Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine
Abstract
:1. Introduction
2. The Relationship Between HR and HF
3. Effects of Ivabradine on HF Prognosis
4. Pathophysiology of HFpEF and Use of Ivabradine
5. Cardiac Effects of Ivabradine Administration
6. β-Blockers and Ivabradine
7. Safety Profile of Ivabradine
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okura, Y.; Ramadan, M.M.; Ohno, Y.; Mitsuma, W.; Tanaka, K.; Ito, M.; Suzuki, K.; Tanabe, N.; Kodama, M.; Aizawa, Y. Impending epidemic: Future projection of heart failure in Japan to the year 2055. Circ. J. 2008, 72, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Ulrichsen, S.P.; Pedersen, L.; Bøtker, H.E.; Sørensen, H.T. Thirty-year trends in heart failure hospitalization and mortality rates and the prognostic impact of co-morbidity: A Danish nationwide cohort study. Eur. J. Heart Fail. 2016, 18, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, H.; Miura, M.; Nochioka, K.; Sakata, Y. Heart failure as a general pandemic in Asia. Eur. J. Heart Fail. 2015, 17, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, K.; Noriyasu, T.; Nakamura, K.; Ito, H. Unprecedented crisis-Heart failure hospitalizations in current or future Japan. J. Cardiol. 2019, 74, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, S.; Morita, Y.; Mitani, H.; Kanegasaki, A.; Iwasaki, K.; Yoshikawa, T.; Kitagawa, H.; Oyama, N. Burden of Repeated Hospitalization on Patients with Heart Failure: An Analysis of Administrative and Claims Data in Japan. Drugs Real World Outcomes 2022, 9, 377–389. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Butler, J. Victims of Success in Failure. Circulation 2020, 142, 1129–1131. [Google Scholar] [CrossRef]
- Tsutsui, H.; Isobe, M.; Ito, H.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure-Digest Version. Circ. J. 2019, 82, 2084–2184. [Google Scholar] [CrossRef]
- Levine, J.H. Rest heart rate and life expectancy. J. Am. Coll. Cardiol. 1997, 30, 1104–1106. [Google Scholar]
- Jouven, X.; Empana, J.P.; Schwartz, P.J.; Desnos, M.; Courbon, D.; Ducimetière, P. Heart-rate profile during exercise as a predictor of sudden death. N. Engl. J. Med. 2005, 352, 1951–1958. [Google Scholar] [CrossRef]
- Fox, K.; Borer, J.S.; Camm, A.J.; Danchin, N.; Ferrari, R.; Lopez Sendon, J.L.; Steg, P.G.; Tardif, J.C.; Tavazzi, L.; Tendera, M.; et al. Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef]
- Nikolovska Vukadinović, A.; Vukadinović, D.; Cowie, M.; Komajda, M.; Lainscak, M.; Swedberg, K.; Böhm, M. Heart rate and its reduction in chronic heart failure and beyond. Eur. J. Heart Fail. 2017, 19, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Sartipy, U.; Lund, L.H.; Dahlström, U.; Adiels, M.; Petzold, M.; Fu, M. Prognostic Significance of Resting Heart Rate and Use of β-Blockers in Atrial Fibrillation and Sinus Rhythm in Patients with Heart Failure and Reduced Ejection Fraction: Findings From the Swedish Heart Failure Registry. Circ. Heart Fail. 2015, 8, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Sakata, Y.; Miyata, S.; Takahashi, J.; Nochioka, K.; Miura, M.; Tadaki, S.; Shimokawa, H.; CHART-2 Investigators. Impact of elevated heart rate on clinical outcomes in patients with heart failure with reduced and preserved ejection fraction: A report from the CHART-2 Study. Eur. J. Heart Fail. 2014, 16, 309–316. [Google Scholar] [CrossRef]
- Grande, D.; Iacoviello, M.; Aspromonte, N. The effects of heart rate control in chronic heart failure with reduced ejection fraction. Heart Fail. Rev. 2018, 23, 527–535. [Google Scholar] [CrossRef]
- Narula, J.; Gerson, M.; Thomas, G.S.; Cerqueira, M.D.; Jacobson, A.F. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: The ADMIRE HFX study. J. Nucl. Med. 2015, 56, 1011–1018. [Google Scholar] [CrossRef]
- Tsuchihashi-Makaya, M.; Kinugawa, S.; Yokoshiki, H.; Hamaguchi, S.; Yokota, T.; Goto, D.; Goto, K.; Takeshita, A.; Tsutsui, H.; JCARE-CARD Investigators. Beta-blocker use at discharge in patients hospitalized for heart failure is associated with improved survival. Circ. J. 2010, 74, 1364–1371. [Google Scholar] [CrossRef]
- Tsutsui, H.; Momomura, S.I.; Yamashina, A.; Shimokawa, H.; Kihara, Y.; Saito, Y.; Hagiwara, N.; Ito, H.; Yano, M.; Yamamoto, K.; et al. Efficacy and Safety of Ivabradine in Japanese Patients with Chronic Heart Failure-J-SHIFT Study. Circ. J. 2019, 83, 2049–2060. [Google Scholar] [CrossRef]
- Izumida, T.; Imamura, T.; Nakamura, M.; Fukuda, N.; Kinugawa, K. How to consider target heart rate in patients with systolic heart failure. ESC Heart Fail. 2020, 7, 3231–3234. [Google Scholar] [CrossRef]
- Izumida, T.; Imamura, T.; Fukui, T.; Koi, T.; Ueno, Y.; Hori, M.; Nakagaito, M.; Tanaka, S.; Kataoka, N.; Ushijima, R.; et al. How to Estimate the Optimal Heart Rate in Patients with Heart Failure with Preserved Ejection Fraction. Int. Heart J. 2021, 62, 816–820. [Google Scholar] [CrossRef]
- Böhm, M.; Reil, J.C. Heart rate: Surrogate or target in the management of heart failure? Heart 2013, 99, 72–75. [Google Scholar] [CrossRef]
- He, C.; Chen, F.; Li, B.; Hu, Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog. Neurobiol. 2014, 112, 1–23. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, D.; Camm, J.A. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: A new therapeutic perspective in cardiovascular disease. Drugs 2004, 64, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- De Ferrari, G.M.; Mazzuero, A.; Agnesina, L.; Bertoletti, A.; Lettino, M.; Campana, C.; Schwartz, P.J.; Tavazzi, L. Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur. J. Heart Fail. 2008, 10, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Swedberg, K.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L.; SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomized placebo-controlled study. Lancet 2010, 37, 875–885. [Google Scholar] [CrossRef]
- Tóth, N.; Soós, A.; Váradi, A.; Hegyi, P.; Tinusz, B.; Vágvölgyi, A.; Orosz, A.; Solymár, M.; Polyák, A.; Varró, A.; et al. Effect of ivabradine in heart failure: A meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can. J. Physiol. Pharmacol. 2021, 99, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Komajda, M.; Isnard, R.; Cohen-Solal, A.; Hegyi, P.; Tinusz, B.; Vágvölgyi, A.; Orosz, A.; Solymár, M.; Polyák, A.; Varró, A.; et al. Effect of ivabradine in patients with heart failure with preserved ejection fraction: The EDIFY randomized placebo-controlled trial. Eur. J. Heart Fail. 2017, 19, 1495–1503. [Google Scholar] [CrossRef]
- Tanaka, H.; Yamauchi, Y.; Imanishi, J.; Hatani, Y.; Odajima, S.; Okamoto, H.; Hayashi, T.; Hirata, K.I. Effect of Ivabradine on Left Ventricular Diastolic Function of Patients with Preserved Ejection Fraction-Results of the IVA-PEF Study. Circ. Rep. 2022, 4, 499–504. [Google Scholar] [CrossRef]
- Cacciapuoti, F.; Magro, V.M.; Caturano, M.; Lama, D.; Cacciapuoti, F. The role of Ivabradine in Diastolic Heart Failure with preserved Ejection Fraction. A Doppler-Echocardiographic study. J. Cardiovasc. Echogr. 2017, 27, 126–131. [Google Scholar] [CrossRef]
- Conceição, L.S.R.; Gois, C.; Fernandes, R.E.S.; Souza, D.S.; Júnior, M.B.G.; Carvalho, V.O. Effect of ivabradine on exercise capacity in individuals with heart failure with preserved ejection fraction. Heart Fail. Rev. 2021, 26, 157–163. [Google Scholar] [CrossRef]
- Kosmala, W.; Holland, D.J.; Rojek, A.; Wright, L.; Przewlocka-Kosmala, M.; Marwick, T.H. Effect of If-channel inhibition on hemodynamic status and exercise tolerance in heart failure with preserved ejection fraction: A randomized trial. J. Am. Coll. Cardiol. 2013, 62, 1330–1338. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure with Preserved Ejection Fraction. Circulation 2018, 138, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Usman, M.S.; Khan, M.S.; Greene, S.J.; Friede, T.; Vaduganathan, M.; Filippatos, G.; Coats, A.J.S.; Anker, S.D. Efficacy and safety of SGLT2 inhibitors in heart failure: Systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 3298–3309. [Google Scholar] [CrossRef]
- Kiuchi, S.; Hisatake, S.; Dobashi, S.; Murakami, Y.; Ikeda, T. Role of Vascular Function in the Prognosis of Heart Failure Patients. J. Clin. Med. 2024, 13, 2719. [Google Scholar] [CrossRef]
- Mebazaa, A.; Gheorghiade, M.; Piña, I.L.; Harjola, V.P.; Hollenberg, S.M.; Follath, F.; Rhodes, A.; Plaisance, P.; Roland, E.; Nieminen, M.; et al. Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit. Care Med. 2008, 36 (Suppl. S1), S129–S139. [Google Scholar] [CrossRef]
- Sano, T.; Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Fujii, T.; Dobashi, S.; Ikeda, T. Cardio-ankle vascular index predicts the 1-year prognosis of heart failure patients categorized in clinical scenario 1. Heart Vessel. 2020, 35, 1537–1544. [Google Scholar] [CrossRef]
- Seo, Y.; Ohte, N. Effects of Heart Rate Reduction by Ivabradine for Heart Failure Beyond β-Blockers. Circ. J. 2019, 83, 1991–1993. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT-2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Villacorta, A.S.; Villacorta, H.; Caldas, J.A.; Precht, B.C.; Porto, P.B.; Rodrigues, L.U.; Neves, M.; Xavier, A.R.; Kanaan, S.; Mesquita, C.T.; et al. Effects of Heart Rate Reduction with Either Pyridostigmine or Ivabradine in Patients with Heart Failure: A Randomized, Double-Blind Study. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Sarullo, F.M.; Fazio, G.; Puccio, D.; Fasullo, S.; Paterna, S.; Novo, S.; Di Pasquale, P. Impact of “off-label” use of ivabradine on exercise capacity, gas exchange, functional class, quality of life, and neurohormonal modulation in patients with ischemic chronic heart failure. Cardiovasc. Pharmacol. Ther. 2010, 15, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Sivaswamy, N.; Mahmod, M.; Yavari, A.; Rudd, A.; Singh, S.; Dawson, D.K.; Francis, J.M.; Dwight, J.S.; Watkins, H.; et al. Effect of Selective Heart Rate Slowing in Heart Failure with Preserved Ejection Fraction. Circulation 2015, 132, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Volterrani, M.; Cice, G.; Caminiti, G.; Vitale, C.; D’Isa, S.; Perrone Filardi, P.; Acquistapace, F.; Marazzi, G.; Fini, M.; Rosano, G.M. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with Heart Failure (the CARVIVA HF trial). Int. J. Cardiol. 2011, 151, 218–224. [Google Scholar] [CrossRef]
- Shiga, T.; Suzuki, T.; Kida, K.; Suzuki, A.; Kohno, T.; Ushijima, A.; Kiuchi, S.; Ishii, S.; Murata, M.; Ijichi, T.; et al. Rationale and Design of the Effect of Ivabradine on Exercise Tolerance in Patients with Chronic Heart Failure (EXCILE-HF) Trial-Protocol for a Multicenter Randomized Controlled Trial. Circ. Rep. 2023, 5, 157–161. [Google Scholar] [CrossRef]
- Florea, V.G.; Rector, T.S.; Anand, I.S.; Cohn, J.N. Heart Failure with Improved Ejection Fraction: Clinical Characteristics, Correlates of Recovery, and Survival: Results From the Valsartan Heart Failure Trial. Circ. Heart Fail. 2016, 9, e003123. [Google Scholar] [CrossRef]
- Ceconi, C.; Freedman, S.B.; Tardif, J.C.; Hildebrandt, P.; McDonagh, T.; Gueret, P.; Parrinello, G.; Robertson, M.; Steg, P.G.; Tendera, M.; et al. Effect of heart rate reduction by ivabradine on left ventricular remodling in the echocardiographic substudy of BEAUTIFUL. Int. J. Cardiol. 2011, 146, 408–414. [Google Scholar] [CrossRef]
- Paterek, A.; Sochanowicz, B.; Oknińska, M.; Śmigielski, W.; Kruszewski, M.; Mackiewicz, U.; Mączewski, M.; Leszek, P. Ivabradine prevents deleterious effects of dopamine therapy in heart failure: No role for HCN4 overexpression. Biomed. Pharmacother. 2021, 136, 111250. [Google Scholar] [CrossRef]
- Milliez, P.; Messaoudi, S.; Nehme, J.; Rodriguez, C.; Samuel, J.L.; Delcayre, C. Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H435–H441. [Google Scholar] [CrossRef]
- Simko, F.; Baka, T.; Stanko, P.; Repova, K.; Krajcirovicova, K.; Aziriova, S.; Domenig, O.; Zorad, S.; Adamcova, M.; Paulis, L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines 2022, 10, 1844. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lin, P.L.; Chiou, W.R.; Huang, J.L.; Lin, W.Y.; Liao, C.T.; Chung, F.P.; Liang, H.W.; Hsu, C.Y.; Chang, H.Y. Combination of ivabradine and sacubitril/valsartan in patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2021, 8, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Germinal, K.; Milfort, A.; Chen, W.H.; Chang, S.H.; Huang, W.; Li, Y.; Lu, Y.; Ahmed, M.M.; Kimmel, S.E.; et al. The most effective combination of pharmacological therapy for heart failure with reduced ejection fraction: A network meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2024, 24, 666. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Packer, M. How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction?: A Redefinition of Evidence-Based Medicine. Circulation 2021, 143, 875–877. [Google Scholar] [CrossRef]
- Chiu, M.H.; Howlett, J.G.; Sharma, N.C. Initiation of ivabradine in cardiogenic shock. ESC Heart Fail. 2019, 6, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Lopatin, Y.M.; Cowie, M.R.; Grebennikova, A.A.; Sisakian, H.S.; Pagava, Z.M.; Hayrapetyan, H.G.; Abdullaev, T.A.; Voronkov, L.G.; Chesnikova, A.I.; Tseluyko, V.I.; et al. Optimaization of heart rate lowering therapy in hospitalized patients with heart failure: Insights from the Optimizr Heart Failure Care Program. Int. J. Cardiol. 2018, 260, 113–117. [Google Scholar] [CrossRef]
- Hori, M.; Imamura, T.; Tanaka, S.; Ueno, H.; Joho, S.; Fukahara, K.; Kajiura, S.; Kinugawa, K. Primary Cardiac Angiosarcoma Accompanying Cardiac Tamponade. Intern. Med. 2022, 61, 1015–1019. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Anguita, M.; Castillo, J.C.; Rodríguez, S.; Pardo, L.; Durán, E.; Sánchez, J.J.; Ferreiro, C.; Pan, M.; Mesa, D.; et al. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): A randomised study. Int. J. Cardiol. 2016, 217, 7–11. [Google Scholar] [CrossRef]
- Yang, T.Y.; Tsai, M.S.; Jan, J.Y.; Chang, J.J.; Chung, C.M.; Lin, M.S.; Chen, H.M.; Lin, Y.S. Early administration of ivabradine in patients admitted for acute decompensated heart failure. Front. Cardiovasc. Med. 2022, 9, 1036418. [Google Scholar] [CrossRef]
- Su, Y.; Ma, T.; Wang, Z.; Dong, B.; Tai, C.; Wang, H.; Zhang, F.; Yan, C.; Chen, W.; Xu, Y.; et al. Efficacy of early initiation of ivabradine treatment in patients with acute heart failure: Rationale and design of SHIFT-AHF trial. ESC Heart Fail. 2020, 7, 4465–4471. [Google Scholar] [CrossRef]
- Custodis, F.; Schirmer, S.H.; Baumhäkel, M.; Heusch, G.; Böhm, M.; Laufs, U. Vascular pathophysiology in response to increased heart rate. J. Am. Coll. Cardiol. 2010, 56, 1973–1983. [Google Scholar] [CrossRef]
- Colin, P.; Ghaleh, B.; Monnet, X.; Su, J.; Hittinger, L.; Giudicelli, J.F.; Berdeaux, A. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H676–H682. [Google Scholar] [CrossRef] [PubMed]
- Anantha Narayanan, M.; Reddy, Y.N.; Baskaran, J.; Deshmukh, A.; Benditt, D.G.; Raveendran, G. Ivabradine in the treatment of systolic heart failure—A systematic review and meta-analysis. World J. Cardiol. 2017, 9, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Fujii, T.; Dobashi, S.; Sano, T.; Ikeda, T. Efficacy and Safety of Ivabradine in an Elderly Patient with Heart Failure with Reduced Ejection Fraction. Clin. Drug Investig. 2021, 41, 193–196. [Google Scholar] [CrossRef]
- Pay, L.; Yumurtaş, A.Ç.; Tezen, O.; Çetin, T.; Keskin, K.; Eren, S.; Çinier, G.; Hayıroğlu, M.İ.; Çınar, T.; Tekkeşin, A.İ. Effect of ivabradine on ventricular arrhythmias in heart failure patients with reduced ejection fraction. Rev. Assoc. Med. Bras. 2023, 69, e20230703. [Google Scholar] [CrossRef]
- Oknińska, M.; Paterek, A.; Zambrowska, Z.; Mackiewicz, U.; Mączewski, M. Effect of Ivabradine on Cardiac Ventricular Arrhythmias: Friend or Foe? J. Clin. Med. 2021, 10, 4732. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Li, H.; Zhang, A.; Han, Y.; Wang, J.; Hou, Y. Ivabradine and Atrial Fibrillation: A Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Pharmacol. 2022, 79, 549–557. [Google Scholar] [CrossRef]
- Lin, Y.S.; Jan, J.Y.; Chang, J.J.; Lin, M.S.; Yang, T.Y.; Wang, P.C.; Chen, M.C. Ivabradine in heart failure patients with reduced ejection fraction and history of paroxysmal atrial fibrillation. ESC Heart Fail. 2022, 9, 2548–2557. [Google Scholar] [CrossRef]
- Hardison, E.; Cox, Z.L.; Heckman, K.; Kelly, P.A.; Lindenfeld, J. A case report of ivabradine used for heart rate control of atrial fibrillation in acute decompensated heart failure. Eur. Heart J. Case Rep. 2022, 6, ytac077. [Google Scholar] [CrossRef]
- Scridon, A.; Halaţiu, V.B.; Balan, A.I.; Cozac, D.A.; Moldovan, V.; Bănescu, C.; Perian, M.; Şerban, R.C. Long-Term Effects of Ivabradine on Cardiac Vagal Parasympathetic Function in Normal Rats. Front. Pharmacol. 2021, 12, 596956. [Google Scholar] [CrossRef]
- Benezet-Mazuecos, J.; Rubio, J.M.; Farré, J.; Quiñones, M.Á.; Sanchez-Borque, P.; Macía, E. Long-term outcomes of ivabradine in inappropriate sinus tachycardia patients: Appropriate efficacy or inappropriate patients. Pacing Clin. Electrophysiol. 2013, 36, 830–836. [Google Scholar] [CrossRef]
- Doesch, A.O.; Mueller, S.; Erbel, C.; Gleissner, C.A.; Frankenstein, L.; Hardt, S.; Ruhparwar, A.; Ehlermann, P.; Dengler, T.; Katus, H.A. Heart rate reduction for 36 months with ivabradine reduces left ventricular mass in cardiac allograft recipients: A long-term follow-up study. Drug Des. Dev. Ther. 2013, 7, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, L.; Swedberg, K.; Komajda, M.; Böhm, M.; Borer, J.S.; Lainscak, M.; Ford, I.; SHIFT Investigators. Efficacy and safety of ivabradine in chronic heart failure across the age spectrum: Insights from the SHIFT study. Eur. J. Heart Fail. 2013, 15, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, M.H.; Jaarsma, T. Adherence in heart failure in the elderly: Problem and possible solutions. Int. J. Cardiol. 2008, 125, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Wang, X.; Wu, S.; Ma, S.; Zhang, Y.; Liu, G.; Liu, K.; Yang, Z.; Pang, X.; Xue, L.; et al. Sustained-Release Ivabradine Hemisulfate in Patients with Systolic Heart Failure. J. Am. Coll. Cardiol. 2022, 80, 584–594. [Google Scholar] [CrossRef] [PubMed]
Study | Number of Subjects | Average Heart Rate (bpm) | Average Follow-Up Period | Induction Rates of β-Blockers | Main Outcomes |
---|---|---|---|---|---|
Komajda, M. et al., 2017 [26] | 179 | 72 | 8 years | 74% | HR reduction with ivabradine did not improve outcome |
Cacciapuoti, F. et al., 2017 [28] | 26 | 81 | 12 weeks | 80% | Ivabradine improved LV diastolic function |
Conceição, L.S.R. et al., 2021 [29] | 136 | N/A | N/A | N/A | Ivabradine did not improve LV diastolic function |
Kosmala, W. et al., 2013 [30] | 61 | 72 | 7 days | 57% | Ivabradine increased exercise capacity |
Tanaka, H. et al., 2022 [27] | 18 | 85 | 3 months | 50% | Ivabradine did not improve LV diastolic function |
Study | Number of Subjects | Average Age (Years) | Underlying Heart Disease | Type of Heart Failure | Main Outcomes |
---|---|---|---|---|---|
Villacorta, A.S. et al., 2019 [41] | 21 | Ivabradine: 56.2 Pyridostigmine: 62.6 | N/A | HFpEF | Ivabradine improved exercise tolerance and neurohormonal and inflammatory profiles |
Kosmala, W. et al., 2013 [30] | 61 | Ivabradine: 66.5 Placebo: 68.0 | N/A | HFpEF | Ivabradine increased exercise capacity left ventricular filling pressure |
Sarullo, F.M. et al., 2010 [42] | 60 | 52.7 | Ischemic Cardiomyopathy | HFrEF | Ivabradine improved exercise tolerance, gas exchange, functional heart failure class, and quality of life |
Pal, N. et al. 2018 [43] | 22 | 74.6 | N/A | HFpEF | Ivabradine compared with placebo worsened the change in peak Vo2 in HFpEF patients |
Volterrani, M. et al., 2013 [44] | 121 | Ivabradine: 67.2 Carvedilol: 66.7 Combination: 66.5 | Ischemic Cardiomyopathy Ivabradine: 80% Carvedilol: 84% Combination: 79% | HFrEF | Ivabradine alone or in combination with carvedilol is more effective than carvedilol alone in improving exercise tolerance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiuchi, S.; Ikeda, T. Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine. J. Clin. Med. 2025, 14, 1074. https://doi.org/10.3390/jcm14041074
Kiuchi S, Ikeda T. Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine. Journal of Clinical Medicine. 2025; 14(4):1074. https://doi.org/10.3390/jcm14041074
Chicago/Turabian StyleKiuchi, Shunsuke, and Takanori Ikeda. 2025. "Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine" Journal of Clinical Medicine 14, no. 4: 1074. https://doi.org/10.3390/jcm14041074
APA StyleKiuchi, S., & Ikeda, T. (2025). Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine. Journal of Clinical Medicine, 14(4), 1074. https://doi.org/10.3390/jcm14041074