Systematic Review of Clinical Outcome Parameters of Conservative Treatment of Adolescent Idiopathic Scoliosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Criteria
2.3. Data Extraction and Data Synthesis
3. Result
3.1. Study Selection
3.2. Study Characteristics
3.3. Methodological Quality of Included Studies
3.4. Interventions Used in the Studies
4. Discussion
4.1. Cobb Angle and Clinical Significance
4.2. Outcome Measurement Methods
4.3. Cosmetic Appearance and Quality of Life
4.4. Treatment Interventions and Outcomes
4.5. Methodological Quality and Future Research Directions
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chik, S.K.T. Classification and terminology. In Schroth’s Textbook of Scoliosis and Other Spinal Deformities; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020; pp. 150–158. [Google Scholar]
- Sarwark, J.F.; Castelein, R.M.; Maqsood, A.; Aubin, C.E. The biomechanics of induction in adolescent idiopathic scoliosis: Theoretical factors. J. Bone Jt. Surg. Am. 2019, 101, e22. [Google Scholar] [CrossRef]
- Cobb, J.R. Outline for the study of scoliosis. Instr. Course Lect. 1948, 261–275. [Google Scholar]
- Langensiepen, S.; Semler, O.; Sobottke, R.; Fricke, O.; Franklin, J.; Schönau, E.; Eysel, P. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: A systematic review. Eur. Spine J. 2013, 22, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Bridwell, K.H.; Anderson, P.A.; Boden, S.D.; Vaccaro, A.R.; Wang, J.C. What’s new in spine surgery. J. Bone Jt. Surg. Am. 2008, 90, 1609–1619. [Google Scholar] [CrossRef]
- Weinstein, S.L.; Dolan, L.A.; Wright, J.G.; Dobbs, M.B. Effects of bracing in adolescents with idiopathic scoliosis. N. Eng. J. Med. 2013, 369, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Asher, M.A.; Burton, D.C. Adolescent idiopathic scoliosis: Natural history and long term treatment effects. Scoliosis 2006, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Parent, E.C.; Wong, D.; Hill, D.; Mahood, J.; Moreau, M.; Raso, V.J.; Lou, E. The association between Scoliosis Research Society-22 scores and scoliosis severity changes at a clinically relevant threshold. Spine 2010, 35, 315–322. [Google Scholar] [CrossRef]
- Richards, B.S.; Bernstein, R.M.; D’Amato, C.R.; Thompson, G.H. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine 2005, 30, 2068–2075. [Google Scholar] [CrossRef]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; De Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 1–48. [Google Scholar] [CrossRef]
- Wu, W.; Liang, J.; Du, Y.; Tan, X.; Xiang, X.; Wang, W.; Ru, N.; Le, J. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools. BMC Musculoskelet. Disord. 2014, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P.A.; Ehsani, N.N.; Harrison, D.E. The scoliosis quandary: Are radiation exposures from repeated X-rays harmful? Dose-Response 2019, 17, 1559325819852810. [Google Scholar] [CrossRef] [PubMed]
- Nash, C.L., Jr.; Gregg, E.C.; Brown, R.H.; Pillai, K. Risks of exposure to X-rays in patients undergoing long-term treatment for scoliosis. J. Bone Jt. Surg. Am. 1979, 61, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.R.; Goldberg, M.S.; Mayo, N.E.; Hanley, J.A.; Poitras, B. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine 1996, 21, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.L.; Dolan, L.A.; Spratt, K.F.; Peterson, K.K.; Spoonamore, M.J.; Ponseti, I.V. Health and function of patients with untreated idiopathic scoliosis: A 50-year natural history study. JAMA 2003, 289, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R.; Karavidas, N.; Moramarco, M.; Moramarco, K. Long-Term Effects of Untreated Adolescent Idiopathic Scoliosis: A Review of the Literature. Asian Spine J. 2016, 10, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Kaspiris, A.; Grivas, T.B.; Weiss, H.R.; Turnbull, D. Surgical and conservative treatment of patients with congenital scoliosis: α search for long-term results. Scoliosis 2011, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Moramarco, M.; Borysov, M.; Ng, S.Y.; Weiss, H.R. Schroth’s Textbook of Scoliosis and Other Spinal Deformities; Cambridge School Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Kotwicki, T.; Negrini, S.; Grivas, T.B.; Rigo, M.; Maruyama, T.; Durmala, J.; Zaina, F. Members of the international Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT). Methodology of evaluation of morphology of the spine and the trunk in idiopathic scoliosis and other spinal deformities—6th SOSORT consensus paper. Scoliosis 2009, 4, 2. [Google Scholar] [CrossRef]
- Dereli, E.E.; Gong, S.; Çolak, T.K.; Turnbull, D. Guidelines for the conservative treatment of spinal deformities—Questionnaire for a Delphi consensus. S. Afr. J. Physiother. 2021, 77, 1587. [Google Scholar] [CrossRef]
- Bunnell, W.P. An objective criterion for scoliosis screening. J. Bone Jt. Surg. 1984, 66, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Wong, M.S.; Cheng, J.C.Y.; Lo, K.H. A comparison of treatment effectiveness between the CAD/CAM method and the manual method for managing adolescent idiopathic scoliosis. Prosthet. Orthot. Int. 2005, 29, 105–111. [Google Scholar] [CrossRef]
- Labelle, H.; Bellefleur, C.; Joncas, J.; Aubin, C.É.; Cheriet, F. Preliminary evaluation of a computer-assisted tool for the design and adjustment of braces in idiopathic scoliosis: A prospective and randomized study. Spine 2007, 32, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Hasler, C.; Schmid, C.; Enggist, A.; Neuhaus, C.; Erb, T. No effect of osteopathic treatment on trunk morphology and spine flexibility in young women with adolescent idiopathic scoliosis. J. Child. Orthop. 2010, 4, 219–226. [Google Scholar] [CrossRef]
- Monticone, M.; Ambrosini, E.; Cazzaniga, D.; Rocca, B.; Ferrante, S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. Eur. Spine J. 2014, 23, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Cobetto, N.; Aubin, C.E.; Parent, S.; Barchi, S.; Turgeon, I.; Labelle, H. Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: A prospective randomized controlled trial. Eur. Spine J. 2016, 25, 3056–3064. [Google Scholar] [CrossRef]
- Kuru, T.; Yeldan, İ.; Dereli, E.E.; Özdinçler, A.R.; Dikici, F.; Çolak, İ. The efficacy of three-dimensional Schroth exercises in adolescent idiopathic scoliosis: A randomised controlled clinical trial. Clin. Rehabil. 2016, 30, 181–190. [Google Scholar] [CrossRef]
- Gür, G.; Ayhan, C.; Yakut, Y. The effectiveness of core stabilization exercise in adolescent idiopathic scoliosis: A randomized controlled trial. Prosthet. Orthot. Int. 2017, 41, 303–310. [Google Scholar] [CrossRef]
- Yagci, G.; Ayhan, C.; Yakut, Y. Effectiveness of basic body awareness therapy in adolescents with idiopathic scoliosis: A randomized controlled study. J. Back Musculoskelet. Rehabil. 2018, 31, 693–701. [Google Scholar] [CrossRef]
- Sarkisova, N.; Andras, L.M.; Yang, J.; Zaslow, T.L.; Edison, B.R.; Tolo, V.T.; Skaggs, D.L. Side plank pose exercises for adolescent idiopathic scoliosis patients. Glob. Adv. Health Med. 2019, 8, 2164956119887720. [Google Scholar] [CrossRef] [PubMed]
- Yagci, G.; Yakut, Y. Core stabilization exercises versus scoliosis-specific exercises in moderate idiopathic scoliosis treatment. Prosthet. Orthot. Int. 2019, 43, 301–308. [Google Scholar] [CrossRef]
- Lin, Y.; Lou, E.; Lam, T.P.; Cheng, J.C.-Y.; Sin, S.W.; Kwok, W.K.; Wong, M.S. The intelligent automated pressure-adjustable orthosis for patients with adolescent idiopathic scoliosis: A bi-center randomized controlled trial. Spine 2020, 45, 1395–1402. [Google Scholar] [CrossRef]
- Trzcińska, S.; Nowak, Z. Analysis of scoliosis deformation in the Zebris computer study as an assessment of the effectiveness of the FED method in the treatment of idiopathic scolioses. Pol. Merkur Lekarski 2020, 48, 87–92. [Google Scholar]
- Dufvenberg, M.; Diarbakerli, E.; Charalampidis, A.; Öberg, B.; Tropp, H.; Ahl, A.A.; Möller, H.; Gerdhem, P.; Abbott, A. Six-month results on treatment adherence, physical activity, spinal appearance, spinal deformity, and quality of life in an ongoing randomised trial on Conservative Treatment for Adolescent Idiopathic Scoliosis (CONTRAIS). J. Clin. Med. 2021, 10, 4967. [Google Scholar] [CrossRef] [PubMed]
- Kocaman, H.; Bek, N.; Kaya, M.H.; Büyükturan, B.; Yetiş, M.; Büyükturan, Ö. The effectiveness of two different exercise approaches in adolescent idiopathic scoliosis: A single-blind, randomized-controlled trial. PLoS ONE 2021, 16, e0249492. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Yousef, A.M. Impact of Schroth three-dimensional vs. proprioceptive neuromuscular facilitation techniques in adolescent idiopathic scoliosis: A randomized controlled study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7717–7725. [Google Scholar] [CrossRef]
- Abdel-Aziem, A.A.; Abdelraouf, O.R.; Ghally, S.A.; Dahlawi, H.A.; Radwan, R.E. A 10-week program of combined Hippotherapy and Scroth’s exercises improves balance and postural asymmetries in adolescence idiopathic scoliosis: A randomized controlled study. Children 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Akyurek, E.; Alpozgen, A.Z.; Akgul, T. The preliminary results of physiotherapy scoliosis-specific exercises on spine joint position sense in adolescent idiopathic scoliosis: A randomized controlled trial. Prosthet. Orthot. Int. 2022, 46, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Cheung, J.P.Y.; Chan, C.K.; Wong, S.W.F.; Cheung, K.M.C.; Wong, M.; Wong, W.C.B.; Cheung, P.W.H.; Wong, M.S. A randomized controlled trial to evaluate the clinical effectiveness of 3D-printed orthosis in the management of adolescent idiopathic scoliosis. Spine 2022, 47, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, Y.; Guo, X.; Cao, J.; Lu, H.; Chen, W.; Chen, J.; Zhu, Q.; Zhang, C.; Zhang, M.; et al. The efficacy of 3D personalized insoles in moderate adolescent idiopathic scoliosis: A randomized controlled trial. BMC Musculoskelet. Disord. 2022, 23, 983. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Yang, Z.; Zhang, P.; Xu, Y.; Wang, J. Effects of balance training combined with Schroth therapy on adolescents with mild idiopathic scoliosis: A six-week randomized controlled trial. J. Back. Musculoskelet. Rehabil. 2023, 36, 1365–1373. [Google Scholar] [CrossRef]
- Zapata, K.A.; Dieckmann, R.J.; Hresko, M.T.; Sponseller, P.D.; Vitale, M.G.; Glassman, S.D.; Smith, B.G.; Jo, C.-H.; Sucato, D.J. A United States multi-site randomized control trial of Schroth-based therapy in adolescents with mild idiopathic scoliosis. Spine Deform. 2023, 11, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Dursun, A.S.M.; Ozyilmaz, S.; Ucgun, H.; Elmadag, N.M. The effect of Pilates-based exercise applied with hybrid telerehabilitation method in children with adolescent idiopathic scoliosis: A randomized clinical trial. Eur. J. Pediatr. 2024, 183, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R.; Seibel, S. Hemidystrophic thorax mimicking scoliosis. Open. Orthop. J. 2018, 12, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.O.; Polly, D.W., Jr.; Cats-Baril, W.; Jones, J.; Lenke, L.G.; O’Brien, M.F.; Richards, B.S.; Sucato, D.J. Analysis of patient and parent assessment of deformity in idiopathic scoliosis using the Walter Reed Visual Assessment Scale. Spine 2003, 28, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Grivas, T.B.; Kotwicki, T.; Maruyama, T.; Rigo, M.; Weiss, H.R.; the members of the Scientific society On Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT). Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 Consensus paper. Scoliosis 2006, 1, 4. [Google Scholar] [CrossRef]
- Coelho, D.M.; Bonagamba, G.H.; Oliveira, A.S. Scoliometer measurements of patients with idiopathic scoliosis. Braz. J. Phys. Ther. 2013, 17, 179–184. [Google Scholar] [CrossRef]
- Jankowski, P.P.; Yaszay, B.; Cidambi, K.R.; Bartley, C.E.; Bastrom, T.P.; Newton, P.O. The relationship between apical vertebral rotation and truncal rotation in adolescent idiopathic scoliosis using 3D reconstructions. Spine Deform. 2018, 6, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.E.; Meyer, M.A.; Boody, B.; Sarwark, J.F. Evaluation of angle trunk rotation measurements to improve quality and safety in the management of adolescent idiopathic scoliosis. J. Orthop. 2018, 15, 563–565. [Google Scholar] [CrossRef]
- Lendzion, M.; Łukaszewicz, E.; Waś, J.; Czaprowski, D. Self-evaluation of trunk aesthetics in conservatively treated children and adolescents with idiopathic scoliosis. Ortop. Traumatol. Rehabil. 2018, 20, 371–382. [Google Scholar] [CrossRef]
- Su, X.; Dong, R.; Wen, Z.; Liu, Y. Reliability and validity of scoliosis measurements obtained with surface topography techniques: A systematic review. J. Clin. Med. 2022, 11, 6998. [Google Scholar] [CrossRef] [PubMed]
Inclusion | Exclusion | |
---|---|---|
Population | Female/Male 9–19 years Radiological diagnosis of AIS | Having any other concomitant disease |
Intervention | Physiotherapy Exercise Brace treatment Other conservative therapies | Surgical operation |
Comparator | Any comparator | Surgery Pre/post-operation interventions |
Outcome | Any measurement method that evaluating scoliosis, spine, or deformity | Not include a spine-related measurement |
Study | RCT | Non-randomized study Qualitative study Review Analytical study Protocol |
Language | English | Non-English |
Year | 2004–Present | Before 2004 |
Study | Country | Gender n (M/F) | Age | Risser Sign | Cobb Angle Assessment | Outcome Measurements | Control Group | Intervention Group |
---|---|---|---|---|---|---|---|---|
Wong et al., 2005 [24] | China | 40 (0/40) | 10–14 | Risser Sign < 2 | Yes | AVR | Brace produced by manual method | Brace produced by the CAD/CAM method |
Labelle et al., 2007 [25] | Canada | 48 (2/46) | 10–16 | Risser Sign ≤ 3 | Yes | Thoracic kyphosis Lumbar lordosis Surface topography | Boston brace | Boston brace designed and adjusted using a computer-aided 3-dimensional tool |
Hasler et al., 2010 [26] | Switzerland | 20 (0/20) | 15.2–18.5 | - | Yes | ATR Surface topography Spine flexibility Plumb line Sagittal balance Thoracic kyphosis Lumbar lordosis | Observation | Osteopathy |
Weinstein et al., 2013 [6] | USA | 242 (21/221) | 10–15 | Risser Sign 0–2 | Yes | Coronal balance Sagittal balance Thoracic kyphosis Lumbar lordosis PedsQL | Observation | TLSO Brace |
Monticone et al., 2014 [27] | Italy | 110 (30/80) | >10 | Risser Sign < 2 | Yes | ATR SRS-22r | General exercises aimed at spinal mobilization | Active self-correction, task-oriented exercises |
Cobetto et al., 2016 [28] | Canada | 40 (5/35) | 10–16 | Risser Sign 0–2 | Yes | Thoracic kyphosis Lumbar lordosis Surface topography | Conventional TLSO Brace | New TLSO brace (NewBrace) |
Kuru et al., 2016 [29] | Turkey | 45 (6/39) | 10–18 | Risser Sign 0–3 | Yes | ATR Maximum height of the hump Waist asymmetry SRS-23 | No treatment | I1: Schroth exercises under physiotherapist supervision I2: Schroth home exercise program |
Gur et al., 2017 [30] | Turkey | 25 (1/24) | 10–16 | Risser Sign 0–5 | Yes | ATR POTSI TAPS SRS-22 | Traditional rehabilitation | Core stabilization in addition to traditional rehabilitation |
Yagci et al., 2018 [31] | Turkey | 20 (0/20) | 10–16 | Risser Sign 1–3 | Yes | ATR POTSI WRVAS SRS-22 | Conventional exercise | Basic body awareness therapy |
Sarkisova et al., 2019 [32] | USA | 64 (11/53) | 10–17 | - | Yes | ATR | Front plank | Side plank |
Yagci et al., 2019 [33] | Turkey | 30 (0/30) | >12 | Risser Sign 2–3 | Yes | ATR POTSI WRVAS SRS-22 | Core stabilization exercises and brace | Scientific exercises approach to scoliosis and brace |
Lin et al., 2020 [34] | Hong-Kong | 23 (0/23) | 10–14 | Risser Sign 0 to 2 | Yes | SRS-22r SAQ BrQ | Conventional orthosis | Automated pressure-adjustable orthosis |
Trzcińska et al., 2020 [35] | Poland | 60 (0/60) | 11–15 | Risser Sign < 5 | Yes | Posture analysis using Zebris CMS10 system | FITS method according to Białek and M’hango. | FED method |
Dufvenberg et al., 2021 [36] | Sweden | 135 (24 /111) | 9–17 | NA | Yes | ATR IPAQ-SF SAQ (pictures) SRS-22r EQ-5D-Y Treatment adherence | Physical activity | I1: Boston night brace I2: Scoliosis-specific exercise |
Kocaman et al., 2021 [37] | Turkey | 28 (7/21) | 10–18 | Risser Sign ≤ 3 | Yes | ATR WRVAS Spinal mobility SRS-22 Muscle strength | Core stabilization exercises | Schroth exercises |
Mohamed et al., 2021 [38] | Egypt | 32 (0/32) | 14–16 | Risser Sign 2–5 | Yes | ATR Static plantar pressure distribution 6 MWT | PNF exercises | Schroth exercises |
Abdel-Aziem et al., 2022 [39] | Saudi Arabia | 52 (15/37) | 10–18 | NA | Yes | Surface topographyDynamic postural stability | Schroth exercises | Hippotherapy in combination with Schroth exercises |
Akyurek et al., 2022 [40] | Turkey | 29 (0/29) | 10–17 | Risser Sign ≤ 3 | Yes | ATR Spine joint position sense Posturescreen mobile POTSI ATSI WRVAS | Waiting list | Schroth exercises |
Lin et al., 2022 [41] | China | 30 (0/30) | 10–14 | Risser Sign 0–2 | Yes | SRS-22r TAPS BrQ | Conventional orthosis | 3D-printed orthosis |
Wang et al., 2022 [42] | China | 31 (6/25) | 10–18 | Risser Sign ≤ 3 | Yes | ATR Coronal balance index Sagittal balance index SRS-22r | Exercise and brace | Insoles in addition to exercise and brace |
Shen et al., 2023 [43] | China | 59 (21/38) | 10–18 | Risser Sign < 5 | Yes | ATR SRS-22 Balance | Schroth exercises | Schroth and balance exercises |
Zapata et al., 2023 [44] | USA | 57 (16/41) | 10–16 | Risser Sign 0 | Yes | Adherence to treatment ATR | Observation | Schroth-based Barcelona Scoliosis Physical Therapy School exercises |
Manzak Dursun et al., 2024 [45] | Turkey | 32 (1/31) | 10–18 | Risser Sign 0–5 | Yes | ATR Pulmonary functions Respiratory muscle strength Exercise capacity | Pilates-based home exercises | Supervised pilates-based exercises with hybrid telerehabilitation |
1 * | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wong et al., 2005 [24] | Yes | No | No | No | No | No | No | No | Yes | Yes | Yes | 3/10 |
Labelle et al., 2007 [25] | Yes | Yes | Yes | Yes | No | No | No | No | No | Yes | No | 4/10 |
Hasler et al., 2010 [26] | Yes | Yes | Yes | Yes | No | No | Yes | No | No | Yes | Yes | 6/10 |
Weinstein et al., 2013 [6] | No | Yes | No | Yes | No | No | No | No | Yes | Yes | No | 4/10 |
Monticone et al., 2014 [27] | Yes | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes | Yes | 7/10 |
Cobetto et al., 2016 [28] | Yes | Yes | Yes | No | No | Yes | Yes | Yes | No | Yes | Yes | 7/10 |
Kuru et al., 2016 [29] | Yes | Yes | Yes | Yes | No | No | No | Yes | No | Yes | Yes | 6/10 |
Gur et al., 2017 [30] | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes | Yes | Yes | 7/10 |
Yagci et al., 2018 [31] | No | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 7/10 |
Sarkisova et al., 2019 [32] | Yes | Yes | No | Yes | No | No | No | No | No | Yes | No | 3/10 |
Yagci et al., 2019 [33] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 7/10 |
Lin et al., 2020 [34] | Yes | No | Yes | No | No | No | No | Yes | No | Yes | Yes | 4/10 |
Trzcińska et al., 2020 [35] | No | Yes | No | Yes | No | No | No | Yes | No | Yes | Yes | 5/10 |
Dufvenberg et al., 2021 [36] | No | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 7/10 |
Kocaman et al., 2021 [37] | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Mohamed et al., 2021 [38] | No | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Abdel-Aziem et al., 2022 [39] | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes | Yes | 7/10 |
Akyurek et al., 2022 [40] | Yes | Yes | No | Yes | No | No | No | Yes | No | Yes | Yes | 5/10 |
Lin et al., 2022 [41] | Yes | Yes | No | Yes | No | No | No | Yes | No | Yes | Yes | 5/10 |
Wang et al., 2022 [42] | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Shen et al., 2023 [43] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 6/10 |
Zapata et al., 2023 [44] | No | Yes | No | Yes | No | No | Yes | No | No | Yes | Yes | 5/10 |
Manzak Dursun et al., 2024 [45] | Yes | Yes | No | Yes | No | No | Yes | Yes | No | Yes | Yes | 6/10 |
1 * | Eligibility criteria were specified. |
2 | Subjects were randomly allocated to groups. |
3 | Allocation was concealed. |
4 | The groups were similar at baseline regarding the most important prognostic indicators. |
5 | There was blinding of all subjects. |
6 | There was blinding of all therapists who administered the therapy. |
7 | There was blinding of all assessors who measured at least one key outcome. |
8 | Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups. |
9 | All subjects for whom outcome measures were available received the treatment or control condition as allocated, or where this was not the case, data for at least one key outcome were analyzed by “intention to treat”. |
10 | The results of between-group statistical comparisons are reported for at least one key outcome. |
11 | The study provides both point measures and measures of variability for at least one key outcome. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuru Çolak, T.; Durmuş, B.B.; Saatçı, E.Z.; Çağlar, E.; Akçay, B.; Maeso, S.L. Systematic Review of Clinical Outcome Parameters of Conservative Treatment of Adolescent Idiopathic Scoliosis Patients. J. Clin. Med. 2025, 14, 1063. https://doi.org/10.3390/jcm14041063
Kuru Çolak T, Durmuş BB, Saatçı EZ, Çağlar E, Akçay B, Maeso SL. Systematic Review of Clinical Outcome Parameters of Conservative Treatment of Adolescent Idiopathic Scoliosis Patients. Journal of Clinical Medicine. 2025; 14(4):1063. https://doi.org/10.3390/jcm14041063
Chicago/Turabian StyleKuru Çolak, Tuğba, Betül Beyza Durmuş, Ece Zeynep Saatçı, Engin Çağlar, Burçin Akçay, and Santiago Lasa Maeso. 2025. "Systematic Review of Clinical Outcome Parameters of Conservative Treatment of Adolescent Idiopathic Scoliosis Patients" Journal of Clinical Medicine 14, no. 4: 1063. https://doi.org/10.3390/jcm14041063
APA StyleKuru Çolak, T., Durmuş, B. B., Saatçı, E. Z., Çağlar, E., Akçay, B., & Maeso, S. L. (2025). Systematic Review of Clinical Outcome Parameters of Conservative Treatment of Adolescent Idiopathic Scoliosis Patients. Journal of Clinical Medicine, 14(4), 1063. https://doi.org/10.3390/jcm14041063