and proximal tibia, respectively.
Also, repeat interventions increase the risk of infection [13,172]. In the largest series published, Mankin et al. [111] described 121 infections (12.8%) in 945 patients. Of that group, however, 46 of the patients had developed infections after an additional surgery for fracture or non-union.
Aponte-Tinao et al. [32] analyzed infection rates in all types of allografts in different long bones, including intercalary, osteoarticular, and APCs, finding no differences in BGI regarding the type of graft. Our cumulative data confirmed similar BGI incidence in all types of grafts. Even though our data showed a lower BGI rate in reconstructions with combined homologous + VFG, the review by Othman et al. [173] did not find any appreciable difference in infection rates between the allograft alone and allograft/VFG groups. When used alone, the VFG is hypothesized to reduce the risk of infection secondary to its vascularity and ability to improve union. It may be that the allograft in these scenarios has an intrinsic infection risk that cannot be mitigated by the presence of an increased vascular supply, as it represents a persistent non-vascularized foreign body unable to provide a suitable immunological response.
Nevertheless, there is no general consensus on how to manage BGI, nor is there much data on the results of treatment once an infection occurs. Only a few series detailed the treatment of BGI and outcomes [32,33,53,64,67,90,102,103]. Aponte-Tinao et al. [32] observed that only 18% of the infected patients (11 out of 60) were successfully treated with surgical debridement and antibiotics without removal of the allograft. This is similar to other reports (Lord et al. [102] and Loty et al. [103], 14% each). In 49 patients (82%), the graft was removed, and a temporary cemented spacer with antibiotic was implanted to control the infection. However, only 41 (84%) were secondarily reconstructed: 24 with another bone allograft and 17 with an endoprosthesis. Of them, 14 failed with a new infection (34%), of whom 12 had an allograft (50% of the 24 patients secondarily reconstructed with an allograft), and 2 had an endoprosthesis (12% of the 17 patients with endoprosthetic reconstruction). In general, this study showed an 18% success rate of DAIR, a 45% success rate of two-stage reconstruction, and 37% of persistent infections of the initial 60 patients with BGI.
However, only a few studies provided in the literature reported on the likelihood of reinfection after treatment of BGI: in 2020, Aponte-Tinao et al., in a series of 198 allografts heterogeneous regarding the site, reported 27 BGI (13.6%). Only 6 (30%) of them were successfully treated with a DAIR, whereas 21 (78%) required graft removal in a two-stage approach; Donati et al. [53] reported 15 BGI (24.2%) in 62 proximal tibia APCs. Most of them were successfully treated with a staged approach, eventually being reconstructed with an EPR (8) or an APC (2).
Cumulative data in the literature showed a similar proportion of patients reconstructed at the end of infection treatment (51.3%).
There are several limitations to this study. Many of the included series were heterogeneous both in terms of the site and type of graft, thus affecting the incidence of infection.
There is a real lack of data on the treatment of BGI, with many series not reporting the outcome.
Furthermore, some studies had to be excluded as it was unclear whether infections were not encountered or whether they were purposely omitted, and this distinction could not be made.

5. Conclusions

In conclusion, this systematic review of the literature confirms a high incidence of infections in biologic reconstructions after resections of primary bone tumors. It highlights that, regardless of the type of graft, the pelvis and tibia are deemed to be at an increased risk of infections. Moreover, data from the literature suggest that, despite a DAIR being a viable attempt, in most cases, a two-stage approach with graft removal and reconstruction with endoprosthesis presented the highest chance to overcome infection, guaranteeing a reconstruction. Nevertheless, we emphasize the heterogeneity of the literature, with most of the data collected by sparse cases of graft infections in heterogeneous series, with very few details about final outcomes. Thus, future multicentric studies should focus on the management of infections after biological reconstructions in bone sarcomas.

Author Contributions

Data collection, analysis, writing—original draft preparation: all authors; Conceptualization, A.S. and A.B.; methodology, S.C.P., C.P., L.M. and M.F.; data curation: R.Z., M.B. and A.M.; writing—original draft preparation, A.S. and A.B.; writing—review and editing, A.S. and C.S.; supervision, A.S. and M.D.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Jeys, L.; Morris, G.; Evans, S.; Stevenson, J.; Parry, M.; Gregory, J. Surgical Innovation in Sarcoma Surgery. Clin. Oncol. R. Coll. Radiol. 2017, 29, 489–499. [Google Scholar] [CrossRef] [PubMed]
  2. Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.A. Massive allograft use in orthopedic oncology. Orthop. Clin. N. Am. 2006, 37, 65–74. [Google Scholar] [CrossRef] [PubMed]
  3. Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.A.; Ranalletta, M. Partial epiphyseal preservation and intercalary allograft reconstruction in high-grade metaphyseal osteosarcoma of the knee. J. Bone Jt. Surg. Am. 2005, 87 (Suppl. S1), 226–236. [Google Scholar] [CrossRef]
  4. Deijkers, R.L.; Bloem, R.M.; Kroon, H.M.; Van Lent, J.B.; Brand, R.; Taminiau, A.H. Epidiaphyseal versus other intercalary allografts for tumors of the lower limb. Clin. Orthop. Relat. Res. 2005, 439, 151–160. [Google Scholar] [CrossRef] [PubMed]
  5. Ghert, M.; Colterjohn, N.; Manfrini, M. The use of free vascularized fibular grafts in skeletal reconstruction for bone tumors in children. J. Am. Acad. Orthop. Surg. 2007, 15, 577–587. [Google Scholar] [CrossRef] [PubMed]
  6. Pollock, R.; Stalley, P.; Lee, K.; Pennington, D. Free vascularized fibula grafts in limb-salvage surgery. J. Reconstr. Microsurg. 2005, 21, 79–84. [Google Scholar] [CrossRef] [PubMed]
  7. Capanna, R.; Campanacci, D.A.; Belot, N.; Beltrami, G.; Manfrini, M.; Innocenti, M.; Ceruso, M. A new reconstructive technique for intercalary defects of long bones: The association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop. Clin. N. Am. 2007, 38, 51–60. [Google Scholar] [CrossRef]
  8. Li, J.; Wang, Z.; Guo, Z.; Chen, G.J.; Fu, J.; Pei, G.X. The use of allograft shell with intramedullary vascularized fibula graft for intercalary reconstruction after diaphyseal resection for lower extremity bony malignancy. J. Surg. Oncol. 2010, 102, 368–374. [Google Scholar] [CrossRef]
  9. Li, J.; Wang, Z.; Guo, Z.; Chen, G.J.; Li, S.W.; Pei, G.X. The use of massive allograft with intramedullary fibular graft for intercalary reconstruction after resection of tibial malignancy. J. Reconstr. Microsurg. 2011, 27, 37–46. [Google Scholar] [CrossRef]
  10. Khattak, M.J.; Umer, M.; Haroon-ur-Rasheed; Umar, M. Autoclaved tumor bone for reconstruction: An alternative in developing countries. Clin. Orthop. Relat. Res. 2006, 447, 138–144. [Google Scholar] [CrossRef]
  11. Clatworthy, M.G.; Gross, A.E. The allograft prosthetic composite: When and how. Orthopedics 2001, 24, 897–898. [Google Scholar] [CrossRef] [PubMed]
  12. Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.; Ranalletta, M.; Abalo, E. Intercalary femur and tibia segmental allografts provide an acceptable alternative in reconstructing tumor resections. Clin. Orthop. Relat. Res. 2004, 426, 97–102. [Google Scholar] [CrossRef] [PubMed]
  13. Bus, M.P.; van de Sande, M.A.; Taminiau, A.H.; Dijkstra, P.D. Is there still a role for osteoarticular allograft reconstruction in musculoskeletal tumour surgery? A long-term follow-up study of 38 patients and systematic review of the literature. Bone Jt. J. 2017, 99-B, 522–530. [Google Scholar] [CrossRef] [PubMed]
  14. Bus, M.P.; Dijkstra, P.D.; van de Sande, M.A.; Taminiau, A.H.; Schreuder, H.W.; Jutte, P.C.; van der Geest, I.C.; Schaap, G.R.; Bramer, J.A. Intercalary allograft reconstructions following resection of primary bone tumors: A nationwide multicenter study. J. Bone Jt. Surg. Am. 2014, 96, e26. [Google Scholar] [CrossRef] [PubMed]
  15. Vail, T.P.; Urbaniak, J.R. Donor-site morbidity with use of vascularized autogenous fibular grafts. J. Bone Jt. Surg. Am. 1996, 78, 204–211. [Google Scholar] [CrossRef] [PubMed]
  16. Sabo, D.; Brocai, D.R.; Eble, M.; Wannenmacher, M.; Ewerbeck, V. Influence of extracorporeal irradiation on the reintegration of autologous grafts of bone and joint. Study in a canine model. J. Bone Jt. Surg. Br. 2000, 82, 276–282. [Google Scholar]
  17. Manabe, J.; Ahmed, A.R.; Kawaguchi, N.; Matsumoto, S.; Kuroda, H. Pasteurized autologous bone graft in surgery for bone and soft tissue sarcoma. Clin. Orthop. Relat. Res. 2004, 419, 258–266. [Google Scholar] [CrossRef] [PubMed]
  18. Fuchs, B.; Ossendorf, C.; Leerapun, T.; Sim, F.H. Intercalary segmental reconstruction after bone tumor resection. Eur. J. Surg. Oncol. 2008, 34, 1271–1276. [Google Scholar] [CrossRef]
  19. Panagopoulos, G.N.; Mavrogenis, A.F.; Mauffrey, C.; Lesenský, J.; Angelini, A.; Megaloikonomos, P.D.; Igoumenou, V.G.; Papanastassiou, J.; Savvidou, O.; Ruggieri, P.; et al. Intercalary reconstructions after bone tumor resections: A review of treatments. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 737–746. [Google Scholar] [CrossRef]
  20. Innocenti, M.; Abed, Y.Y.; Beltrami, G.; Delcroix, L.; Manfrini, M.; Capanna, R. Biological reconstruction after resection of bone tumors of the proximal tibia using allograft shell and intramedullary free vascularized fibular graft: Long-term results. Microsurgery 2009, 29, 361–372. [Google Scholar] [CrossRef]
  21. Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
  22. Henderson, E.R.; O’Connor, M.I.; Ruggieri, P.; Windhager, R.; Funovics, P.T.; Gibbons, C.L.; Guo, W.; Hornicek, F.J.; Temple, H.T.; Letson, G.D. Classification of failure of limb salvage after reconstructive surgery for bone tumours: A modified system Including biological and expandable reconstructions. Bone Jt. J. 2014, 96-B, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
  23. Abdeen, A.; Hoang, B.H.; Athanasian, E.A.; Morris, C.D.; Boland, P.J.; Healey, J.H. Allograft-prosthesis composite reconstruction of the proximal part of the humerus: Functional outcome and survivorship. J. Bone Jt. Surg. Am. 2009, 91, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
  24. Abed, Y.Y.; Beltrami, G.; Campanacci, D.A.; Innocenti, M.; Scoccianti, G.; Capanna, R. Biological reconstruction after resection of bone tumours around the knee: Long-term follow-up. J. Bone Jt. Surg. Br. 2009, 91, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
  25. Adam, D.; Hamel, A.; Perrot, P.; Duteille, F. Long-term behavior of the vascularized fibular free flap for reconstruction of bony defects in children. Ann. Chir. Plast. Esthet. 2020, 65, 219–227. [Google Scholar] [CrossRef] [PubMed]
  26. Albergo, J.I.; Gaston, C.L.; Aponte-Tinao, L.A.; Ayerza, M.A.; Muscolo, D.L.; Farfalli, G.L.; Jeys, L.M.; Carter, S.R.; Tillman, R.M.; Abudu, A.T.; et al. Proximal Tibia Reconstruction After Bone Tumor Resection: Are Survivorship and Outcomes of Endoprosthetic Replacement and Osteoarticular Allograft Similar? Clin. Orthop. Relat. Res. 2017, 475, 676–682. [Google Scholar] [CrossRef] [PubMed]
  27. Albergo, J.I.; Gaston, L.C.; Farfalli, G.L.; Laitinen, M.; Parry, M.; Ayerza, M.A.; Risk, M.; Jeys, L.M.; Aponte-Tinao, L.A. Failure rates and functional results for intercalary femur reconstructions after tumour resection. Musculoskelet. Surg. 2020, 104, 59–65. [Google Scholar] [CrossRef] [PubMed]
  28. Alman, B.A.; De Bari, A.; Krajbich, J.I. Massive allografts in the treatment of osteosarcoma and Ewing sarcoma in children and adolescents. J. Bone Jt. Surg. Am. 1995, 77, 54–64. [Google Scholar] [CrossRef] [PubMed]
  29. Aponte-Tinao, L.; Farfalli, G.L.; Ritacco, L.E.; Ayerza, M.A.; Muscolo, D.L. Intercalary femur allografts are an acceptable alternative after tumor resection. Clin. Orthop. Relat. Res. 2012, 470, 728–734. [Google Scholar] [CrossRef]
  30. Aponte-Tinao, L.A.; Ayerza, M.A.; Muscolo, D.L.; Farfalli, G.L. Allograft reconstruction for the treatment of musculoskeletal tumors of the upper extremity. Sarcoma 2013, 2013, 925413. [Google Scholar] [CrossRef]
  31. Aponte-Tinao, L.A.; Albergo, J.I.; Ayerza, M.A.; Muscolo, D.L.; Ing, F.M.; Farfalli, G.L. What Are the Complications of Allograft Reconstructions for Sarcoma Resection in Children Younger than 10 Years at Long-term Followup? Clin. Orthop. Relat. Res. 2018, 476, 548–555. [Google Scholar] [CrossRef] [PubMed]
  32. Aponte-Tinao, L.A.; Ayerza, M.A.; Muscolo, D.L.; Farfalli, G.L. What Are the Risk Factors and Management Options for Infection after Reconstruction with Massive Bone Allografts? Clin. Orthop. Relat. Res. 2016, 474, 669–673. [Google Scholar] [CrossRef]
  33. Aponte-Tinao, L.A.; Ayerza, M.A.; Albergo, J.I.; Farfalli, G.L. Do Massive Allograft Reconstructions for Tumors of the Femur and Tibia Survive 10 or More Years after Implantation? Clin. Orthop. Relat. Res. 2020, 478, 517–524. [Google Scholar] [CrossRef]
  34. Ayerza, M.A.; Piuzzi, N.S.; Aponte-Tinao, L.A.; Farfalli, G.L.; Muscolo, D.L. Structural allograft reconstruction of the foot and ankle after tumor resections. Musculoskelet. Surg. 2016, 100, 149–156. [Google Scholar] [CrossRef] [PubMed]
  35. Beadel, G.P.; McLaughlin, C.E.; Wunder, J.S.; Griffin, A.M.; Ferguson, P.C.; Bell, R.S. Outcome in two groups of patients with allograft-prosthetic reconstruction of pelvic tumor defects. Clin. Orthop. Relat. Res. 2005, 438, 30–35. [Google Scholar] [CrossRef] [PubMed]
  36. Bell, R.S.; Davis, A.M.; Wunder, J.S.; Buconjic, T.; McGoveran, B.; Gross, A.E. Allograft reconstruction of the acetabulum after resection of stage-IIB sarcoma. Intermediate-term results. J. Bone Jt. Surg. Am. 1997, 79, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
  37. Bianchi, G.; Sambri, A.; Sebastiani, E.; Caldari, E.; Donati, D. Is unicondylar osteoarticular allograft still a viable option for reconstructions around the knee? Knee 2016, 23, 692–697. [Google Scholar] [CrossRef] [PubMed]
  38. Bianchi, G.; Sambri, A.; Marini, E.; Piana, R.; Campanacci, D.A.; Donati, D.M. Wrist Arthrodesis and Osteoarticular Reconstruction in Giant Cell Tumor of the Distal Radius. J. Hand Surg. Am. 2020, 45, 882.e881–882.e886. [Google Scholar] [CrossRef] [PubMed]
  39. Biau, D.J.; Dumaine, V.; Babinet, A.; Tomeno, B.; Anract, P. Allograft-prosthesis composites after bone tumor resection at the proximal tibia. Clin. Orthop. Relat. Res. 2007, 456, 211–217. [Google Scholar] [CrossRef]
  40. Biau, D.J.; Larousserie, F.; Thévenin, F.; Piperno-Neumann, S.; Anract, P. Results of 32 allograft-prosthesis composite reconstructions of the proximal femur. Clin. Orthop. Relat. Res. 2010, 468, 834–845. [Google Scholar] [CrossRef]
  41. Black, A.W.; Szabo, R.M.; Titelman, R.M. Treatment of malignant tumors of the proximal humerus with allograft-prosthesis composite reconstruction. J. Shoulder Elb. Surg. 2007, 16, 525–533. [Google Scholar] [CrossRef] [PubMed]
  42. Brunet, O.; Anract, P.; Bouabid, S.; Babinet, A.; Dumaine, V.; Toméno, B.; Biau, D. Intercalary defects reconstruction of the femur and tibia after primary malignant bone tumour resection. A series of 13 cases. Orthop. Traumatol. Surg. Res. 2011, 97, 512–519. [Google Scholar] [CrossRef] [PubMed]
  43. Bullens, P.H.; Minderhoud, N.M.; de Waal Malefijt, M.C.; Veth, R.P.; Buma, P.; Schreuder, H.W. Survival of massive allografts in segmental oncological bone defect reconstructions. Int. Orthop. 2009, 33, 757–760. [Google Scholar] [CrossRef] [PubMed]
  44. Campanacci, D.A.; Scanferla, R.; Innocenti, M.; Muratori, F.; Puccini, S.; Scoccianti, G.; Beltrami, G.; Capanna, R. Are Vascularized Fibula Autografts a Long-lasting Reconstruction After Intercalary Resection of the Humerus for Primary Bone Tumors? Clin. Orthop. Relat. Res. 2023, 481, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
  45. Campanacci, D.A.; Scanferla, R.; Marsico, M.; Scolari, F.; Scoccianti, G.; Beltrami, G.; Delcroix, L.; Innocenti, M.; Capanna, R. Intercalary Resection of the Tibia for Primary Bone Tumors: Are Vascularized Fibula Autografts With or Without Allografts a Durable Reconstruction? Clin. Orthop. Relat. Res. 2024, 482, 960–975. [Google Scholar] [CrossRef]
  46. Campanacci, L.; Manfrini, M.; Colangeli, M.; Alí, N.; Mercuri, M. Long-term results in children with massive bone osteoarticular allografts of the knee for high-grade osteosarcoma. J. Pediatr. Orthop. 2010, 30, 919–927. [Google Scholar] [CrossRef] [PubMed]
  47. Campanacci, L.; Alì, N.; Casanova, J.M.; Kreshak, J.; Manfrini, M. Resurfaced allograft-prosthetic composite for proximal tibial reconstruction in children: Intermediate-term results of an original technique. J. Bone Jt. Surg. Am. 2015, 97, 241–250. [Google Scholar] [CrossRef] [PubMed]
  48. Capanna, R.; Scoccianti, G.; Campanacci, D.A.; Beltrami, G.; De Biase, P. Surgical technique: Extraarticular knee resection with prosthesis-proximal tibia-extensor apparatus allograft for tumors invading the knee. Clin. Orthop. Relat. Res. 2011, 469, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
  49. Chen, W.M.; Chen, T.H.; Huang, C.K.; Chiang, C.C.; Lo, W.H. Treatment of malignant bone tumours by extracorporeally irradiated autograft-prosthetic composite arthroplasty. J. Bone Jt. Surg. Br. 2002, 84, 1156–1161. [Google Scholar] [CrossRef]
  50. Davidson, A.W.; Hong, A.; McCarthy, S.W.; Stalley, P.D. En-bloc resection, extracorporeal irradiation, and re-implantation in limb salvage for bony malignancies. J. Bone Jt. Surg. Br. 2005, 87, 851–857. [Google Scholar] [CrossRef]
  51. Delloye, C.; Banse, X.; Brichard, B.; Docquier, P.L.; Cornu, O. Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor. J. Bone Jt. Surg. Am. 2007, 89, 579–587. [Google Scholar] [CrossRef]
  52. Donati, D.; Giacomini, S.; Gozzi, E.; Mercuri, M. Proximal femur reconstruction by an allograft prosthesis composite. Clin. Orthop. Relat. Res. 2002, 394, 192–200. [Google Scholar] [CrossRef]
  53. Donati, D.; Colangeli, M.; Colangeli, S.; Di Bella, C.; Mercuri, M. Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clin. Orthop. Relat. Res. 2008, 466, 459–465. [Google Scholar] [CrossRef]
  54. Donati, D.; Di Bella, C.; Frisoni, T.; Cevolani, L.; DeGroot, H. Alloprosthetic composite is a suitable reconstruction after periacetabular tumor resection. Clin. Orthop. Relat. Res. 2011, 469, 1450–1458. [Google Scholar] [CrossRef]
  55. Dudkiewicz, I.; Velkes, S.; Oran, A.; Pritsch, M.; Salai, M. Composite grafts in the treatment of osteosarcoma of the proximal humerus. Cell Tissue Bank. 2003, 4, 37–41. [Google Scholar] [CrossRef]
  56. Eid, A.S.; Jeon, D.G.; Song, W.S.; Lee, S.Y.; Cho, W.H. Pasteurized autograft-prosthesis composite for proximal femoral reconstruction: An alternative to allograft composite. Arch. Orthop. Trauma Surg. 2011, 131, 729–737. [Google Scholar] [CrossRef] [PubMed]
  57. El Beaino, M.; Liu, J.; Lewis, V.O.; Lin, P.P. Do Early Results of Proximal Humeral Allograft-Prosthetic Composite Reconstructions Persist at 5-year Followup? Clin. Orthop. Relat. Res. 2019, 477, 758–765. [Google Scholar] [CrossRef] [PubMed]
  58. Erol, B.; Basci, O.; Topkar, M.O.; Caypinar, B.; Basar, H.; Tetik, C. Mid-term radiological and functional results of biological reconstructions of extremity-located bone sarcomas in children and young adults. J. Pediatr. Orthop. B 2015, 24, 469–478. [Google Scholar] [CrossRef]
  59. Errani, C.; Ceruso, M.; Donati, D.M.; Manfrini, M. Microsurgical reconstruction with vascularized fibula and massive bone allograft for bone tumors. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 307–311. [Google Scholar] [CrossRef]
  60. Errani, C.; Tanzi, P.; Ferra, L.; Campanacci, L.; Donati, D.M.; Manfrini, M. Resurfaced allograft-prosthetic composite for distal femur reconstruction in children with bone tumor. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1577–1582. [Google Scholar] [CrossRef]
  61. Eward, W.C.; Kontogeorgakos, V.; Levin, L.S.; Brigman, B.E. Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin. Orthop. Relat. Res. 2010, 468, 590–598. [Google Scholar] [CrossRef] [PubMed]
  62. Fan, J.; Ma, Z.; Li, M.; Xiao, X.; Lu, Y.; Huang, M.; Ji, C.; Wang, Z.; Chen, G.; Li, J. Intercalary tibial reconstruction with frozen tumor-bearing autograft in combination with ipsilateral fibula in limb-salvage surgery. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 3149–3154. [Google Scholar] [CrossRef] [PubMed]
  63. Farfalli, G.L.; Aponte-Tinao, L.; Lopez-Millán, L.; Ayerza, M.A.; Muscolo, D.L. Clinical and functional outcomes of tibial intercalary allografts after tumor resection. Orthopedics 2012, 35, e391–e396. [Google Scholar] [CrossRef] [PubMed]
  64. Farfalli, G.L.; Aponte-Tinao, L.A.; Ayerza, M.A.; Muscolo, D.L.; Boland, P.J.; Morris, C.D.; Athanasian, E.A.; Healey, J.H. Comparison between Constrained and Semiconstrained Knee Allograft-Prosthesis Composite Reconstructions. Sarcoma 2013, 2013, 489652. [Google Scholar] [CrossRef] [PubMed]
  65. Farid, Y.; Lin, P.P.; Lewis, V.O.; Yasko, A.W. Endoprosthetic and allograft-prosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin. Orthop. Relat. Res. 2006, 442, 223–229. [Google Scholar] [CrossRef] [PubMed]
  66. Gebert, C.; Hillmann, A.; Schwappach, A.; Hoffmann, C.; Hardes, J.; Kleinheinz, J.; Gosheger, G. Free vascularized fibular grafting for reconstruction after tumor resection in the upper extremity. J. Surg. Oncol. 2006, 94, 114–127. [Google Scholar] [CrossRef] [PubMed]
  67. Gebhardt, M.C.; Flugstad, D.I.; Springfield, D.S.; Mankin, H.J. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma. Clin. Orthop. Relat. Res. 1991, 270, 181–196. [Google Scholar] [CrossRef]
  68. Giannini, C.; Sambri, A.; Dalla Rosa, M.; Zucchini, R.; Bochiccio, V.; Fiore, M.; Donati, D.M.; De Paolis, M. Intercalary bone graft of the tibia: Case series and review of the literature. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
  69. Gilbert, N.F.; Yasko, A.W.; Oates, S.D.; Lewis, V.O.; Cannon, C.P.; Lin, P.P. Allograft-prosthetic composite reconstruction of the proximal part of the tibia. An analysis of the early results. J. Bone Jt. Surg. Am. 2009, 91, 1646–1656. [Google Scholar] [CrossRef]
  70. Gorski, S.M.; Dong, C.; Lenze, U.; Haug, M.; Krieg, A.H. Vascularized and Non-vascularized Fibula Grafts in Tumour Reconstruction: Single Centre Experience With Mid to Long-term Results. Anticancer Res. 2022, 42, 5443–5447. [Google Scholar] [CrossRef]
  71. Guest, C.B.; Bell, R.S.; Davis, A.; Langer, F.; Ling, H.; Gross, A.E.; Czitrom, A. Allograft-implant composite reconstruction following periacetabular sarcoma resection. J. Arthroplast. 1990, 5, S25–S34. [Google Scholar] [CrossRef]
  72. Gupta, S.; Kafchinski, L.A.; Gundle, K.R.; Saidi, K.; Griffin, A.M.; Wunder, J.S.; Ferguson, P.C. Intercalary allograft augmented with intramedullary cement and plate fixation is a reliable solution after resection of a diaphyseal tumour. Bone Jt. J. 2017, 99-B, 973–978. [Google Scholar] [CrossRef]
  73. Halim, A.S.; Chai, S.C.; Wan Ismail, W.F.; Wan Azman, W.S.; Mat Saad, A.Z.; Wan, Z. Long-term outcome of free fibula osteocutaneous flap and massive allograft in the reconstruction of long bone defect. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
  74. Han, I.; Kim, J.H.; Cho, H.S.; Kim, H.S. Low-heat treated autograft versus allograft for intercalary reconstruction of malignant bone tumors. J. Surg. Oncol. 2014, 110, 823–827. [Google Scholar] [CrossRef] [PubMed]
  75. Han, G.; Wang, Y.; Bi, W.; Jia, J.; Wang, W.; Xu, M.; Zheng, X.; Mei, L.; Yang, M. Reconstruction using massive allografts after resection of extremity osteosarcomas the study design: A retrospective cohort study. Int. J. Surg. 2015, 21, 108–111. [Google Scholar] [CrossRef]
  76. Hanna, S.A.; Sewell, M.D.; Aston, W.J.; Pollock, R.C.; Skinner, J.A.; Cannon, S.R.; Briggs, T.W. Femoral diaphyseal endoprosthetic reconstruction after segmental resection of primary bone tumours. J. Bone Jt. Surg. Br. 2010, 92, 867–874. [Google Scholar] [CrossRef] [PubMed]
  77. Hilven, P.H.; Bayliss, L.; Cosker, T.; Dijkstra, P.D.; Jutte, P.C.; Lahoda, L.U.; Schaap, G.R.; Bramer, J.A.; van Drunen, G.K.; Strackee, S.D.; et al. The vascularised fibular graft for limb salvage after bone tumour surgery: A multicentre study. Bone Jt. J. 2015, 97-B, 853–861. [Google Scholar] [CrossRef] [PubMed]
  78. Hones, K.M.; Gutowski, C.T.; Srinivasan, R.C.; Wright, J.O.; King, J.J.; Wright, T.W.; Fedorka, C.J.; Marigi, E.M.; Schoch, B.S.; Hao, K.A. Allograft-Prosthetic Composite Reconstruction for Proximal Humerus Bone Loss: A Systematic Review and Meta-Analysis of Outcomes and Complications. JBJS Rev. 2023, 11, e23. [Google Scholar] [CrossRef]
  79. Hong, A.M.; Millington, S.; Ahern, V.; McCowage, G.; Boyle, R.; Tattersall, M.; Haydu, L.; Stalley, P.D. Limb preservation surgery with extracorporeal irradiation in the management of malignant bone tumor: The oncological outcomes of 101 patients. Ann. Oncol. 2013, 24, 2676–2680. [Google Scholar] [CrossRef]
  80. Houdek, M.T.; Wagner, E.R.; Stans, A.A.; Shin, A.Y.; Bishop, A.T.; Sim, F.H.; Moran, S.L. What Is the Outcome of Allograft and Intramedullary Free Fibula (Capanna Technique) in Pediatric and Adolescent Patients With Bone Tumors? Clin. Orthop. Relat. Res. 2016, 474, 660–668. [Google Scholar] [CrossRef]
  81. Houdek, M.T.; Rose, P.S.; Milbrandt, T.A.; Stans, A.A.; Moran, S.L.; Sim, F.H. Comparison of Pediatric Intercalary Allograft Reconstructions with and without a Free Vascularized Fibula. Plast. Reconstr. Surg. 2018, 142, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
  82. Humail, S.M.; Ghulam, M.K.; Zaidi, I.H. Reconstruction of the distal radius with non-vascularised fibular graft after resection of giant cell tumour of bone. J. Orthop. Surg. 2014, 22, 356–359. [Google Scholar] [CrossRef]
  83. Igarashi, K.; Yamamoto, N.; Shirai, T.; Hayashi, K.; Nishida, H.; Kimura, H.; Takeuchi, A.; Tsuchiya, H. The long-term outcome following the use of frozen autograft treated with liquid nitrogen in the management of bone and soft-tissue sarcomas. Bone Jt. J. 2014, 96-B, 555–561. [Google Scholar] [CrossRef]
  84. Ikuta, K.; Nishida, Y.; Sugiura, H.; Tsukushi, S.; Yamada, K.; Urakawa, H.; Arai, E.; Hamada, S.; Ishiguro, N. Predictors of complications in heat-treated autograft reconstruction after intercalary resection for malignant musculoskeletal tumors of the extremity. J. Surg. Oncol. 2018, 117, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
  85. Ippolito, J.A.; Martinez, M.; Thomson, J.E.; Willis, A.R.; Beebe, K.S.; Patterson, F.R.; Benevenia, J. Complications following allograft reconstruction for primary bone tumors: Considerations for management. J. Orthop. 2019, 16, 49–54. [Google Scholar] [CrossRef]
  86. Jager, T.; Journeau, P.; Dautel, G.; Barbary, S.; Haumont, T.; Lascombes, P. Is combining massive bone allograft with free vascularized fibular flap the children’s reconstruction answer to lower limb defects following bone tumour resection? Orthop. Traumatol. Surg. Res. 2010, 96, 340–347. [Google Scholar] [CrossRef]
  87. Jamshidi, K.; Zandrahimi, F.; Bagherifard, A.; Mohammadi, F.; Mirzaei, A. Type lll internal hemipelvectomy for primary bone tumours with and without allograft reconstruction: A comparison of outcomes. Bone Jt. J. 2021, 103-B, 1155–1159. [Google Scholar] [CrossRef]
  88. Jamshidi, K.; Karimi, A.; Babaei Zarch, M.A.; Mirzaei, A. Outcomes of proximal humeral reconstruction with cemented osteoarticular allograft in pediatric patients: A retrospective cohort study. J. Shoulder Elb. Surg. 2023, 32, e608–e615. [Google Scholar] [CrossRef] [PubMed]
  89. Jeon, D.G.; Kim, M.S.; Cho, W.H.; Song, W.S.; Lee, S.Y. Pasteurized autograft-prosthesis composite for distal femoral osteosarcoma. J. Orthop. Sci. 2007, 12, 542–549. [Google Scholar] [CrossRef]
  90. Jones, C.W.; Shatrov, J.; Jagiello, J.M.; Millington, S.; Hong, A.; Boyle, R.; Stalley, P.D. Clinical, functional and radiological outcomes of extracorporeal irradiation in limb salvage surgery for bone tumours. Bone Jt. J. 2017, 99-B, 1681–1688. [Google Scholar] [CrossRef]
  91. Kamalapathy, P.; Shah, A.; Raskin, K.; Schwab, J.H.; Lozano-Calderón, S.A. Complications and Survivorship of Distal Humeral Allograft Reconstruction After Tumor Resection: Literature Review and Case Series. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2021, 5, e20.00256-00258. [Google Scholar] [CrossRef] [PubMed]
  92. Karim, S.M.; Colman, M.W.; Lozano-Calderón, S.A.; Raskin, K.A.; Schwab, J.H.; Hornicek, F.J. What are the functional results and complications from allograft reconstruction after partial hemipelvectomy of the pubis? Clin. Orthop. Relat. Res. 2015, 473, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
  93. Kekeç, A.F.; Güngör, B. Mid-term outcomes of hemipelvic allograft reconstruction after pelvic bone tumor resections. Jt. Dis. Relat. Surg. 2022, 33, 117–131. [Google Scholar] [CrossRef]
  94. Krieg, A.H.; Hefti, F. Reconstruction with non-vascularised fibular grafts after resection of bone tumours. J. Bone Jt. Surg. Br. 2007, 89, 215–221. [Google Scholar] [CrossRef] [PubMed]
  95. Krieg, A.H.; Lenze, U.; Gaston, M.S.; Hefti, F. The outcome of pelvic reconstruction with non-vascularised fibular grafts after resection of bone tumours. J. Bone Jt. Surg. Br. 2010, 92, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
  96. Lans, J.; Ballatori, S.E.; Castelein, R.M.; Chen, N.C.; Lozano Calderon, S.A. Osteoarticular allograft reconstruction after distal radius tumor resection: Reoperation and patient reported outcomes. J. Surg. Oncol. 2021, 123, 1304–1315. [Google Scholar] [CrossRef]
  97. Lenze, U.; Kasal, S.; Hefti, F.; Krieg, A.H. Non-vascularised fibula grafts for reconstruction of segmental and hemicortical bone defects following meta- /diaphyseal tumour resection at the extremities. BMC Musculoskelet. Disord. 2017, 18, 289. [Google Scholar] [CrossRef] [PubMed]
  98. Li, Z.; Pan, Z.; Guo, H.; Fei, X.; Cheng, D.; Yang, Q. Long-Term Follow-Up of Biological Reconstruction with Free Fibular Graft after Resection of Extremity Diaphyseal Bone Tumors. J. Clin. Med. 2022, 11, 7225. [Google Scholar] [CrossRef] [PubMed]
  99. Li, J.; Chen, G.; Lu, Y.; Zhu, H.; Ji, C.; Wang, Z. Factors Influencing Osseous Union Following Surgical Treatment of Bone Tumors with Use of the Capanna Technique. J. Bone Jt. Surg. Am. 2019, 101, 2036–2043. [Google Scholar] [CrossRef]
  100. Liu, T.; Guo, X.; Zhang, X.; Li, Z.; Zhang, Q. Reconstruction with pasteurized autograft for primary malignant bone tumor of distal tibia. Bull. Cancer 2012, 99, 87–91. [Google Scholar] [CrossRef]
  101. Liu, Q.; Long, F.; Zhang, C.; Liu, Y.; He, H.; Luo, W. Biological reconstruction of bone defect after resection of malignant bone tumor by allograft: A single-center retrospective cohort study. World J. Surg. Oncol. 2023, 21, 234. [Google Scholar] [CrossRef]
  102. Lord, C.F.; Gebhardt, M.C.; Tomford, W.W.; Mankin, H.J. Infection in bone allografts. Incidence, nature, and treatment. J. Bone Jt. Surg. Am. 1988, 70, 369–376. [Google Scholar] [CrossRef]
  103. Loty, B.; Tomeno, B.; Evrard, J.; Postel, M. Infection in massive bone allografts sterilised by radiation. Int. Orthop. 1994, 18, 164–171. [Google Scholar] [CrossRef] [PubMed]
  104. Lozano-Calderón, S.A.; Swaim, S.O.; Federico, A.; Anderson, M.E.; Gebhardt, M.C. Predictors of soft-tissue complications and deep infection in allograft reconstruction of the proximal tibia. J. Surg. Oncol. 2016, 113, 811–817. [Google Scholar] [CrossRef]
  105. Lu, Y.; Zhu, H.; Huang, M.; Zhang, C.; Chen, G.; Ji, C.; Wang, Z.; Li, J. Is frozen tumour-bearing autograft with concurrent vascularized fibula an alternative to the Capanna technique for the intercalary reconstruction after resection of osteosarcoma in the lower limb? Bone Jt. J. 2020, 102-B, 646–652. [Google Scholar] [CrossRef] [PubMed]
  106. Lu, Y.; Xiao, X.; Li, M.; Chen, G.; Huang, M.; Ji, C.; Wang, Z.; Li, J. Use of Vascularized Fibular Epiphyseal Transfer with Massive Bone Allograft for Proximal Humeral Reconstruction in Children with Bone Sarcoma. Ann. Surg. Oncol. 2021, 28, 7834–7841. [Google Scholar] [CrossRef]
  107. Lun, D.X.; Hu, Y.C.; Yang, X.G.; Wang, F.; Xu, Z.W. Short-term outcomes of reconstruction subsequent to intercalary resection of femoral diaphyseal metastatic tumor with pathological fracture: Comparison between segmental allograft and intercalary prosthesis. Oncol. Lett. 2018, 15, 3508–3517. [Google Scholar] [CrossRef]
  108. Malhotra, R.; Kumar, G.K.; Digge, V.K.; Kumar, V. The clinical and radiological evaluation of the use of an allograft-prosthesis composite in the treatment of proximal femoral giant cell tumours. Bone Jt. J. 2014, 96-B, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
  109. Manfrini, M.; Bindiganavile, S.; Say, F.; Colangeli, M.; Campanacci, L.; Depaolis, M.; Ceruso, M.; Donati, D. Is There Benefit to Free Over Pedicled Vascularized Grafts in Augmenting Tibial Intercalary Allograft Constructs? Clin. Orthop. Relat. Res. 2017, 475, 1322–1337. [Google Scholar] [CrossRef]
  110. Mankin, H.J.; Gebhardt, M.C.; Jennings, L.C.; Springfield, D.S.; Tomford, W.W. Long-term results of allograft replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 1996, 324, 86–97. [Google Scholar] [CrossRef]
  111. Mankin, H.J.; Hornicek, F.J.; Raskin, K.A. Infection in massive bone allografts. Clin. Orthop. Relat. Res. 2005, 432, 210–216. [Google Scholar] [CrossRef]
  112. Matejovsky, Z.; Kofranek, I. Massive allografts in tumour surgery. Int. Orthop. 2006, 30, 478–483. [Google Scholar] [CrossRef]
  113. McGoveran, B.M.; Davis, A.M.; Gross, A.E.; Bell, R.S. Evaluation of the allograft-prosthesis composite technique for proximal femoral reconstruction after resection of a primary bone tumour. Can. J. Surg. 1999, 42, 37–45. [Google Scholar]
  114. Meijer, S.T.; Paulino Pereira, N.R.; Nota, S.P.F.T.; Ferrone, M.L.; Schwab, J.H.; Lozano Calderón, S.A. Factors associated with infection after reconstructive shoulder surgery for proximal humerus tumors. J. Shoulder Elb. Surg. 2017, 26, 931–938. [Google Scholar] [CrossRef]
  115. Miller, B.J.; Virkus, W.W. Intercalary allograft reconstructions using a compressible intramedullary nail: A preliminary report. Clin. Orthop. Relat. Res. 2010, 468, 2507–2513. [Google Scholar] [CrossRef]
  116. Min, L.; Tang, F.; Duan, H.; Zhou, Y.; Zhang, W.L.; Shi, R.; Tu, C.Q. Cemented allograft-prosthesis composite reconstruction for the proximal femur tumor. OncoTargets Ther. 2015, 8, 2261–2269. [Google Scholar] [CrossRef]
  117. Mo, S.; Ding, Z.Q.; Kang, L.Q.; Zhai, W.L.; Liu, H. Modified technique using allograft-prosthetic composite in the distal femur after bone tumor resection. J. Surg. Res. 2013, 182, 68–74. [Google Scholar] [CrossRef]
  118. Moran, S.L.; Shin, A.Y.; Bishop, A.T. The use of massive bone allograft with intramedullary free fibular flap for limb salvage in a pediatric and adolescent population. Plast. Reconstr. Surg. 2006, 118, 413–419. [Google Scholar] [CrossRef]
  119. Morii, T.; Ogura, K.; Sato, K.; Kawai, A. Infection of surgery for bone and soft tissue sarcoma with biological reconstruction: Data from the Japanese nationwide bone tumor registry. J. Orthop. Sci. 2024, in press. [CrossRef]
  120. Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.A. Survivorship and radiographic analysis of knee osteoarticular allografts. Clin. Orthop. Relat. Res. 2000, 373, 73–79. [Google Scholar] [CrossRef] [PubMed]
  121. Muscolo, D.L.; Farfalli, G.L.; Aponte-Tinao, L.A.; Ayerza, M.A. Proximal femur allograft-prosthesis with compression plates and a short stem. Clin. Orthop. Relat. Res. 2010, 468, 224–230. [Google Scholar] [CrossRef] [PubMed]
  122. Ogilvie, C.M.; Crawford, E.A.; Hosalkar, H.S.; King, J.J.; Lackman, R.D. Long-term results for limb salvage with osteoarticular allograft reconstruction. Clin. Orthop. Relat. Res. 2009, 467, 2685–2690. [Google Scholar] [CrossRef] [PubMed]
  123. Ortiz-Cruz, E.; Gebhardt, M.C.; Jennings, L.C.; Springfield, D.S.; Mankin, H.J. The results of transplantation of intercalary allografts after resection of tumors. A long-term follow-up study. J. Bone Jt. Surg. Am. 1997, 79, 97–106. [Google Scholar] [CrossRef] [PubMed]
  124. Outani, H.; Takenaka, S.; Hamada, K.; Imura, Y.; Kakunaga, S.; Tamiya, H.; Wakamatsu, T.; Naka, N.; Ueda, T.; Araki, N. A long-term follow-up study of extracorporeal irradiated autografts in limb salvage surgery for malignant bone and soft tissue tumors: A minimum follow-up of 10 years after surgery. J. Surg. Oncol. 2020, 121, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
  125. Ozaki, T.; Hillmann, A.; Bettin, D.; Wuisman, P.; Winkelmann, W. High complication rates with pelvic allografts. Experience of 22 sarcoma resections. Acta Orthop. Scand. 1996, 67, 333–338. [Google Scholar] [CrossRef] [PubMed]
  126. Potter, B.K.; Adams, S.C.; Pitcher, J.D.; Malinin, T.I.; Temple, H.T. Proximal humerus reconstructions for tumors. Clin. Orthop. Relat. Res. 2009, 467, 1035–1041. [Google Scholar] [CrossRef]
  127. Puerta-GarciaSandoval, P.; Lizaur-Utrilla, A.; Trigueros-Rentero, M.A.; Perez-Aznar, A.; Alonso-Montero, C.; Lopez-Prats, F.A. Successful mid- to long-term outcome after reconstruction of the extensor apparatus using proximal tibia-patellar tendon composite allograft. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 982–987. [Google Scholar] [CrossRef] [PubMed]
  128. Puri, A.; Gulia, A.; Jambhekar, N.; Laskar, S. The outcome of the treatment of diaphyseal primary bone sarcoma by resection, irradiation and re-implantation of the host bone: Extracorporeal irradiation as an option for reconstruction in diaphyseal bone sarcomas. J. Bone Jt. Surg. Br. 2012, 94, 982–988. [Google Scholar] [CrossRef]
  129. Puri, A.; Byregowda, S.; Gulia, A.; Patil, V.; Crasto, S.; Laskar, S. Reconstructing diaphyseal tumors using radiated (50 Gy) autogenous tumor bone graft. J. Surg. Oncol. 2018, 118, 138–143. [Google Scholar] [CrossRef]
  130. Rabitsch, K.; Maurer-Ertl, W.; Pirker-Frühauf, U.; Lovse, T.; Windhager, R.; Leithner, A. Reconstruction of the Distal Radius following Tumour Resection Using an Osteoarticular Allograft. Sarcoma 2013, 2013, 318767. [Google Scholar] [CrossRef]
  131. Rose, P.S.; Shin, A.Y.; Bishop, A.T.; Moran, S.L.; Sim, F.H. Vascularized free fibula transfer for oncologic reconstruction of the humerus. Clin. Orthop. Relat. Res. 2005, 438, 80–84. [Google Scholar] [CrossRef]
  132. Ruggieri, P.; Mavrogenis, A.F.; Guerra, G.; Mercuri, M. Preliminary results after reconstruction of bony defects of the proximal humerus with an allograft-resurfacing composite. J. Bone Jt. Surg. Br. 2011, 93, 1098–1103. [Google Scholar] [CrossRef]
  133. Ruiz-Moya, A.; Lagares-Borrego, A.; Sicilia-Castro, D.; Barrera-Pulido, F.J.; Gallo-Ayala, J.M.; Santos-Rodas, A.; Hernandez-Beneit, J.M.; Carvajo-Perez, F.; Gomez-Ciriza, G.; Gomez-Cia, T. Pediatric extremity bone sarcoma reconstruction with the vascularized fibula flap: Observational study assessing long-term functional outcomes, complications, and survival. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 1887–1899. [Google Scholar] [CrossRef]
  134. Sainsbury, D.C.G.; Liu, E.H.; Alvarez-Veronesi, M.C.; Ho, E.S.; Hopyan, S.; Zuker, R.M.; Borschel, G.H. Long-term outcomes following lower extremity sarcoma resection and reconstruction with vascularized fibula flaps in children. Plast. Reconstr. Surg. 2014, 134, 808–820. [Google Scholar] [CrossRef] [PubMed]
  135. Sambri, A.; Dalla Rosa, M.; Scorianz, M.; Guido, D.; Donati, D.M.; Campanacci, D.A.; De Paolis, M. Different reconstructive techniques for tumours of the distal tibia. Bone Jt. J. 2020, 102-B, 1567–1573. [Google Scholar] [CrossRef]
  136. Sanders, P.T.J.; Spierings, J.F.; Albergo, J.I.; Bus, M.P.A.; Fiocco, M.; Farfalli, G.L.; van de Sande, M.A.J.; Aponte-Tinao, L.A.; Dijkstra, P.D.S. Long-Term Clinical Outcomes of Intercalary Allograft Reconstruction for Lower-Extremity Bone Tumors. J. Bone Jt. Surg. Am. 2020, 102, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
  137. Schuh, R.; Panotopoulos, J.; Puchner, S.E.; Willegger, M.; Hobusch, G.M.; Windhager, R.; Funovics, P.T. Vascularised or non-vascularised autologous fibular grafting for the reconstruction of a diaphyseal bone defect after resection of a musculoskeletal tumour. Bone Jt. J. 2014, 96-B, 1258–1263. [Google Scholar] [CrossRef]
  138. Schwarz, G.S.; Disa, J.J.; Mehrara, B.J.; Healey, J.H.; Cordeiro, P.G. Reconstruction of oncologic tibial defects in children using vascularized fibula flaps. Plast. Reconstr. Surg. 2012, 129, 195–206. [Google Scholar] [CrossRef] [PubMed]
  139. Scoccianti, G.; Campanacci, D.A.; Beltrami, G.; Caldora, P.; Capanna, R. The use of osteo-articular allografts for reconstruction after resection of the distal radius for tumour. J. Bone Jt. Surg. Br. 2010, 92, 1690–1694. [Google Scholar] [CrossRef]
  140. Shin, S.H.; Lee, K.H.; Jang, S.P.; Mun, G.H.; Seo, S.W. Massive intercalary reconstruction of lower limb after wide excision of malignant tumors: An alternative to amputation or rotationplasty. J. Reconstr. Microsurg. 2014, 30, 255–262. [Google Scholar] [CrossRef]
  141. Song, W.S.; Cho, W.H.; Jeon, D.G.; Kong, C.B.; Duo, J.; Lee, S.Y. A comparison of tumor prosthesis implantation and pasteurized autograft-prosthesis composite for proximal tibial tumor. J. Orthop. Sci. 2012, 17, 457–463. [Google Scholar] [CrossRef] [PubMed]
  142. Streitbürger, A.; Hardes, J.; Nottrott, M.; Guder, W.K. Reconstruction survival of segmental megaendoprostheses: A retrospective analysis of 28 patients treated for intercalary bone defects after musculoskeletal tumor resections. Arch. Orthop. Trauma Surg. 2022, 142, 41–56. [Google Scholar] [CrossRef] [PubMed]
  143. Subhadrabandhu, S.; Takeuchi, A.; Yamamoto, N.; Shirai, T.; Nishida, H.; Hayashi, K.; Miwa, S.; Tsuchiya, H. Frozen Autograft-Prosthesis Composite Reconstruction in Malignant Bone Tumors. Orthopedics 2015, 38, e911–e918. [Google Scholar] [CrossRef] [PubMed]
  144. Sugiura, H.; Nishida, Y.; Nakashima, H.; Yamada, Y.; Tsukushi, S.; Yamada, K. Evaluation of long-term outcomes of pasteurized autografts in limb salvage surgeries for bone and soft tissue sarcomas. Arch. Orthop. Trauma Surg. 2012, 132, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
  145. Takenaka, S.; Araki, N.; Ueda, T.; Kakunaga, S.; Imura, Y.; Hamada, K.I.; Outani, H.; Naka, N.; Myoui, A.; Yoshikawa, H. Clinical Outcomes of Osteoarticular Extracorporeal Irradiated Autograft for Malignant Bone Tumor. Sarcoma 2020, 2020, 9672093. [Google Scholar] [CrossRef] [PubMed]
  146. Takeuchi, A.; Tsuchiya, H.; Setsu, N.; Gokita, T.; Tome, Y.; Asano, N.; Minami, Y.; Kawashima, H.; Fukushima, S.; Takenaka, S.; et al. What Are the Complications, Function, and Survival of Tumor-devitalized Autografts Used in Patients With Limb-sparing Surgery for Bone and Soft Tissue Tumors? A Japanese Musculoskeletal Oncology Group Multi-institutional Study. Clin. Orthop. Relat. Res. 2023, 481, 2110–2124. [Google Scholar] [CrossRef] [PubMed]
  147. Tan, M.H.; Mankin, H.J. Blood transfusion and bone allografts. Effect on infection and outcome. Clin. Orthop. Relat. Res. 1997, 340, 207–214. [Google Scholar] [CrossRef] [PubMed]
  148. Tanaka, K.; Maehara, H.; Kanaya, F. Vascularized fibular graft for bone defects after wide resection of musculoskeletal tumors. J. Orthop. Sci. 2012, 17, 156–162. [Google Scholar] [CrossRef] [PubMed]
  149. Toy, P.C.; White, J.R.; Scarborough, M.T.; Enneking, W.F.; Gibbs, C.P. Distal femoral osteoarticular allografts: Long-term survival, but frequent complications. Clin. Orthop. Relat. Res. 2010, 468, 2914–2923. [Google Scholar] [CrossRef]
  150. Tsuchiya, H.; Wan, S.L.; Sakayama, K.; Yamamoto, N.; Nishida, H.; Tomita, K. Reconstruction using an autograft containing tumour treated by liquid nitrogen. J. Bone Jt. Surg. Br. 2005, 87, 218–225. [Google Scholar] [CrossRef]
  151. van de Sande, M.A.; Dijkstra, P.D.; Taminiau, A.H. Proximal humerus reconstruction after tumour resection: Biological versus endoprosthetic reconstruction. Int. Orthop. 2011, 35, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
  152. van Isacker, T.; Barbier, O.; Traore, A.; Cornu, O.; Mazzeo, F.; Delloye, C. Forearm reconstruction with bone allograft following tumor excision: A series of 10 patients with a mean follow-up of 10 years. Orthop. Traumatol. Surg. Res. 2011, 97, 793–799. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, J.W.; Shih, C.H. Allograft transplantation in aggressive or malignant bone tumors. Clin. Orthop. Relat. Res. 1993, 297, 203–209. [Google Scholar] [CrossRef]
  154. Wang, J.; Temple, H.T.; Pitcher, J.D.; Mounasamy, V.; Malinin, T.I.; Scully, S.P. Salvage of failed massive allograft reconstruction with endoprosthesis. Clin. Orthop. Relat. Res. 2006, 443, 296–301. [Google Scholar] [CrossRef] [PubMed]
  155. Wei, R.; Guo, W.; Yang, R.; Tang, X.; Yang, Y.; Ji, T. Plate-prosthesis composite reconstruction after large segmental resection of proximal humeral tumors: A retrospective comparative study. Medicine 2019, 98, e15787. [Google Scholar] [CrossRef] [PubMed]
  156. Weichman, K.E.; Dec, W.; Morris, C.D.; Mehrara, B.J.; Disa, J.J. Lower Extremity Osseous Oncologic Reconstruction with Composite Microsurgical Free Fibula Inside Massive Bony Allograft. Plast. Reconstr. Surg. 2015, 136, 396–403. [Google Scholar] [CrossRef] [PubMed]
  157. Wisanuyotin, T.; Paholpak, P.; Sirichativapee, W.; Kosuwon, W. Resection arthrodesis and osteoarticular allografts reconstruction after resection of primary bone tumors around the knee: Long-term clinical outcomes and prognostic factors for failure of biological reconstruction. Asia Pac. J. Clin. Oncol. 2022, 18, 240–248. [Google Scholar] [CrossRef] [PubMed]
  158. Wisanuyotin, T.; Paholpak, P.; Sirichativapee, W.; Kosuwon, W. Allograft versus autograft for reconstruction after resection of primary bone tumors: A comparative study of long-term clinical outcomes and risk factors for failure of reconstruction. Sci. Rep. 2022, 12, 14346. [Google Scholar] [CrossRef] [PubMed]
  159. Wu, P.K.; Chen, C.F.; Chen, C.M.; Cheng, Y.C.; Tsai, S.W.; Chen, T.H.; Chen, W.M. Intraoperative Extracorporeal Irradiation and Frozen Treatment on Tumor-bearing Autografts Show Equivalent Outcomes for Biologic Reconstruction. Clin. Orthop. Relat. Res. 2018, 476, 877–889. [Google Scholar] [CrossRef]
  160. Yang, Y.F.; Zhang, G.M.; Xu, Z.H.; Wang, J.W. Homeochronous usage of structural bone allografts with vascularized fibular autografts for biological repair of massive bone defects in the lower extremities after bone tumor excision. J. Reconstr. Microsurg. 2010, 26, 109–115. [Google Scholar] [CrossRef]
  161. Yang, J.; Zhu, B.; Fu, K.; Yang, Q. The long-term outcomes following the use of inactivated autograft in the treatment of primary malignant musculoskeletal tumor. J. Orthop. Surg. Res. 2015, 10, 177. [Google Scholar] [CrossRef] [PubMed]
  162. Yang, J.; Li, W.; Feng, R.; Li, D. Intercalary frozen autografts for reconstruction of bone defects following meta-/diaphyseal tumor resection at the extremities. BMC Musculoskelet. Disord. 2022, 23, 890. [Google Scholar] [CrossRef] [PubMed]
  163. Yao, W.; Cai, Q.; Wang, J.; Zhang, P.; Wang, X.; Du, X.; Niu, X. Biological reconstruction in the treatment of extremity sarcoma in femur, tibia, and humerus. Medicine 2020, 99, e20715. [Google Scholar] [CrossRef] [PubMed]
  164. Lee, S.Y.; Jeon, D.G.; Cho, W.H.; Song, W.S.; Kong, C.B. Comparison of Pasteurized Autograft-Prosthesis Composite Reconstruction and Resection Hip Arthroplasty for Periacetabular Tumors. Clin. Orthop. Surg. 2017, 9, 374–385. [Google Scholar] [CrossRef] [PubMed]
  165. Lee, S.Y.; Jeon, D.G.; Cho, W.H.; Song, W.S.; Kim, B.S. Are Pasteurized Autografts Durable for Reconstructions After Bone Tumor Resections? Clin. Orthop. Relat. Res. 2018, 476, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
  166. Zaretski, A.; Amir, A.; Meller, I.; Leshem, D.; Kollender, Y.; Barnea, Y.; Bickels, J.; Shpitzer, T.; Ad-El, D.; Gur, E. Free fibula long bone reconstruction in orthopedic oncology: A surgical algorithm for reconstructive options. Plast. Reconstr. Surg. 2004, 113, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
  167. Zelenski, N.; Brigman, B.E.; Levin, L.S.; Erdmann, D.; Eward, W.C. The vascularized fibular graft in the pediatric upper extremity: A durable, biological solution to large oncologic defects. Sarcoma 2013, 2013, 321201. [Google Scholar] [CrossRef] [PubMed]
  168. Zhao, Z.Q.; Yan, T.Q.; Guo, W.; Yang, R.L.; Tang, X.D.; Yang, Y. Surgical treatment of primary malignant tumours of the distal tibia: Clinical outcome and reconstructive strategies. Bone Jt. J. 2018, 100-B, 1633–1639. [Google Scholar] [CrossRef] [PubMed]
  169. Zimel, M.N.; Cizik, A.M.; Rapp, T.B.; Weisstein, J.S.; Conrad, E.U. Megaprosthesis versus Condyle-sparing intercalary allograft: Distal femoral sarcoma. Clin. Orthop. Relat. Res. 2009, 467, 2813–2824. [Google Scholar] [CrossRef]
  170. Beadel, G.P.; McLaughlin, C.E.; Aljassir, F.; Turcotte, R.E.; Isler, M.H.; Ferguson, P.; Griffin, A.M.; Bell, R.S.; Wunder, J.S. Iliosacral resection for primary bone tumors: Is pelvic reconstruction necessary? Clin. Orthop. Relat. Res. 2005, 438, 22–29. [Google Scholar] [CrossRef]
  171. Aurégan, J.C.; Pietton, R.; Bégué, T.; Anract, P.; Biau, D. Effect of anatomic site and irradiation on the rates of revision and infection of allograft-prosthesis composites after resection of a primary bone tumor: A meta-analysis. Arch. Orthop. Trauma Surg. 2016, 136, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
  172. Poffyn, B.; Sys, G.; Mulliez, A.; Van Maele, G.; Van Hoorebeke, L.; Forsyth, R.; Uyttendaele, D. Extracorporeally irradiated autografts for the treatment of bone tumours: Tips and tricks. Int. Orthop. 2011, 35, 889–895. [Google Scholar] [CrossRef] [PubMed]
  173. Othman, S.; Bricker, J.T.; Azoury, S.C.; Elfanagely, O.; Weber, K.L.; Kovach, S.J. Allograft Alone vs. Allograft with Intramedullary Vascularized Fibular Graft for Lower Extremity Bone Cancer: A Systematic Review and Meta-Analysis. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
Figure 1. PRISMA flow diagram and the selection of studies.
Figure 1. PRISMA flow diagram and the selection of studies.
Jcm 13 04656 g001
Table 1. Characteristics of included studies. NR: Not reported; EPR: endoprosthetic replacement; PH: proximal humerus; HD: humeral diaphysis; DH: distal humerus; RD: radial diaphysis; DR: distal radius; U: ulna; Pe: pelvis; PF: proximal femur; FD: femur diaphysis; DF: distal femur; PT: proximal tibia; TD: tibia diaphysis; DT: distal tibia; Fi: fibula; Fo: foot; VFG: vascularized fibula graft; N-VFG: non-vascularized fibula graft; OA: osteoarticular; APC: allograft-prosthetic composite.
Table 1. Characteristics of included studies. NR: Not reported; EPR: endoprosthetic replacement; PH: proximal humerus; HD: humeral diaphysis; DH: distal humerus; RD: radial diaphysis; DR: distal radius; U: ulna; Pe: pelvis; PF: proximal femur; FD: femur diaphysis; DF: distal femur; PT: proximal tibia; TD: tibia diaphysis; DT: distal tibia; Fi: fibula; Fo: foot; VFG: vascularized fibula graft; N-VFG: non-vascularized fibula graft; OA: osteoarticular; APC: allograft-prosthetic composite.
StudyPatientsAge, Years (Mean)°Type of StudyComparisonSITE
PHHDDHRDDRUPePFFDDFPTTDDTFiFoOthers
Abdeen, 2009 [23]3623retrospectiveno36---- ------- -
Abed, 2009 [24]2519.7retrospectiveno----- ---421-- -
Adam, 2020 [25]2510retrospectiveno-4-3- 3-5--10- -
Albergo, 2017 [26]4525retrospectivevs. EPR----- ----45-- -
Albergo, 2020 [27]7116retrospectivevs. EPR----- --71---- -
Alman, 1995 [28]2612retrospectiveno6---- --3593- -
Aponte-Tinao, 2012 [29]8326retrospectiveno----- --83---- -
Aponte-Tinao, 2013 [30]7032retrospectiveno3798-16 ------- -
Aponte-Tinao, 2018 [31]227retrospectiveno2---- -2-142-2 -
Aponte, 2016 [32]67330retrospectiveno79-408186 -
Aponte, 2020 [33]19822retrospectiveno----- -13266 -
Ayerza, 2016 [34]4427retrospectiveno----- ------23 21
Beadel, 2005 [35]2641retrospectiveno----- 26------ -
Bell, 1997 [36]1740retrospectiveno----- 17------ -
Bianchi, 2016 [37]2533retrospectiveno----- ---187-- -
Bianchi, 2020 [38]6740retrospectiveno----67 ------- -
Biau, 2007 [39]2624retrospectiveno----- ----26-- -
Biau, 2010 [40]3241retrospectiveno----- -32----- -
Black, 2007 [41]641retrospectiveno6---- ------- -
Brunet, 2011 [42]1320retrospectiveno----- --8--13- -
Bullens, 2009 [43]3227retrospectiveno42--- -69-83- -
Bus, 2014 [14]8717retrospectiveno-7-2- --44--34- -
Bus, 2017 [13]3819retrospectiveno12---2 ---1014-- -
Campanacci D, 2023 [44]1825retrospectiveallograft vs. allo + VFG-18--- ------- -
Campanacci D, 2024 [45]7916retrospectiveallograft vs. allo + VFG----- -----79- -
Campanacci L, 2010 [46]2511retrospectiveno----- ---1312-- -
Campanacci L, 2015 [47]1911retrospectiveno----- ----19-- -
Capanna, 2011 [48]1435retrospectiveno----- ----14-- -
Chen, 2002 [49]1438retrospectiveno2---- -10-2--- -
Davidson, 2005 [50]5023retrospectiveno 11 21 17 1
Deijkers, 2005 [4]3524retrospectiveno----- --22--13- -
Delloye, 2007 [51]2434retrospectiveno----- 24------ -
Donati, 2002 [52]2732retrospectiveno----- -27----- -
Donati, 2008 [53]6224retrospectiveno----- ----62-- -
Donati, 2011 [54]3542retrospectiveno----- 35------ -
Dudkiewicz, 2003 [55]1131retrospectiveno11---- ------- -
Eid, 2011 [56]1839retrospectiveno----- -18----- -
El Beaino, 2019 [57]2141retrospectiveno21---- ------- -
Erol, 2015 [58]1813retrospectiveno23-11 --71-21 -
Errani, 2019 [59]8113retrospectiveno----- --33--48- -
Errani, 2021 [60]510retrospectiveno----- ---5--- -
Eward, 2010 [61]3029retrospectiveno-5-44 --9--71 -
Fan, 2022 [62]917retrospectiveno----- -----9- -
Farfalli, 2012 [63]2625retrospectiveno----- -----26- -
Farfalli, 2013 [64]8635retrospectiveno----- ---4541-- -
Farid, 2006 [65]2044retrospectivevs. EPR----- -20----- -
Gebert, 2006 [66]2115retrospectiveno38-64 ------- -
Gebhardt, 1991 [67]5318retrospectiveno12---- -3225101- -
Giannini, 2020 [68]3522retrospectiveno 35
Gilbert, 2009 [69]1234.5retrospectiveno 12
Gorski, 2022 [70]5319.8retrospectiveVFG vs. N-VFG12-41
Guest, 1990 [71]1042retrospectiveno------10------ -
Gupta, 2017 [72]4632.8retrospectiveno-9------21--16- -
Halim, 2015 [73]1219retrospectiveno1 1 21 25
Han, 2014 [74]3025retrospectiveno 1 20 8 1
Han, 2015 [75]1519.5retrospectiveno-------1-82-4--
Hanna, 2010 [76]2341.3retrospectiveno 23
Hilven, 2015 [77]7423retrospectiveno-8---3--26--34-12
Hones, 2023 [78]375NRretrospectiveno
Hong, 2013 [79]10123retrospectiveno-17-1--35-34--14---
Houdek, 2016 [80]1811retrospectiveno----- --8--10- -
Houdek, 2018 [81]2912retrospectiveno--------15--14---
Humail, 2015 [82]1231retrospectiveno 12
Igarashi, 2014 [83]3639retrospectiveno21 1 7448531
Ikuta, 2017 [84]2422retrospectiveno 4 1 17 2
Ippolito, 2019 [85]7432retrospectiveno-16----7-19--25----
Jager, 2010 [86]712.7retrospectiveno 2113
Jamshidi, 2021 [87]3334.1retrospectiveno 15
Jamshidi, 2023 [88]1810.5retrospectiveno18
Jeon, 2007 [89]1520retrospectiveno 15
Jones, 2017 [90]11324retrospectiveno19 53
Kamalampathy, 2021 [91]637retrospectiveno--6-------------
Karim, 2015 [92]1445retrospectiveno------14---------
Kekec, 2022 [93]1935.8retrospectiveno------19---------
Krieg, 2007 [94]3129.8retrospectiveno-5-1--13-10--1-1--
Krieg, 2010 [95]1837.3retrospectiveno 18
Lans, 2021 [96]3332retrospectiveno 33
Lenze, 2017 [97]3623.8retrospectiveno 6 2 1 20 5 2
Li, 2022 [98]2642retrospectiveno-8------6--12----
Li J, 2010 [8]1118.5retrospectiveno--------5--6----
Li J, 2011 [9]816.5retrospectiveno----------431---
Li J, 2019 [99]6020.9retrospectiveno-10------33--17----
Liu, 2012 [100]1027retrospectiveno------------10---
Liu, 2023 [101]3823retrospectiveno31-1-2013---
Lord, 1988 [102]28333retrospectiveno4716-61813264---
Loty, 1994 [103]16449retrospectiveno531---969 5------
Lozano, 2016 [104]3313retrospectiveno----------32-----
Lu, 2020 [105]2314retrospectiverecycled vs. allograft--------11--12----
Lu, 2021 [106]57retrospectiveno5---- ------- -
Lun, 2018 [107]1864retrospective vs. EPR --------18-------
Malhotra, 2014 [108]1832retrospectiveno-------18--------
Manfrini, 2016 [109]4714retrospectiveno----------24194---
Mankin, 1996 [110]71832.2retrospectiveno
Mankin, 2005 [111]94531.5retrospectiveno
Matejovsky, 2006 [112]72NRretrospectiveno151 15232119 3 1
McGoveran, 1997 [113]1651retrospectiveno 16
Meijer, 2016 [114]6556retrospectiveOA vs. APC vs. EPR65---- ------- -
Miller, 2010 [115]831.6retrospectiveno1 1132
Min, 2015 [116]2835.2retrospectiveno 28
Mo, 2013 [117]1229.5retrospectiveno 12
Moran, 2006 [118]710.5retrospectiveno 34
Morii, 2024 [119]70734.5retrospectiveno169 46676
Muscolo, 2000 [120]11825retrospectiveno 7345
Muscolo, 2010 [121]3845retrospectiveno-------38--------
Ogilvie, 2009 [122]2020retrospectiveno4---11---86-----
Ortiz-Cruz, 1997 [123]10428.3retrospectiveno193 2 39383
Outani, 2020 [124]5620retrospectiveno13--1--1--1722---11
Ozaki, 1996 [125]2227retrospectiveno------22---------
Potter, 2008 [126]3348.5retrospectiveno33---------------
Puerta GarciaSandoval, 2020 [127]2425retrospectiveno----------24-----
Puri, 2012 [128]3215retrospectiveno3----1---1711-----
Puri, 2018 [129]7017retrospectiveno-6- -1--46--17- -
Rabitsch, 2013 [130]542retrospectiveno----5-----------
Rose, 2005 [131]15NRretrospectiveno94----------- -
Ruggieri, 2011 [132]1435retrospectiveno14------------ -
Ruiz-Moya, 2019 [133]279retrospectiveno3--1--116--5-- 1
Sainsbury, 2014 [134]1910retrospectiveno-------6234121--
Sambri, 2020 [135]7919retrospectiveno 73
Sanders, 2020 [136]13119retrospectiveno 89 42
Schuh, 2014 [137]5320.7retrospectiveVFG vs. N-VFG3--7-1---7--30-5-
Schwarz, 2012 [138]1312.6retrospectiveno----------472---
Scoccianti, 2010 [139]1736.6retrospectiveno----17-----------
Shin, 2014 [140]623retrospectiveno--------1--23---
Song, 2012 [141]25NRretrospectivevs. EPR 25
Streitbürger, 2022 [142]2842.3retrospectiveno---------1711-----
Subhadrabandhu, 2015 [143]2236retrospectiveno1--1--110-54-----
Sugiura, 2020 [144]4630.7retrospectiveno3----13--2117----1
Takenaka, 2020 [145]3317retrospectiveno8-211131-36-3--4
Takeuchi, 2023 [146]31027retrospectiveno336 -142119 -
Tan, 1997 [147]26431.6retrospectiveno
Tanaka, 2012 [148]1919retrospectiveno3--------103---21
Toy, 2010 [149]2623retrospectiveno---------26------
Tsuchiya, 2005 [150]2831retrospectiveno4--1--42385----1
Van de Sande, 2010 [151]2344.8retrospectivevs. EPR23---------------
van Isacker, 2011 [152]1032retrospectiveno---622----------
Wang, 1993 [153]2330retrospectiveno2------7-86-----
Wang, 2006 [154]2034retrospectiveno3--------143-----
Wei, 2019 [155]924retrospectivevs. EPR9---------------
Weichman, 2015 [156]1215.8retrospectiveno---------84-----
Wisanuyotin, 2022 [157]3922retrospectivevs. EPR---------2118-----
Wisanuyotin, 2022 [158]9724retrospectiveauto vs. allo42--4---157--29---
Wu, 2018 [159]16419retrospectiveno9------15-6938----33
Yang, 2010 [160]1718.4retrospectiveno---------98-----
Yang, 2015 [161]5819retrospectiveno41-----3-2327-----
Yang, 2022 [162]3335retrospectiveno5----1---1017-----
Yao, 2020 [163]8019.7retrospectiveno1432----143715-4---
Yong Lee, 2017 [164]1635.3retrospectiveno 16
Yong Lee, 2018 [165]27824retrospectiveno34 1813781 8
Zaretski, 2004 [166]3023retrospectiveno1--6---5558-- -
Zelenski, 2013 [167]1110retrospectiveno251-21------- -
Zhao, 2018 [168]2519retrospectiveno------------25 -
Zimel, 2009 [169]3820retrospectivevs. EPR---------38--- -
Table 2. Characteristics of grafts in included studies. OA: osteoarticular; IA: intercalary; N-VFG: non-vascularized fibula graft; VFG: vascularized fibula graft; RA: recycled autograft; APC: allograft-prosthetic composite; *: combination of recycled autograft in APC.
Table 2. Characteristics of grafts in included studies. OA: osteoarticular; IA: intercalary; N-VFG: non-vascularized fibula graft; VFG: vascularized fibula graft; RA: recycled autograft; APC: allograft-prosthetic composite; *: combination of recycled autograft in APC.
StudyPatientsGraft
OAIAN − VFGA + VFGVFGRAAPC
Abdeen, 2009 [23]36------36
Abed, 2009 [24]25---25---
Adam, 2020 [25]25----25--
Albergo, 2017 [26]4545 -----
Albergo, 2020 [27]71-71-----
Alman, 1995 [28]26224-----
Aponte-Tinao, 2012 [29]83-83-----
Aponte-Tinao, 2013 [30]70389----23
Aponte-Tinao, 2018 [31]22610-----
Aponte, 2016 [32]673272246----155
Aponte, 2020 [33]19812078-----
Ayerza, 2016 [34]441628-----
Beadel, 2005 [35]26------26
Bell, 1997 [36]173-----14
Bianchi, 2016 [37]2525------
Bianchi, 2020 [38]6738-29----
Biau, 2007 [39]26------26
Biau, 2010 [40]32------32
Black, 2007 [41]6------6
Brunet, 2011 [42]13-9-4---
Bullens, 2009 [43]32-14----18
Bus, 2014 [14]87-87-----
Bus, 2017 [13]3838------
Campanacci D, 2023 [44]18---513--
Campanacci D, 2024 [45]79-5-5519--
Campanacci L, 2010 [46]2525------
Campanacci L, 2015 [47]19------19
Capanna, 2011 [48]14------14
Chen, 2002 [49]14-----14*
Davidson, 2005 [50]50 16
Deijkers, 2005 [4]35-35-----
Delloye, 2007 [51]2424------
Donati, 2002 [52]27------27
Donati, 2008 [53]62------62
Donati, 2011 [54]35------35
Dudkiewicz, 2003 [55]11------11
Eid, 2011 [56]18-----18*
El Beaino, 2019 [57]21------21
Erol, 2015 [58]18-7-71--
Errani, 2019 [59]81---81---
Errani, 2021 [60]5------5
Eward, 2010 [61]30----30--
Fan, 2022 [62]9----*9-
Farfalli, 2012 [63]26-26-----
Farfalli, 2013 [64]86------86
Farid, 2006 [65]20------20
Gebert, 2006 [66]21----21--
Gebhardt, 1991 [67]53192----10
Giannini, 2020 [68]35 19 16
Gilbert, 2009 [69]12 12
Gorski, 2022 [70]53--36-17--
Guest, 1990 [71]10------10
Gupta, 2017 [72]46-46-----
Halim, 2015 [73]12 12
Han, 2014 [74]30 17 13
Han, 2015 [75]15-15-----
Hanna, 2010 [76]23
Hilven, 2015 [77]74----74--
Hones, 2023 [78]375
Hong, 2013 [79]101-----101-
Houdek, 2016 [80]18 18
Houdek, 2018 [81]29-11-18---
Humail, 2015 [82]12 12
Igarashi, 2014 [83]361613 7
Ikuta, 2017 [84]24 24
Ippolito, 2019 [85]741538----21
Jager, 2010 [86]7 7
Jamshidi, 2021 [87]33 15
Jamshidi, 2023 [88]18 18
Jeon, 2007 [89]15 15*
Jones, 2017 [90]113-28-1532-38
Kamalampathy, 2021 [91]66------
Karim, 2015 [92]14-6--4-4
Kekec, 2022 [93]19-19-----
Krieg, 2007 [94]31--31----
Krieg, 2010 [95]18 18
Lans, 2021 [96]3333
Lenze, 2017 [97]36 36
Li, 2022 [98]26----26--
Li J, 2010 [8]11---11---
Li J, 2011 [9]8---8---
Li J, 2019 [99]60---60---
Lord, 1988 [102]28318847----48
Loty, 1994 [103]164------164
Lozano, 2016 [104]33239----1
Lu, 2020 [105]23---15-8-
Lu, 2021 [106]5---5---
Lun, 2018 [107]18-18-----
Malhotra, 2014 [108]18------18
Manfrini, 2016 [109]47---47---
Mankin, 1996 [110]718386163----169
Mankin, 2005 [111]945483282 174
Matejovsky, 2006 [112]722328 20
McGoveran, 1997 [113]16 16
Meijer, 2016 [114]6545-----20
Miller, 2010 [115]853 1
Min, 2015 [116]28 28
Mo, 2013 [117]12 12
Moran, 2006 [118]7 7
Morii, 2024 [119]707 140505
Muscolo, 2000 [120]118118
Muscolo, 2010 [121]38------38
Ogilvie, 2009 [122]2020------
Ortiz-Cruz, 1997 [123]104 104
Outani, 2020 [124]562422----10
Ozaki, 1996 [125]22-13----9
Potter, 2008 [126]331716-----
Puerta GarciaSandoval, 2020 [127]24------24
Puri, 2012 [128]32-- --32-
Puri, 2018 [129]70-----70-
Rabitsch, 2013 [130]55------
Rose, 2005 [131]1514--9--
Ruggieri, 2011 [132]14------14
Ruiz-Moya, 2019 [133]27----27--
Sainsbury, 2014 [134]19----19--
Sambri, 2020 [135]791117 45
Sanders, 2020 [136]131 131
Schuh, 2014 [137]53--27-26--
Schwarz, 2012 [138]13----13--
Scoccianti, 2010 [139]1717------
Shin, 2014 [140]6-5----1
Song, 2012 [141]25 25
Streitbürger, 2022 [142]28------28
Subhadrabandhu, 2015 [143]22------22
Sugiura, 2020 [144]46--0--46-
Takenaka, 2020 [145]3333------
Takeuchi, 2023 [146]310- ---310*
Tan, 1997 [147]26417645 43
Tanaka, 2012 [148]19----19--
Toy, 2010 [149]2626------
Tsuchiya, 2005 [150]28--28----
Van de Sande, 2010 [151]2313-----10
van Isacker, 2011 [152]1055-----
Wang, 1993 [153]23125----6
Wang, 2006 [154]2020------
Wei, 2019 [155]9------9
Weichman, 2015 [156]12---12---
Wisanuyotin, 2022 [157]3939------
Wisanuyotin, 2022 [158]97-4750----
Wu, 2018 [159]164-85 --79-
Yang, 2010 [160]17---17---
Yang, 2015 [161]58--58----
Yang, 2022 [162]33--33----
Yao, 2020 [163]80-5228----
Yong Lee, 2017 [164]16 16
Yong Lee, 2018 [165]278 253
Zaretski, 2004 [166]30--1-29--
Zelenski, 2013 [167]11----11--
Zhao, 2018 [168]256-145---
Zimel, 2009 [169]3838------
Table 3. Characteristics of graft infections and their treatment. DAIR: debridement and implant retention; APC: allograft-prosthetic composite.
Table 3. Characteristics of graft infections and their treatment. DAIR: debridement and implant retention; APC: allograft-prosthetic composite.
StudyPatientsInfections (n)Infections (%)Follow-Up, Months (mean)Type of InfectionTreatmentFinal TreatmentGraft FailurePJI Recurrence (%)
EarlyLateDairOne StageTwo StageAntibioticAmputationAmputationAllograftAPCProsthesisArthrodesisCement Spacer
Abdeen, 2009 [23]3600.060-------------0-
Abed, 2009 [24]2514.01401-----11-----0-
Adam, 2020 [25]25832.086-------------0
Albergo, 2017 [26]45920.0899---5-11-323-5-
Albergo, 2020 [27]7111.41291---1-----1--1.
Alman, 1995 [28]26311.563----1-22----13-
Aponte-Tinao, 2012 [29]8311.2611---1---1----1-
Aponte-Tinao, 2013 [30]7022.9602---2---1-1--2-
Aponte-Tinao, 2018 [31]2214.51621---1---1----1-
Aponte, 2016 [32]673608.9106--60-49 (all after DAIR)--4131117-44914
Aponte, 2020 [33]1982713.61922076-21--1767--213
Ayerza, 2016 [34]4412.3531---1---1----1-
Beadel, 2005 [35]261142.355-------------7-
Bell, 1997 [36]17211.8842---1-11-----2-
Bianchi, 2016 [37]2500.0123---------------
Bianchi, 2020 [38]6700.0105---------------
Biau, 2007 [39]26623.11266---5-11--32-6-
Biau, 2010 [40]32412.568---13----13--41
Black, 2007 [41]600.025---------------
Brunet, 2011 [42]13323.148213----------0
Bullens, 2009 [43]32515.6635--1-311--1--2-
Bus, 2014 [14]871213.884---------------
Bus, 2017 [13]3837.920---------------
Campanacci D, 2023 [44]1800.0176---------------
Campanacci D, 2024 [45]7967.6148--6----1-----2-
Campanacci L, 2010 [46]2500.0124---------------
Campanacci L, 2015 [47]1915.3781-----11-----1-
Capanna, 2011 [48]14214.354----2-----11-2-
Chen, 2002 [49]1400.043---------------
Davidson, 2005 [50]5000.038
Deijkers, 2005 [4]3538.686--1-2---1----20
Delloye, 2007 [51]24312.541---------------
Donati, 2002 [52]2713.7581---------1--1-
Donati, 2008 [53]621524.272--3-10-22-28--12-
Donati, 2011 [54]35822.9120------33--3-1--
Dudkiewicz, 2003 [55]1119.1681----1-------0-
Eid, 2011 [56]18211.193112----------22
El Beaino, 2019 [57]2114.897----1-----1--10
Erol, 2015 [58]1815.6461-1----------0-
Errani, 2019 [59]8156.296 1-4--------4-
Errani, 2021 [60]5120.070-1--1-----1--1
Eward, 2010 [61]30310.059-31-1-11-----2-
Fan, 2022 [62]900.049---------------
Farfalli, 2012 [63]26311.5733---3---2---130
Farfalli, 2013 [64]861112.872----9-24-142-11-
Farid, 2006 [65]2015.076-1--1-----1--1-
Gebert, 2006 [66]2114.8441-1----------0
Gebhardt, 1991 [67]531630.225-15172174--1214-
Giannini, 2020 [68]35411.4364-1-1-22-----
Gilbert, 2009 [69]1218.3491-1------1----
Gorski, 2022 [70]5347.5178.8-------------
Guest, 1990 [71]10110.025------11-------
Gupta, 2017 [72]4648.792--1-21--1-1-1125%
Halim, 2015 [73]1218.3631 1
Han, 2014 [74]30310.079 3 3
Han, 2015 [75]1500.063.2---------------
Hanna, 2010 [76]2314.3 1 1 1 10
Hilven, 2015 [77]7434.177---------------
Hones, 2023 [78]37592.4NR
Hong, 2013 [79]10100.052.8---------------
Houdek, 2016 [80]1800.096---------------
Houdek, 2018 [81]2926.9156----1-11-------
Humail, 2015 [82]1200.024
Igarashi, 2014 [83]36411.11013 3 1
Ikuta, 2017 [84]2400.088 31 1 11
Ippolito, 2019 [85]7456.8105-5--4-1---4-- 10% (APC) 7% (Ostart Allo)
Jager, 2010 [86]7114.344
Jamshidi, 2021 [87]3300.080
Jamshidi, 2023 [88]1815.6881 1 1
Jeon, 2007 [89]1500.056
Jones, 2017 [90]113108.880.3--10----------
Kamalampathy, 2021 [91]600.069.5-------------
Karim, 2015 [92]14214.319--2----------
Kekec, 2022 [93]19631.697 6----------
Krieg, 2007 [94]3113.25.6 --1--
Krieg, 2010 [95]1800.0121
Lans, 2021 [96]3300.0156
Lenze, 2017 [97]3612.8100
Li, 2022 [98]2613.873--1-----------
Li J, 2010 [8]1100.034.1-------------
Li J, 2011 [9]800.038.4-------------
Li J, 2019 [99]6023.352.32-11---1-----
Liu, 2012 [100]1000.081--------------
Liu, 2023 [101]3800.057--------------
Lord, 1988 [102]2833311.77133-61611--276----27
Loty, 1994 [103]1641811.0nr--717-114-2-11
Lozano, 2016 [104]33515.255----4-112-2--
Lu, 2020 [105]2300.045-------------
Lu, 2021 [106]500.047---------------
Lun, 2018 [107]18527.810-------------
Malhotra, 2014 [108]1800.054-------------
Manfrini, 2016 [109]4724.384--1-2-----1-1
Mankin, 1996 [110]7188211.467-------------
Mankin, 2005 [111]945757.984-- 2222
Matejovsky, 2006 [112]7279.7-61
McGoveran, 1997 [113]16318.847 21 1 1
Meijer, 2016 [114]6557.72814--5--------50
Miller, 2010 [115]800.018.1
Min, 2015 [116]2800.056
Mo, 2013 [117]1218.3121---1----1---
Moran, 2006 [118]700.036-------------
Morii, 2024 [119]7077610.744-------------
Muscolo, 2000 [120]1181311.066------1113251
Muscolo, 2010 [121]3837.936--1-------2-1--
Ogilvie, 2009 [122]20210.0120---1--11--1----
Ortiz-Cruz, 1997 [123]1041211.567.212-----66-----
Outani, 2020 [124]56712.5198---------------
Ozaki, 1996 [125]22836.4488-8----2312---1
Potter, 2008 [126]3313.098---------------
Puerta GarciaSandoval, 2020 [127]2414.21321-----11-------
Puri, 2012 [128]3200.034---------------
Puri, 2018 [129]70811.461443-5--------5-
Rabitsch, 2013 [130]500.032---------------
Rose, 2005 [131]15533.368--5----------0-
Ruggieri, 2011 [132]1417.125-1--1-----1----
Ruiz-Moya, 2019 [133]2700.044
Sainsbury, 2014 [134]1900.057---------------
Sambri, 2020 [135]7956.377 2-2-11-2---
Sanders, 2020 [136]13186.11685 2 6
Schuh, 2014 [137]5300.052---------------
Schwarz, 2012 [138]1300.263---------------
Scoccianti, 2010 [139]1700.058.9---------------
Shin, 2014 [140]6116.726--1------------
Song, 2012 [141]25520.0825 32 5 5
Streitbürger, 2022 [142]28310.775----1-11-------
Subhadrabandhu, 2015 [143]2229.163---------22-----
Sugiura, 2020 [144]46613.0103--4----------
Takenaka, 2020 [145]33412.1125----2-----2-1--
Takeuchi, 2023 [146]3103411.092-------------20-
Tan, 1997 [147]264207,687.6
Tanaka, 2012 [148]19315.884---------------
Toy, 2010 [149]26415.456.6--4------11----
Tsuchiya, 2005 [150]28310.728--1------------
Van de Sande, 2010 [151]2328.7120---------------
van Isacker, 2011 [152]1000.0110---------------
Wang, 1993 [153]2328.748-2-------------
Wang, 2006 [154]20630.0160----6--1--5----
Wei, 2019 [155]900.040- -------9-----
Weichman, 2015 [156]12216.741---------------
Wisanuyotin, 2022 [157]39410.370--2-2---2--2---
Wisanuyotin, 2022 [158]9766.286--6------------
Wu, 2018 [159]16410.675642---22----2--
Yang, 2010 [160]1700.020.2---------------
Yang, 2015 [161]58813.854--8------------
Yang, 2022 [162]3313.050------11-------
Yao, 2020 [163]8045.042---------------
Yong Lee, 2017 [164]16318.813 3
Yong Lee, 2018 [165]2783311.9113 -----------
Zaretski, 2004 [166]30310.030-----3---------
Zelenski, 2013 [167]1100.057---------------
Zhao, 2018 [168]25312.0603-1----1----1--
Zimel, 2009 [169]38718.424-- 68-9---47%
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Sambri, A.; Zunarelli, R.; Morante, L.; Paganelli, C.; Parisi, S.C.; Bortoli, M.; Montanari, A.; Fiore, M.; Scollo, C.; Bruschi, A.; et al. Graft Infections in Biologic Reconstructions in the Oncologic Setting: A Systematic Review of the Literature. J. Clin. Med. 2024, 13, 4656. https://doi.org/10.3390/jcm13164656

AMA Style

Sambri A, Zunarelli R, Morante L, Paganelli C, Parisi SC, Bortoli M, Montanari A, Fiore M, Scollo C, Bruschi A, et al. Graft Infections in Biologic Reconstructions in the Oncologic Setting: A Systematic Review of the Literature. Journal of Clinical Medicine. 2024; 13(16):4656. https://doi.org/10.3390/jcm13164656

Chicago/Turabian Style

Sambri, Andrea, Renato Zunarelli, Lorenzo Morante, Chiara Paganelli, Stefania Claudia Parisi, Marta Bortoli, Andrea Montanari, Michele Fiore, Cristina Scollo, Alessandro Bruschi, and et al. 2024. "Graft Infections in Biologic Reconstructions in the Oncologic Setting: A Systematic Review of the Literature" Journal of Clinical Medicine 13, no. 16: 4656. https://doi.org/10.3390/jcm13164656

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop