The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria for Study Selection
2.2. Outcome Measures
2.2.1. Primary Outcomes
2.2.2. Secondary Outcome Measures
2.3. Search Strategy
2.4. Screening and Selection of Retrieved Studies
2.5. Assessment of Quality and Risk of Bias
2.6. Data Extraction and Analysis
3. Results
3.1. Search Results
1st Author, Year | Selection | Comparability | Outcome | Overall |
---|---|---|---|---|
Szczuko, 2018 [45] | ** | *** | ** | 7 |
Moran, 2007 [49] | *** | **** | ** | 9 |
Asemi, 2015 [46] | ** | ** | ** | 6 |
Olszanecka-Glinianowicz, 2008 [48] | *** | ** | ** | 7 |
First Author, Year | Country | Study Design | n | Age (Y) | Diet Intervention | BMI (Kg/m2)-[Weight (Kg)] | Outcomes Measured | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | Duration [Weeks] | Before | After | p | Inflammatory Markers | Androgens | |||||
Moran, 2006 [26] | Australia | RCT | 34 | 32.1 ± 5.2 | energy-restricted diet | 8 | 34.9 ± 7.0 [96.0 ± 3.3] | - [90.3 ± 3.3] | - | CRP | - |
Mehrabani, 2012 [31] | Iran | RCT | 26 | 28.5 ± 5.2 | low-calorie diet | 12 | 31.1 ± 4.6 [78.9 ± 12.4] | - [74.8 ± 0.5] | - | CRP, TNF-α, IL-6 | SHBG |
Cheshmeh, 2021 [32] | Iran | RCT | 99 | 33.8 ± 5.4 | low-calorie diet | 16 | 35.18 ± 5.16 | 32.86 ± 5.95 | <0.001 | CRP, TNF-α, IL-6 | Testosterone, SHBG, DHEAS, Androstenedione |
Marsh, 2010 [33] | Australia | RCT | 50 | 29.3 ± 0.8 | low-glycaemic index diet | Up to 48 | 34.7 ± 0.9 | 33.2 ± 0.6 | - | CRP | Testosterone, SHBG, |
Esfahanian, 2012 [34] | Iran | RCT | 13 | 20.0 ± 4.6 | low-calorie diet | 12 | 34.1 ± 5.4 | 30.1 ± 5.5 | <0.001 | CRP | Testosterone, DHEAS |
Deshmukh, 2023 [44] | UK | RCT | 11 | 27.7 ± 3.8 | Very low-calorie diet | 8 | 37.8 ± 3.9 | 33.7 ± 3.9 | <0.0001 | CRP | Testosterone, SHBG, DHEAS, Androstenedione |
Szczuko, 2018 [45] | Poland | Cohort | 22 | 26.6 ± 4.2 | low-glycaemic index diet | 12 | 28.38 [79.13 ± 14.58] | 26.1 [73.01 ± 10.18] | <0.05 | TNF-α | Testosterone, SHBG, DHEAS, Androstenedione |
Asemi, 2015 [46] | Iran | Cohort | 27 | 27.5 ± 3.6 | Fasting [16.5/day] | 4 | 28.6 ± 3.9 | 28.4 ± 3.9 | 0.64 | CRP | - |
Moran, 2010 [47] | Australia | RCT | 14 | 32.8 ± 4.5 | energy-restricted diet | 16 | 37.6 ± 7.1 | 34.9 ± 6.5 | - | CRP | - |
Olszanecka-Glinianowicz, 2008 [48] | Poland | Cohort | 15 | 28.5 ± 7.7 | low-calorie diet | ND | 36.1 ± 6.6 | 31.6 ± 5.8 | <0.00001 | TNF-α, IL-6 | Testosterone, SHBG, DHEAS, Androstenedione |
Moran, 2007 [49] | Australia | Cohort | 12 | 31.7 ± 6.2 | Energy-restricted diet | 8 | 35.7 ± 5.8 [95.1 ± 19.3] | - [91.2 ± 15.7] | - | CRP | - |
3.2. Risk of Bias and Quality Assessment of Selected Studies
3.3. Included Studies
3.3.1. Study Designs
3.3.2. Study Characteristics
3.3.3. Study Participants
3.4. Outcome Data
3.5. Systematic Review
3.5.1. Inflammatory Markers
3.5.2. Anti-Inflammatory Marker
3.5.3. Androgens and LH
3.6. Meta-Analysis
3.6.1. Inflammatory Markers
3.6.2. Androgens and LH
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clark, N.M.; Podolski, A.J.; Brooks, E.D.; Chizen, D.R.; Pierson, R.A.; Lehotay, D.C.; Lujan, M.E. Prevalence of polycystic ovary syndrome phenotypes using updated criteria for polycystic ovarian morphology: An assessment of over 100 consecutive women self-reporting features of polycystic ovary syndrome. Reprod. Sci. 2014, 21, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Setji, T.L.; Brown, A.J. Polycystic ovary syndrome: Update on diagnosis and treatment. Am. J. Med. 2014, 127, 912–919. [Google Scholar] [CrossRef]
- Lim, S.S.; Davies, M.; Norman, R.J.; Moran, L. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 618–637. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Cho, L.W.; Randeva, H.S.; Atkin, S.L. Cardiometabolic aspects of polycystic ovarian syndrome. Vasc. Health Risk Manag. 2007, 3, 55–63. [Google Scholar]
- Keskin Kurt, R.; Okyay, A.G.; Hakverdi, A.U.; Gungoren, A.; Dolapcioglu, K.S.; Karateke, A.; Dogan, M.O. The effect of obesity on inflammatory markers in patients with PCOS: A BMI-matched case-control study. Arch. Gynecol. Obstet. 2014, 290, 315–319. [Google Scholar] [CrossRef]
- Clearfield, M.B. C-reactive protein: A new risk assessment tool for cardiovascular disease. J. Osteopath. Med. 2005, 105, 409–416. [Google Scholar]
- Jialal, I.; Devaraj, S.; Venugopal, S.K. C-reactive protein: Risk marker or mediator in atherothrombosis? Hypertension 2004, 44, 6–11. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef]
- Alenezi, S.A.; Khan, R.; Snell, L.; Aboeldalyl, S.; Amer, S. The Role of NLRP3 Inflammasome in Obesity and PCOS—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 10976. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Kihara, S.; Arita, Y.; Nishida, M.; Matsuyama, A.; Okamoto, Y.; Ishigami, M.; Kuriyama, H.; Kishida, K.; Nishizawa, H. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001, 103, 1057–1063. [Google Scholar] [CrossRef]
- Yuan, G.; Zhou, L.; Tang, J.; Yang, Y.; Gu, W.; Li, F.; Hong, J.; Gu, Y.; Li, X.; Ning, G. Serum CRP levels are equally elevated in newly diagnosed type 2 diabetes and impaired glucose tolerance and related to adiponectin levels and insulin sensitivity. Diabetes Res. Clin. Pract. 2006, 72, 244–250. [Google Scholar] [CrossRef]
- Talbott, E.; Zborowski, J.; Rager, J.; Boudreaux, M.; Edmundowicz, D.; Guzick, D. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2004, 89, 5454–5461. [Google Scholar] [CrossRef] [PubMed]
- Tarkun, I.; Arslan, B.n.Ç.; Cantürk, Z.; Turemen, E.; Şahin, T.; Duman, C. Endothelial dysfunction in young women with polycystic ovary syndrome: Relationship with insulin resistance and low-grade chronic inflammation. J. Clin. Endocrinol. Metab. 2004, 89, 5592–5596. [Google Scholar] [CrossRef]
- Amato, G.; Conte, M.; Mazziotti, G.; Lalli, E.; Vitolo, G.; Tucker, A.T.; Bellastella, A.; Carella, C.; Izzo, A. Serum and follicular fluid cytokines in polycystic ovary syndrome during stimulated cycles. Obstet. Gynecol. 2003, 101, 1177–1182. [Google Scholar] [PubMed]
- Vgontzas, A.N.; Trakada, G.; Bixler, E.O.; Lin, H.-M.; Pejovic, S.; Zoumakis, E.; Chrousos, G.P.; Legro, R.S. Plasma interleukin 6 levels are elevated in polycystic ovary syndrome independently of obesity or sleep apnea. Metabolism 2006, 55, 1076–1082. [Google Scholar] [CrossRef]
- Puder, J.J.; Varga, S.; Kraenzlin, M.; De Geyter, C.; Keller, U.; Müller, B. Central fat excess in polycystic ovary syndrome: Relation to low-grade inflammation and insulin resistance. J. Clin. Endocrinol. Metab. 2005, 90, 6014–6021. [Google Scholar] [CrossRef]
- Carmina, E.; Orio, F.; Palomba, S.; Longo, R.; Cascella, T.; Colao, A.; Lombardi, G.; Rini, G.; Lobo, R.A. Endothelial dysfunction in PCOS: Role of obesity and adipose hormones. Am. J. Med. 2006, 119, 356.e351–356.e356. [Google Scholar] [CrossRef]
- Sieminska, L.; Marek, B.; Kos-Kudla, B.; Niedziolka, D.; Kajdaniuk, D.; Nowak, M.; Glogowska-Szelag, J. Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J. Endocrinol. Investig. 2004, 27, 528–534. [Google Scholar] [CrossRef]
- Rachoń, D. Differential diagnosis of hyperandrogenism in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 2012, 120, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.Á.; Gambineri, A.; Alpanes, M.; Sanchon, R.; Pasquali, R.; Escobar-Morreale, H.F. Common variants in the sex hormone-binding globulin gene (SHBG) and polycystic ovary syndrome (PCOS) in Mediterranean women. Hum. Reprod. 2012, 27, 3569–3576. [Google Scholar] [CrossRef]
- Erickson, G.F.; Danforth, D.R. Ovarian control of follicle development. Am. J. Obstet. Gynecol. 1995, 172, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.; Stark, J.; Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 2008, 14, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.; Norman, R.J.; Teede, H. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, S.A.; Khan, R.; Amer, S. The Impact of High BMI on Pregnancy Outcomes and Complications in Women with PCOS Undergoing IVF—A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 1578. [Google Scholar] [CrossRef]
- Moran, L.J.; Noakes, M.; Clifton, P.M.; Wittert, G.A.; Williams, G.; Norman, R.J. Short-term meal replacements followed by dietary macronutrient restriction enhance weight loss in polycystic ovary syndrome. Am. J. Clin. Nutr. 2006, 84, 77–87. [Google Scholar] [CrossRef]
- Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report; National Institutes of Health, National Heart, Lung, and Blood Institute: Bethesda, MD, USA, 1998.
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman Jr, J.W.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A. AHA Dietary Guidelines: Revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000, 102, 2284–2299. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Tucker, K.L. Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am. J. Clin. Nutr. 2011, 93, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Liu, J.; Yang, G.; Zhao, J.; Liao, G.; Shi, M.; Yuan, Y.; He, S.; Lu, Y. Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in Macaca mulatta. Exp. Biol. Med. 2012, 237, 1310–1321. [Google Scholar] [CrossRef]
- Mehrabani, H.H.; Salehpour, S.; Amiri, Z.; Farahani, S.J.; Meyer, B.J.; Tahbaz, F. Beneficial effects of a high-protein, low-glycemic-load hypocaloric diet in overweight and obese women with polycystic ovary syndrome: A randomized controlled intervention study. J. Am. Coll. Nutr. 2012, 31, 117–125. [Google Scholar] [CrossRef]
- Cheshmeh, S.; Ghayyem, M.; Khamooshi, F.; Heidarzadeh-Esfahani, N.; Rahmani, N.; Hojati, N.; Mosaieby, E.; Moradi, S.; Pasdar, Y. Green cardamom plus low-calorie diet can decrease the expression of inflammatory genes among obese women with polycystic ovary syndrome: A double-blind randomized clinical trial. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2021, 27, 821–830. [Google Scholar] [CrossRef]
- Marsh, K.A.; Steinbeck, K.S.; Atkinson, F.S.; Petocz, P.; Brand-Miller, J.C. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. J. Clin. Nutr. 2010, 92, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Esfahanian, F.; Zamani, M.M.; Heshmat, R.; Moini nia, F. Effect of M etformin compared with hypocaloric diet on serum C-reactive protein level and insulin resistance in obese and overweight women with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 2012, 39, 806–813. [Google Scholar] [CrossRef]
- Moran, L.J.; Ko, H.; Misso, M.; Marsh, K.; Noakes, M.; Talbot, M.; Frearson, M.; Thondan, M.; Stepto, N.; Teede, H.J. Dietary composition in the treatment of polycystic ovary syndrome: A systematic review to inform evidence-based guidelines. J. Acad. Nutr. Diet. 2013, 113, 520–545. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj 2011, 343, d5928. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. [Google Scholar]
- Raffi, F.; Metwally, M.; Amer, S. The impact of excision of ovarian endometrioma on ovarian reserve: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2012, 97, 3146–3154. [Google Scholar] [CrossRef] [PubMed]
- El Shamy, T.; Amer, S.A.; Mohamed, A.A.; James, C.; Jayaprakasan, K. The impact of uterine artery embolization on ovarian reserve: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2020, 99, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ebada, M.A.; Elmatboly, A.M.; Ali, A.S.; Ibrahim, A.M.; Fayed, N.; Faisal, A.F.; Alkanj, S. An updated systematic review and meta-analysis about the safety and efficacy of infliximab biosimilar, CT-P13, for patients with inflammatory bowel disease. Int. J. Color. Dis. 2019, 34, 1633–1652. [Google Scholar] [CrossRef]
- Tian, L. Inferences on standardized mean difference: The generalized variable approach. Stat. Med. 2007, 26, 945–953. [Google Scholar] [CrossRef]
- Takeshima, N.; Sozu, T.; Tajika, A.; Ogawa, Y.; Hayasaka, Y.; Furukawa, T.A. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Methodol. 2014, 14, 30. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Deshmukh, H.; Papageorgiou, M.; Wells, L.; Akbar, S.; Strudwick, T.; Deshmukh, K.; Vitale, S.G.; Rigby, A.; Vince, R.V.; Reid, M. The Effect of a Very-Low-Calorie Diet (VLCD) vs. a Moderate Energy Deficit Diet in Obese Women with Polycystic Ovary Syndrome (PCOS)—A Randomised Controlled Trial. Nutrients 2023, 15, 3872. [Google Scholar] [CrossRef] [PubMed]
- Szczuko, M.; Zapałowska-Chwyć, M.; Drozd, A.; Maciejewska, D.; Starczewski, A.; Wysokiński, P.; Stachowska, E. Changes in the IGF-1 and TNF-α synthesis pathways before and after three-month reduction diet with low glicemic index in women with PCOS. Ginekol. Pol. 2018, 89, 295–303. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Taghizadeh, M.; Esmaillzadeh, A. Effects of Ramadan fasting on glucose homeostasis, lipid profiles, inflammation and oxidative stress in women with polycystic ovary syndrome in Kashan, Iran. Arch. Iran. Med. 2015, 18, 806–810. [Google Scholar]
- Moran, L.J.; Noakes, M.; Clifton, P.M.; Norman, R.J. The effect of modifying dietary protein and carbohydrate in weight loss on arterial compliance and postprandial lipidemia in overweight women with polycystic ovary syndrome. Fertil. Steril. 2010, 94, 2451–2454. [Google Scholar] [CrossRef] [PubMed]
- Olszanecka-Glinianowicz, M.; Zahorska-Markiewicz, B.; Kocełak, P.; Janowska, J.; Semik-Grabarczyk, E. The effect of weight loss on inflammation in obese women with polycystic ovary syndrome. Endokrynol. Pol. 2008, 59, 13–17. [Google Scholar] [PubMed]
- Moran, L.J.; Noakes, M.; Clifton, P.M.; Wittert, G.A.; Belobrajdic, D.P.; Norman, R.J. C-reactive protein before and after weight loss in overweight women with and without polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 2019, ED000142. [Google Scholar] [CrossRef]
- Thomson, K.; Rice, S.; Arisa, O.; Johnson, E.; Tanner, L.; Marshall, C.; Sotire, T.; Richmond, C.; O’Keefe, H.; Mohammed, W. Oral nutritional interventions in frail older people who are malnourished or at risk of malnutrition: A systematic review. Health Technol. Assess. 2022, 26, 1. [Google Scholar] [CrossRef]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Elevated C-reactive protein levels in overweight and obese adults. Jama 1999, 282, 2131–2135. [Google Scholar] [CrossRef]
- Aboeldalyl, S.; James, C.; Seyam, E.; Ibrahim, E.M.; Shawki, H.E.-D.; Amer, S. The role of chronic inflammation in polycystic ovarian syndrome—A systematic review and meta-analysis. Int. J. Mol. Sci. 2021, 22, 2734. [Google Scholar] [CrossRef]
- Hafizi Moori, M.; Nosratabadi, S.; Yazdi, N.; Kasraei, R.; Abbasi Senjedary, Z.; Hatami, R. The Effect of Exercise on Inflammatory Markers in PCOS Women: A Systematic Review and Meta-Analysis of Randomized Trials. Int. J. Clin. Pract. 2023, 2023, 3924018. [Google Scholar] [CrossRef] [PubMed]
- Haqq, L.; McFarlane, J.; Dieberg, G.; Smart, N. Effect of lifestyle intervention on the reproductive endocrine profile in women with polycystic ovarian syndrome: A systematic review and meta-analysis. Endocr. Connect. 2014, 3, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; Scherer, P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005, 96, 939–949. [Google Scholar] [CrossRef]
- Uusitupa, M.; Hermansen, K.; Savolainen, M.J.; Schwab, U.; Kolehmainen, M.; Brader, L.; Mortensen, L.S.; Cloetens, L.; Johansson-Persson, A.; Önning, G. Effects of an isocaloric healthy N ordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome—A randomized study (SYSDIET). J. Intern. Med. 2013, 274, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Rolland, C.; Hession, M.; Broom, I. Effect of weight loss on adipokine levels in obese patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2011, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Escalante, M.L.; Coop-Gamas, F.; Cervantes-Rodríguez, M.; Méndez-Iturbide, D.; Aranda-González, I.I. The effect of diet on oxidative stress and metabolic diseases—Clinically controlled trials. J. Food Biochem. 2020, 44, e13191. [Google Scholar] [CrossRef]
- Muñoz, A.; Costa, M. Nutritionally mediated oxidative stress and inflammation. Oxidative Med. Cell. Longev. 2013, 2013, 610950. [Google Scholar] [CrossRef]
First Author, Year | n | CRP | IL-6 (pg/mL) | TNF-α (pg/mL) | Adiponectin (ng/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | p | Before | After | p | Before | After | p | Before | After | p | ||
Moran, 2006 [26] | 34 | 3.30 ± 0.40 * | 2.80 ± 0.30 * | <0.05 | - | - | - | - | - | - | - | - | - |
Mehrabani, 2012 [31] | 26 | 2.70 ± 0.60 ** | 2.6 ± 00.60 ** | - | 1.1 ± 0.06 | 1.0 ± 0.06 | - | 6.3 ± 0.9 | 3.8 ± 0.8 | <0.005 | 59.6 ± 4.4 | 67.7 ± 4.6 | <0.005 |
Cheshmeh, 2021 [32] | 99 | 1.50 ± 0.18 * | 1.50 ± 0.18 * | 0.1 | 2.28 ± 1.41 | 2.17 ± 1.41 | 0.76 | 6.62 ± 0.51 | 6.58 ± 1.58 | 0.45 | - | - | - |
Marsh, 2010 [33] | 50 | 5.30 ± 0.80 ** | 4.10 ± 0.13 ** ◊◊ | - | - | - | - | - | - | - | - | - | - |
Esfahanian, 2012 [34] | 13 | 60.00 ± 21.00 ** | 42.00 ± 16.00 ** | 0.04 | - | - | - | - | - | - | - | - | - |
Deshmukh, 2023 [44] | 11 | 7.00 ± 5.70 ** | 6.30 ± 5.50 ** | 0.7 | - | - | - | - | - | - | - | - | - |
Szczuko, 2018 [45] | 22 | - | - | - | - | - | - | 59.7 ± 18.2 | 57.6 ± 12.3 | - | - | - | - |
Asemi, 2015 [46] | 27 | 2.96± 2.84 ** | 2.0 ± 1.68 ** | 0.07 | - | - | - | - | - | - | - | - | - |
Moran, 2010 [47] | 14 | 9.0 ± 6.0 ** | 7.10 ± 5.0 ** | 0.003 | - | - | - | - | - | - | - | - | - |
Olszanecka-Glinianowicz, 2008 [48] | 15 | - | - | 6.0 ± 2.0 | 4.7 ± 2.1 | >0.05 | 6.6 ± 3.0 | 6.1 ± 3.6 | >0.05 | - | - | - | |
Moran, 2007 [49] | 12 | 5.50 ± 3.10 ** | 5.90 ± 3.30 ** | 0.066 | - | - | - | - | - | - | - | - | - |
First Author, Year | n | Testosterone | SHBG (nmol/L) | DHEAS | Androstenedione | LH (IU/L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | p | Before | After | p | Before | After | p | Before | After | p | Before | After | p | ||
Mehrabani, 2012 [31] | 26 | - | - | - | 26.9 ± 3.8 π | 37.6± 4.6 π | <0.05 | 330.1 ± 30.6 * | 298.1 ± 28.9 * | <0.01 | - | - | - | - | - | - |
Cheshmeh, 2021 [32] | 99 | 1.35 ± 0.21 * | 1.35 ± 0.25 * | 0.96 | 33.12 ± 10.17 | 34.79 ± 10.59 | 0.25 | 363.39 ± 76.0 § | 383.06 ± 48.7 § | 0.1 | 1.97 ± 0.3 * | 1.85 ± 0.2 * | 0.01 | 5.94 ± 2.28 | 5.95 ± 1.8 | 0.77 |
Marsh, 2010 [33] | 50 | 2.7 ± 0.2 π | ND | <0.05 | 33.0 ± 2.9 π | ND | <0.05 | - | - | - | - | - | - | 8.7 ± 1.1 | 5.3 ± 5.2 ◊◊ | - |
Esfahanian, 2012 [34] | 13 | 0.83 ± 0.23 | 0.66 ± 0.21 | <0.05 | - | - | - | 307.7 ± 358.5 | 293 ± 84.4 | - | - | - | - | - | - | - |
Deshmukh, 2023 [44] | 11 | 1.5 ± 0.70 π | 1.39 ± 0.65 π | 0.11 | 16.0 ± 6.5 π | 22.8 ± 7.7 π | 0.002 | 6.9 ± 3.3 ¥ | 7.8 ± 3.4 ¥ | 0.4 | 5.3 ± 2 π | 4.7 ± 1.7 π | 0.3 | 8.2 ± 4.3 | 8.5 ± 4.1 | 0.09 |
Szczuko, 2018 [45] | 22 | 0.57 ± 0.28 * | 0.46 ± 0.11 * | <0.05 | 39.39 ± 15.94 | 44.34 ± 21.29 | - | 227.78 ± 66.8 δ | 228.41 ± 74.4 δ | - | 4.56 ± 1.6 * | 3.90 ± 1.4 * | <0.05 | 7.07 ± 1.84 | 4.97 ± 1.5 | <0.05 |
Olszanecka-Glinianowicz, 2008 [48] | 15 | 2.4 ± 0.9 π | 2.0 ± 0.8 π | - | 30.2 ± 17.1 π | 33.2 ± 17.1 π | - | 525.7 ± 168.1 δ | 244. 3 ± 125.4 δ | - | 4.6 ± 2.0 * | 5.4 ± 2.4 * | - | 7.7 ± 5.8 | 9.3 ± 7.6 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenezi, S.A.; Elkmeshi, N.; Alanazi, A.; Alanazi, S.T.; Khan, R.; Amer, S. The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)—A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 4934. https://doi.org/10.3390/jcm13164934
Alenezi SA, Elkmeshi N, Alanazi A, Alanazi ST, Khan R, Amer S. The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(16):4934. https://doi.org/10.3390/jcm13164934
Chicago/Turabian StyleAlenezi, Salih Atalah, Nusaiba Elkmeshi, Abdullah Alanazi, Sulaiman T. Alanazi, Raheela Khan, and Saad Amer. 2024. "The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)—A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 16: 4934. https://doi.org/10.3390/jcm13164934
APA StyleAlenezi, S. A., Elkmeshi, N., Alanazi, A., Alanazi, S. T., Khan, R., & Amer, S. (2024). The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(16), 4934. https://doi.org/10.3390/jcm13164934