The Highs and Lows of ADAMTS13 Activity
Abstract
:1. Introduction
2. The ADAMTS13–VWF Axis
3. Low ADAMTS13 and Acute TTP
4. ADAMTS13 and TTP in Remission
5. ADAMTS13 and Other Disease
5.1. Cerebral Ischaemia
5.2. Myocardial Ischaemia
5.3. Renal Disease
5.4. COVID-19 Infection
5.5. Sepsis
5.6. Heparin-Induced Thrombocytopenia (HIT)
5.7. Sickle Cell Disease
5.8. Solid Organ Transplant
6. Recombinant ADAMTS13 Therapy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moschcowitz, E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: An undescribed disease. Am. J. Med. 1952, 13, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Singer, K.; Bornstein, F.P.; Wile, S.A. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood 1947, 2, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Moake, J.L.; Rudy, C.K.; Troll, J.H.; Weinstein, M.J.; Colannino, N.M.; Azocar, J.; Seder, R.H.; Hong, S.L.; Deykin, D. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N. Engl. J. Med. 1982, 307, 1432–1435. [Google Scholar] [CrossRef] [PubMed]
- Furlan, M.; Robles, R.; Lämmle, B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996, 87, 4223–4234. [Google Scholar] [CrossRef]
- Rock, G.A.; Shumak, K.H.; Buskard, N.A.; Blanchette, V.S.; Kelton, J.G.; Nair, R.C.; Spasoff, R.A. Comparison of Plasma Exchange with Plasma Infusion in the Treatment of Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 1991, 325, 393–397. [Google Scholar] [CrossRef]
- Petri, A.; Kim, H.J.; Xu, Y.; de Groot, R.; Li, C.; Vandenbulcke, A.; Vanhoorelbeke, K.; Emsley, J.; Crawley, J.T.B. Crystal structure and substrate-induced activation of ADAMTS13. Nat. Commun. 2019, 10, 3781. [Google Scholar] [CrossRef]
- Bonnez, Q.; Sakai, K.; Vanhoorelbeke, K. ADAMTS13 and Non-ADAMTS13 Biomarkers in Immune-Mediated Thrombotic Thrombocytopenic Purpura. J. Clin. Med. 2023, 12, 6169. [Google Scholar] [CrossRef]
- Levy, G.G.; Nichols, W.C.; Lian, E.C.; Foroud, T.; McClintick, J.N.; McGee, B.M.; Yang, A.Y.; Siemieniak, D.R.; Stark, K.R.; Gruppo, R.; et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001, 413, 488–494. [Google Scholar] [CrossRef]
- Scully, M.; Yarranton, H.; Liesner, R.; Cavenagh, J.; Hunt, B.; Benjamin, S.; Bevan, D.; Mackie, I.; Machin, S. Regional UK TTP Registry: Correlation with laboratory ADAMTS 13 analysis and clinical features. Br. J. Haematol. 2008, 142, 819–826. [Google Scholar] [CrossRef]
- Scully, M.; Hunt, B.J.; Benjamin, S.; Liesner, R.; Rose, P.; Peyvandi, F.; Cheung, B.; Machin, S.J. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br. J. Haematol. 2012, 158, 323–335. [Google Scholar] [CrossRef]
- Thomas, M.R.; de Groot, R.; Scully, M.A.; Crawley, J.T. Pathogenicity of Anti-ADAMTS13 Autoantibodies in Acquired Thrombotic Thrombocytopenic Purpura. EBioMedicine 2015, 2, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Tersteeg, C.; Verhenne, S.; Roose, E.; Schelpe, A.S.; Deckmyn, H.; De Meyer, S.F.; Vanhoorelbeke, K. ADAMTS13 and anti-ADAMTS13 autoantibodies in thrombotic thrombocytopenic purpura—Current perspectives and new treatment strategies. Expert. Rev. Hematol. 2016, 9, 209–221. [Google Scholar] [CrossRef]
- Zheng, X.L.; Vesely, S.K.; Cataland, S.R.; Coppo, P.; Geldziler, B.; Iorio, A.; Matsumoto, M.; Mustafa, R.A.; Pai, M.; Rock, G.; et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2020, 18, 2496–2502. [Google Scholar] [CrossRef]
- Coppo, P.; Cuker, A.; George, J.N. Thrombotic thrombocytopenic purpura: Toward targeted therapy and precision medicine. Res. Pract. Thromb. Haemost. 2018, 3, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Bresin, E.; Gastoldi, S.; Daina, E.; Belotti, D.; Pogliani, E.; Perseghin, P.; Scalzulli, P.R.; Paolini, R.; Marceno, R.; Remuzzi, G.; et al. Rituximab as pre-emptive treatment in patients with thrombotic thrombocytopenic purpura and evidence of anti-ADAMTS13 autoantibodies. Thromb. Haemost. 2009, 101, 233–238. [Google Scholar] [PubMed]
- Hovinga, J.A.K.; George, J.N. Hereditary Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 381, 1653–1662. [Google Scholar] [CrossRef]
- Alwan, F.; Vendramin, C.; Liesner, R.; Clark, A.; Lester, W.; Dutt, T.; Thomas, W.; Gooding, R.; Biss, T.; Watson, H.G.; et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood 2019, 133, 1644–1651. [Google Scholar] [CrossRef]
- Fujimura, Y.; Matsumoto, M.; Kokame, K.; Isonishi, A.; Soejima, K.; Akiyama, N.; Tomiyama, J.; Natori, K.; Kuranishi, Y.; Imamura, Y.; et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: A series of 15 pregnancies in 9 genotyped patients. Br. J. Haematol. 2009, 144, 742–754. [Google Scholar] [CrossRef]
- Sakai, K.; Hamada, E.; Kokame, K.; Matsumoto, M. Congenital thrombotic thrombocytopenic purpura: Genetics and emerging therapies. Ann. Blood 2022, 8. [Google Scholar] [CrossRef]
- Ferrari, S.; Scheiflinger, F.; Rieger, M.; Mudde, G.; Wolf, M.; Coppo, P.; Girma, J.P.; Azoulay, E.; Brun-Buisson, C.; Fakhouri, F.; et al. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood 2007, 109, 2815–2822. [Google Scholar] [CrossRef]
- Page, E.E.; Kremer Hovinga, J.A.; Terrell, D.R.; Vesely, S.K.; George, J.N. Clinical importance of ADAMTS13 activity during remission in patients with acquired thrombotic thrombocytopenic purpura. Blood 2016, 128, 2175–2178. [Google Scholar] [CrossRef]
- Upreti, H.; Kasmani, J.; Dane, K.; Braunstein, E.M.; Streiff, M.B.; Shanbhag, S.; Moliterno, A.R.; Sperati, C.J.; Gottesman, R.F.; Brodsky, R.A.; et al. Reduced ADAMTS13 activity during TTP remission is associated with stroke in TTP survivors. Blood 2019, 134, 1037–1045. [Google Scholar] [CrossRef]
- Prasannan, N.; Dragunaite, B.; Subhan, M.; Thomas, M.; de Groot, R.; Singh, D.; Vanhoorelbeke, K.; Scully, M. Peak ADAMTS13 activity to assess ADAMTS13 conformation and risk of relapse in immune-mediated thrombotic thrombocytopenic purpura. Blood 2024, 143, 2644–2653. [Google Scholar] [CrossRef]
- Alwan, F.; Mahdi, D.; Tayabali, S.; Cipolotti, L.; Lakey, G.; Hyare, H.; Scully, M. Cerebral MRI findings predict the risk of cognitive impairment in thrombotic thrombocytopenic purpura. Br. J. Haematol. 2020, 191, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Dutt, T.; Toh, C.-H. Shades of Grey—The brain in TTP. Br. J. Haematol. 2024, 204, 757–758. [Google Scholar] [CrossRef]
- Hannan, F.; Hamilton, J.; Patriquin, C.J.; Pavenski, K.; Jurkiewicz, M.T.; Tristao, L.; Owen, A.M.; Kosalka, P.K.; Deoni, S.C.L.; Théberge, J.; et al. Cognitive decline in thrombotic thrombocytopenic purpura survivors: The role of white matter health as assessed by MRI. Br. J. Haematol. 2024, 204, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Kokame, K.; Matsumoto, M.; Fujimura, Y. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie 2013, 33, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Henry, B.M.; Lippi, G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Semin. Thromb. Hemost. 2021, 47, 400–418. [Google Scholar] [CrossRef]
- Sonneveld, M.A.H.; de Maat, M.P.M.; Portegies, M.L.P.; Kavousi, M.; Hofman, A.; Turecek, P.L.; Rottensteiner, H.; Scheiflinger, F.; Koudstaal, P.J.; Ikram, M.A.; et al. Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood 2015, 126, 2739–2746. [Google Scholar] [CrossRef]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef]
- Gerritsen, H.E.; Turecek, P.L.; Schwarz, H.P.; Lämmle, B.; Furlan, M. Assay of von Willebrand factor (vWF)-cleaving protease based on decreased collagen binding affinity of degraded vWF: A tool for the diagnosis of thrombotic thrombocytopenic purpura (TTP). Thromb. Haemost. 1999, 82, 1386–1389. [Google Scholar] [CrossRef]
- Maino, A.; Siegerink, B.; Lotta, L.A.; Crawley, J.T.B.; le Cessie, S.; Leebeek, F.W.G.; Lane, D.A.; Lowe, G.D.O.; Peyvandi, F.; Rosendaal, F.R. Plasma ADAMTS-13 levels and the risk of myocardial infarction: An individual patient data meta-analysis. J. Thromb. Haemost. 2015, 13, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.Y.; Tohyama, J.; Bauer, R.C.; Cao, N.N.; Rader, D.J.; Zheng, X.L. Genetic ablation of Adamts13 gene dramatically accelerates the formation of early atherosclerosis in a murine model. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1817–1823. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, S.Y.; Xue, J.; Sorvillo, N.; Voorberg, J.; Zheng, X.L. Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2261–2269. [Google Scholar] [CrossRef]
- Fujioka, M.; Hayakawa, K.; Mishima, K.; Kunizawa, A.; Irie, K.; Higuchi, S.; Nakano, T.; Muroi, C.; Fukushima, H.; Sugimoto, M.; et al. ADAMTS13 gene deletion aggravates ischemic brain damage: A possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion. Blood 2010, 115, 1650–1653. [Google Scholar] [CrossRef]
- Hung, S.-Y.; Lin, T.-M.; Liou, H.-H.; Chen, C.-Y.; Liao, W.-T.; Wang, H.-H.; Ho, L.-C.; Wu, C.-F.; Lee, Y.-C.; Chang, M.-Y. Association between ADAMTS13 deficiency and cardiovascular events in chronic hemodialysis patients. Sci. Rep. 2021, 11, 22816. [Google Scholar] [CrossRef]
- Ocak, G.; Roest, M.; Verhaar, M.C.; Rookmaaker, M.B.; Blankestijn, P.J.; Bos, W.J.W.; Fijnheer, R.; Péquériaux, N.C.; Dekker, F.W. Von Willebrand factor, ADAMTS13 and mortality in dialysis patients. BMC Nephrol. 2021, 22, 222. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 18 September 2023).
- Bilaloglu, S.; Aphinyanaphongs, Y.; Jones, S.; Iturrate, E.; Hochman, J.; Berger, J.S. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA 2020, 324, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Alexia, B.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W. Consortium atNC-R. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Dolgushina, N.; Gorodnova, E.; Beznoshenco, O.; Romanov, A.; Menzhinskaya, I.; Krechetova, L.; Sukhikh, G. Von Willebrand Factor and ADAMTS-13 Are Associated with the Severity of COVID-19 Disease. J. Clin. Med. 2022, 11, 4006. [Google Scholar] [CrossRef]
- Mancini, I.; Baronciani, L.; Artoni, A.; Colpani, P.; Biganzoli, M.; Cozzi, G.; Novembrino, C.; Boscolo Anzoletti, M.; De Zan, V.; Pagliari, M.T.; et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J. Thromb. Haemost. 2021, 19, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Bazzan, M.; Montaruli, B.; Sciascia, S.; Cosseddu, D.; Norbiato, C.; Roccatello, D. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern. Emerg. Med. 2020, 15, 861–863. [Google Scholar] [CrossRef]
- Tiscia, G.; Favuzzi, G.; De Laurenzo, A.; Cappucci, F.; Fischetti, L.; Colaizzo, D.; Chinni, E.; Florio, L.; Miscio, G.; Piscitelli, A.P.; et al. The Prognostic Value of ADAMTS-13 and von Willebrand Factor in COVID-19 Patients: Prospective Evaluation by Care Setting. Diagnostics 2021, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Flores-Pliego, A.; Miranda, J.; Vega-Torreblanca, S.; Valdespino-Vázquez, Y.; Helguera-Repetto, C.; Espejel-Nuñez, A.; Borboa-Olivares, H.; Espino, Y.S.S.; Mateu-Rogell, P.; León-Juárez, M.; et al. Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19. Cells 2021, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Prasannan, N.; Heightman, M.; Hillman, T.; Wall, E.; Bell, R.; Kessler, A.; Neave, L.; Doyle, A.; Devaraj, A.; Singh, D.; et al. Impaired exercise capacity in post-COVID-19 syndrome: The role of VWF-ADAMTS13 axis. Blood Adv. 2022, 6, 4041–4048. [Google Scholar] [CrossRef]
- Fogarty, H.; Ward, S.E.; Townsend, L.; Karampini, E.; Elliott, S.; Conlon, N.; Dunne, J.; Kiersey, R.; Naughton, A.; Gardiner, M.; et al. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction. J. Thromb. Haemost. 2022, 20, 2429–2438. [Google Scholar] [CrossRef]
- Bockmeyer, C.L.; Claus, R.A.; Budde, U.; Kentouche, K.; Schneppenheim, R.; Lösche, W.; Reinhart, K.; Brunkhorst, F.M. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica 2008, 93, 137–140. [Google Scholar] [CrossRef]
- Löwenberg, E.C.; Meijers, J.C.; Levi, M. Platelet-vessel wall interaction in health and disease. Neth. J. Med. 2010, 68, 242–251. [Google Scholar]
- Schwameis, M.; Schörgenhofer, C.; Assinger, A.; Steiner, M.M.; Jilma, B. VWF excess and ADAMTS13 deficiency: A unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb. Haemost. 2015, 113, 708–718. [Google Scholar] [CrossRef]
- Ono, T.; Mimuro, J.; Madoiwa, S.; Soejima, K.; Kashiwakura, Y.; Ishiwata, A.; Takano, K.; Ohmori, T.; Sakata, Y. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: Its correlation with development of renal failure. Blood 2006, 107, 528–534. [Google Scholar] [CrossRef]
- Kremer Hovinga, J.A.; Zeerleder, S.; Kessler, P.; Romani de Wit, T.; van Mourik, J.A.; Hack, C.E.; Ten Cate, H.; Reitsma, P.H.; Wuillemin, W.A.; Lämmle, B. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J. Thromb. Haemost. 2007, 5, 2284–2290. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Borgel, D.; Lerolle, N.; Feys, H.B.; Trinquart, L.; Vanhoorelbeke, K.; Deckmyn, H.; Legendre, P.; Diehl, J.L.; Baruch, D. Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit. Care Med. 2007, 35, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Amiral, J.; Bridey, F.; Dreyfus, M.; Vissoc, A.M.; Fressinaud, E.; Wolf, M.; Meyer, D. Platelet factor 4 complexed to heparin is the target for antibodies generated in heparin-induced thrombocytopenia. Thromb. Haemost. 1992, 68, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Amiral, J.; Bridey, F.; Wolf, M.; Boyer-Neumann, C.; Fressinaud, E.; Vissac, A.M.; Peynaud-Debayle, E.; Dreyfus, M.; Meyer, D. Antibodies to macromolecular platelet factor 4-heparin complexes in heparin-induced thrombocytopenia: A study of 44 cases. Thromb. Haemost. 1995, 73, 21–28. [Google Scholar] [CrossRef]
- Chan, M.; Zhao, X.; Zheng, X.L. Low ADAMTS-13 predicts adverse outcomes in hospitalized patients with suspected heparin-induced thrombocytopenia. Res. Pract. Thromb. Haemost. 2021, 5, e12581. [Google Scholar] [CrossRef]
- Demagny, J.; Driss, A.; Stepanian, A.; Anguel, N.; Affo, L.; Roux, D.; Habibi, A.; Benghezal, S.; Capdenat, S.; Coppo, P.; et al. ADAMTS13 and von Willebrand factor assessment in steady state and acute vaso-occlusive crisis of sickle cell disease. Res. Pract. Thromb. Haemost. 2021, 5, 197–203. [Google Scholar] [CrossRef]
- Schnog, J.J.; Kremer Hovinga, J.A.; Krieg, S.; Akin, S.; Lämmle, B.; Brandjes, D.P.; Mac Gillavry, M.R.; Muskiet, F.D.; Duits, A.J. ADAMTS13 activity in sickle cell disease. Am. J. Hematol. 2006, 81, 492–498. [Google Scholar] [CrossRef]
- Vital, E.F.; Lam, W.A. Hidden behind thromboinflammation: Revealing the roles of von Willebrand factor in sickle cell disease pathophysiology. Curr. Opin. Hematol. 2023, 30, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Van der Land, V.; Peters, M.; Biemond, B.J.; Heijboer, H.; Harteveld, C.L.; Fijnvandraat, K. Markers of endothelial dysfunction differ between subphenotypes in children with sickle cell disease. Thromb. Res. 2013, 132, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Ahmad, A.; Atiq, F.; Doherty, D.; Ward, S.; Karampini, E.; Rehill, A.; Leon, G.; Byrne, C.; Geoghegan, R.; et al. VWF–ADAMTS13 axis dysfunction in children with sickle cell disease treated with hydroxycarbamide vs blood transfusion. Blood Adv. 2023, 7, 6974–6989. [Google Scholar] [CrossRef] [PubMed]
- Colombatti, R.; De Bon, E.; Bertomoro, A.; Casonato, A.; Pontara, E.; Omenetto, E.; Saggiorato, G.; Steffan, A.; Damian, T.; Cella, G.; et al. Coagulation activation in children with sickle cell disease is associated with cerebral small vessel vasculopathy. PLoS ONE 2013, 8, e78801. [Google Scholar] [CrossRef] [PubMed]
- Rossato, P.; Federti, E.; Matte, A.; Glantschnig, H.; Canneva, F.; Schuster, M.; Coulibaly, S.; Schrenk, G.; Voelkel, D.; Dockal, M.; et al. Evidence of protective effects of recombinant ADAMTS13 in a humanized model of sickle cell disease. Haematologica 2022, 107, 2650–2660. [Google Scholar] [CrossRef]
- Ko, S.; Okano, E.; Kanehiro, H.; Matsumoto, M.; Ishizashi, H.; Uemura, M.; Fujimura, Y.; Tanaka, K.; Nakajima, Y. Plasma ADAMTS13 activity may predict early adverse events in living donor liver transplantation: Observations in 3 cases. Liver Transpl. 2006, 12, 859–869. [Google Scholar] [CrossRef]
- Sayah, D.M.; Mallavia, B.; Liu, F.; Ortiz-Muñoz, G.; Caudrillier, A.; DerHovanessian, A.; Ross, D.J.; Lynch, J.P., 3rd; Saggar, R.; Ardehali, A.; et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 2015, 191, 455–463. [Google Scholar] [CrossRef]
- Wong, S.L.; Goverman, J.; Staudinger, C.; Wagner, D.D. Recombinant human ADAMTS13 treatment and anti-NET strategies enhance skin allograft survival in mice. Am. J. Transplant. 2020, 20, 1162–1169. [Google Scholar] [CrossRef]
- Vanhoorelbeke, K.; De Meyer, S.F. Animal models for thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2013, 11, 2–10. [Google Scholar] [CrossRef]
- Feys, H.B.; Roodt, J.; Vandeputte, N.; Pareyn, I.; Lamprecht, S.; van Rensburg, W.J.; Anderson, P.J.; Budde, U.; Louw, V.J.; Badenhorst, P.N.; et al. Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood 2010, 116, 2005–2010. [Google Scholar] [CrossRef]
- Schiviz, A.; Wuersch, K.; Piskernik, C.; Dietrich, B.; Hoellriegl, W.; Rottensteiner, H.; Scheiflinger, F.; Schwarz, H.P.; Muchitsch, E.M. A new mouse model mimicking thrombotic thrombocytopenic purpura: Correction of symptoms by recombinant human ADAMTS13. Blood 2012, 119, 6128–6135. [Google Scholar] [CrossRef]
- Motto, D.G.; Chauhan, A.K.; Zhu, G.; Homeister, J.; Lamb, C.B.; Desch, K.C.; Zhang, W.; Tsai, H.-M.; Wagner, D.D.; Ginsburg, D. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J. Clin. Investig. 2005, 115, 2752–2761. [Google Scholar] [CrossRef] [PubMed]
- Banno, F.; Kokame, K.; Okuda, T.; Honda, S.; Miyata, S.; Kato, H.; Tomiyama, Y.; Miyata, T. Complete deficiency in ADAMTS13 is prothrombotic, but it alone is not sufficient to cause thrombotic thrombocytopenic purpura. Blood 2006, 107, 3161–3166. [Google Scholar] [CrossRef] [PubMed]
- Tersteeg, C.; Schiviz, A.; De Meyer, S.F.; Plaimauer, B.; Scheiflinger, F.; Rottensteiner, H.; Vanhoorelbeke, K. Potential for Recombinant ADAMTS13 as an Effective Therapy for Acquired Thrombotic Thrombocytopenic Purpura. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Antun, A.; Cataland, S.R.; Coppo, P.; Dossier, C.; Biebuyck, N.; Hassenpflug, W.-A.; Kentouche, K.; Knöbl, P.; Hovinga, J.A.K.; et al. Recombinant ADAMTS13 in Congenital Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2024, 390, 1584–1596. [Google Scholar] [CrossRef]
- Kanter, J.; Patwari, P.; Desai, P.; Ataga, K.I.; Crary, S.E.; Lanzkron, S.; Field, J.; Chung, Y.-C.; Wang, L.T.; Mellgård, B.; et al. Safety and Pharmacokinetics osf Recombinant ADAMTS13 in Patients with Sickle Cell Disease: A Phase 1 Randomized, Double-Blind, Placebo-Controlled Study. Blood 2023, 142, 149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, R.J.; Abrams, S.T.; Badu, S.; Toh, C.-H.; Dutt, T. The Highs and Lows of ADAMTS13 Activity. J. Clin. Med. 2024, 13, 5152. https://doi.org/10.3390/jcm13175152
Shaw RJ, Abrams ST, Badu S, Toh C-H, Dutt T. The Highs and Lows of ADAMTS13 Activity. Journal of Clinical Medicine. 2024; 13(17):5152. https://doi.org/10.3390/jcm13175152
Chicago/Turabian StyleShaw, Rebecca J., Simon T. Abrams, Samuel Badu, Cheng-Hock Toh, and Tina Dutt. 2024. "The Highs and Lows of ADAMTS13 Activity" Journal of Clinical Medicine 13, no. 17: 5152. https://doi.org/10.3390/jcm13175152
APA StyleShaw, R. J., Abrams, S. T., Badu, S., Toh, C.-H., & Dutt, T. (2024). The Highs and Lows of ADAMTS13 Activity. Journal of Clinical Medicine, 13(17), 5152. https://doi.org/10.3390/jcm13175152