Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Consideration
2.2. Study Group Characteristics
2.3. Control Group
2.4. Collection of Samples
2.5. Statistical Analysis
- (OR} = 1): Indicates no difference in odds between the exposed and unexposed groups.
- (OR} > 1): Suggests increased odds of disease occurrence in the exposed group.
- (OR} < 1): Reflects reduced odds of disease occurrence in the exposed group.
Sample Size Analysis
3. Results
3.1. Elemental Concentrations in Ligamentum Flavum: Study vs. Control Groups
3.2. Concentrations of the Selected Elements in the Study and Control Groups According to Gender
3.3. Concentrations of Microelements and Macronutrients in the Study and Control Groups According to BMI Value
3.4. Elemental Concentrations and Pain Intensity
3.5. Correlation Analysis of Elemental Concentrations
3.6. Risk Factor Analysis for Degenerative Lumbo-Sacral Spinal Stenosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, J.; Shen, X.; Xu, S.; Sen, Y.; Hao, J. Fusion or Not for Degenerative Lumbar Spinal Stenosis: A Meta-Analysis and Systematic Review. Pain Physician 2018, 21, 1. [Google Scholar] [PubMed]
- Kaito, T.; Yamato, Y. The Essence of Clinical Practice Guidelines for Lumbar Disc Herniation, 2021: 3. Diagnosis. Spine Surg. Relat. Res. 2022, 6, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Haro, H.; Ebata, S.; Inoue, G.; Kaito, T.; Komori, H.; Ohba, T.; Sakai, D.; Sakai, T.; Seki, S.; Shiga, Y. Japanese Orthopaedic Association (JOA) Clinical Practice Guidelines on the Management of Lumbar Disc Herniation, -Secondary Publication. J. Orthop. Sci. 2022, 27, 31–78. [Google Scholar] [CrossRef]
- Covaro, A.; Vilà-Canet, G.; De Frutos, A.G.; Ubierna, M.T.; Ciccolo, F.; Caceres, E. Management of Degenerative Lumbar Spinal Stenosis: An Evidence-Based Review. EFORT Open Rev. 2016, 1, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Lurie, J.; Tomkins-Lane, C. Management of Lumbar Spinal Stenosis. BMJ 2016, 352, h6234. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Akeda, K.; Takegami, N.; Cheng, K.; Masuda, K.; Sudo, A. Morphology of Intervertebral Disc Ruptures Evaluated by Vacuum Phenomenon Using Multi-Detector Computed Tomography: Association with Lumbar Disc Degeneration and Canal Stenosis. BMC Musculoskelet. Disord. 2018, 19, 164. [Google Scholar] [CrossRef]
- Marcia, S.; Zini, C.; Bellini, M. Image-Guided Percutaneous Treatment of Lumbar Stenosis and Disc Degeneration. Neuroimaging Clin. 2019, 29, 563–580. [Google Scholar] [CrossRef]
- Andrasinova, T.; Adamova, B.; Buskova, J.; Kerkovsky, M.; Jarkovsky, J.; Bednarik, J. Is There a Correlation between Degree of Radiologic Lumbar Spinal Stenosis and Its Clinical Manifestation? Clin. Spine Surg. 2018, 31, E403–E408. [Google Scholar] [CrossRef] [PubMed]
- Bagley, C.; MacAllister, M.; Dosselman, L.; Moreno, J.; Aoun, S.G.; El Ahmadieh, T.Y. Current Concepts and Recent Advances in Understanding and Managing Lumbar Spine Stenosis. F1000Res 2019, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Sobański, D.; Staszkiewicz, R.; Sobańska, M.; Strojny, D.; Grabarek, B.O. Effects of Pain in Lumbosacral Stenosis and Lifestyle-Related Factors on Brain-Derived Neurotrophic Factor Expression Profiles. Mol. Pain 2025, 21, 17448069241309001. [Google Scholar] [CrossRef] [PubMed]
- Sobański, D.; Staszkiewicz, R.; Gadzieliński, M.; Stachura, M.K.; Czepko, R.A.; Holiński, M.; Czepko, R.; Garbarek, B.O. A Study of 179 Patients with Degenerative Stenosis of the Lumbosacral Spine to Evaluate Differences in Quality of Life and Disability Outcomes at 12 Months, Between Conservative Treatment and Surgical Decompression. Med. Sci. Monit. 2023, 29, e940213. [Google Scholar] [CrossRef] [PubMed]
- Medress, Z.A.; Jin, M.C.; Feng, A.; Varshneya, K.; Veeravagu, A. Medical Malpractice in Spine Surgery: A Review. Neurosurg. Focus. 2020, 49, E16. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Kim, H.; Lee, J.; Jeon, W.-J.; Lee, Y.J.; Ha, I.-H. Harpagophytum Procumbens Inhibits Iron Overload-Induced Oxidative Stress through Activation of Nrf2 Signaling in a Rat Model of Lumbar Spinal Stenosis. Oxid. Med. Cell Longev. 2022, 2022, 3472443. [Google Scholar] [CrossRef] [PubMed]
- Jakoniuk, M.; Kochanowicz, J.; Lankau, A.; Wilkiel, M.; Socha, K. Concentration of Selected Macronutrients and Toxic Elements in the Blood in Relation to Pain Severity and Hydrogen Magnetic Resonance Spectroscopy in People with Osteoarthritis of the Spine. Int. J. Environ. Res. Public Health 2022, 19, 11377. [Google Scholar] [CrossRef] [PubMed]
- Venn, B.J. Macronutrients and Human Health for the 21st Century. Nutrients 2020, 12, 2363. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Staszkiewicz, R.; Bolechala, F.; Wieczorek, J.; Drewniak, S.; Strohm, W.; Miodonski, J.; Francuz, T.; Marcol, W. Changes in Essential and Trace Elements Content in Degenerating Human Intervertebral Discs Do Not Correspond to Patients’ Clinical Status. Česká A Slov. Neurol. A Neurochir. 2019, 82/115, 203–208. [Google Scholar] [CrossRef]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Frankowski, M. Interrelationship between Silicon, Aluminum, and Elements Associated with Tissue Metabolism and Degenerative Processes in Degenerated Human Intervertebral Disc Tissue. Environ. Sci. Pollut. Res. 2017, 24, 19777–19784. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.; Kubaszewski, L.; Frankoski, M.; Wilk-Franczuk, M.; Ziola-Frankowska, A.; Czabak-Garbacz, R.; Kaczmarczyk, J.; Gasik, R. Analysis of Trace Element in Intervertebral Disc by Atomic Absorption Spectrometry Techniques in Degenerative Disc Disease in the Polish Population. Ann. Agric. Environ. Med. 2015, 22, 362–367. [Google Scholar] [CrossRef]
- Staszkiewicz, R.; Sobański, D.; Ulasavets, U.; Wieczorek, J.; Golec, E.; Marcol, W.; Grabarek, B.O. Evaluation of the Concentration of Selected Elements in Serum Patients with Intervertebral Disc Degeneration. J. Trace Elem. Med. Biol. 2023, 77, 127145. [Google Scholar] [CrossRef] [PubMed]
- Staszkiewicz, R.; Bryś, K.; Gładysz, D.; Gralewski, M.; Garczarek, M.; Gadzieliński, M.; Wieczorek, J.; Marcol, W.; Ostenda, A.; Grabarek, B.O. Changes in Elements and Relationships among Elements in Intervertebral Disc Degeneration. Int. J. Environ. Res. Public Health 2022, 19, 9042. [Google Scholar] [CrossRef] [PubMed]
- Jakoniuk, M.; Biegaj, M.; Kochanowicz, J.; Łysoń, T.; Lankau, A.; Wilkiel, M.; Socha, K. Relationship between Selected Micronutrient Concentrations, Total Antioxidant Status, Pain Severity, and the Image of 1H MR Spectroscopy in Degenerative Spine Disease: A Case-Control Study. J. Clin. Med. 2022, 11, 5586. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, H.; Wang, X.; Liu, X. Ligamentum Flavum Fibrosis and Hypertrophy: Molecular Pathways, Cellular Mechanisms, and Future Directions. FASEB J. 2020, 34, 9854–9868. [Google Scholar] [CrossRef]
- Silwal, P.; Nguyen-Thai, A.M.; Alexander, P.G.; Sowa, G.A.; Vo, N.V.; Lee, J.Y. Cellular and Molecular Mechanisms of Hypertrophy of Ligamentum Flavum. Biomolecules 2024, 14, 1277. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Xing, W.; Han, Y.; Sun, J.; Kong, M.; Gao, B.; Yang, Y.; Yin, Z.; Chen, X.; Zhao, Y.; et al. Tendon-Derived Cathepsin K-Expressing Progenitor Cells Activate Hedgehog Signaling to Drive Heterotopic Ossification. J. Clin. Investig. 2020, 130, 6354–6365. [Google Scholar] [CrossRef] [PubMed]
- Azril, A.; Huang, K.-Y.; Liu, H.-Y.; Liao, W.-A.; Liu, W.-L.; Hobley, J.; Jeng, Y.-R. Clinical Implications of Linking Microstructure, Spatial Biochemical, Spatial Biomechanical, and Radiological Features in Ligamentum Flavum Degeneration. JOR Spine 2024, 7, e1365. [Google Scholar] [CrossRef]
- Yabe, Y.; Hagiwara, Y.; Tsuchiya, M.; Minowa, T.; Takemura, T.; Hattori, S.; Yoshida, S.; Onoki, T.; Ishikawa, K. Comparative Proteome Analysis of the Ligamentum Flavum of Patients with Lumbar Spinal Canal Stenosis. JOR Spine 2022, 5, e1210. [Google Scholar] [CrossRef] [PubMed]
- Sobański, D.; Staszkiewicz, R.; Filipowicz, M.; Holiński, M.; Jędrocha, M.; Migdał, M.; Grabarek, B.O. Correction: Evaluation of the Concentration of Selected Elements in the Serum of Patients with Degenerative Stenosis of the Lumbosacral Spine. Biol. Trace Elem. Res. 2024, 202, 5864. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Cheng, T.; Yu, X. The Impact of Trace Elements on Osteoarthritis. Front. Med. 2021, 8, 771297. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Ciosek, Z.; Zietek, P.; Karaczun, M.; Pilarczyk, B.; Tomza-Marciniak, A.; Podlasinska, J.; Kalisinska, E.; et al. Effects of Biological Factors and Health Condition on Mercury and Selenium Concentrations in the Cartilage, Meniscus and Anterior Cruciate Ligament. J. Trace Elem. Med. Biol. 2017, 44, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Segar, A.H.; Fairbank, J.C.; Urban, J. Leptin and the Intervertebral Disc: A Biochemical Link Exists between Obesity, Intervertebral Disc Degeneration and Low Back Pain—An in Vitro Study in a Bovine Model. Eur. Spine J. 2019, 28, 214–223. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical Magnesium Deficiency: A Principal Driver of Cardiovascular Disease and a Public Health Crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, H. Magnez—Pierwiastek Niezbędny Do Prawidłowego Funkcjonowania Organizmu. Farm. Współczesna 2016, 9, 217–223. [Google Scholar]
- Zeng, C.; Li, H.; Wei, J.; Yang, T.; Deng, Z.; Yang, Y.; Zhang, Y.; Yang, T.; Lei, G. Association between Dietary Magnesium Intake and Radiographic Knee Osteoarthritis. PLoS ONE 2015, 10, e0127666. [Google Scholar] [CrossRef] [PubMed]
- Bellorin-Font, E.; Voinescu, A.; Martin, K.J. Calcium, Phosphate, PTH, Vitamin D, and FGF-23 in CKD-Mineral and Bone Disorder. Nutr. Manag. Ren. Dis. 2022, 353–381. [Google Scholar]
- Enax, J.; Meyer, F.; Schulze zur Wiesche, E.; Epple, M. On the Application of Calcium Phosphate Micro-and Nanoparticles as Food Additive. Nanomaterials 2022, 12, 4075. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, S.; Matsuzaki, H.; Uehara, M.; Suzuki, K. Effects of Dietary Calcium Supplementation on Bone Metabolism, Kidney Mineral Concentrations, and Kidney Function in Rats Fed a High-Phosphorus Diet. J. Nutr. Sci. Vitaminol. 2015, 61, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Neve, A.; Maruotti, N.; Corrado, A.; Cantatore, F.P. Pathogenesis of Ligaments Ossification in Spondyloarthritis: Insights and Doubts. Ann. Med. 2017, 49, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Orzechowska, S.; Świsłocka, R.; Lewandowski, W. Model of Pathological Collagen Mineralization Based on Spine Ligament Calcification. Materials 2020, 13, 2130. [Google Scholar] [CrossRef] [PubMed]
- Bhadada, S.K.; Rao, S.D. Role of Phosphate in Biomineralization. Calcif. Tissue Int. 2021, 108, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent Aspects of the Effects of Zinc on Human Health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Mahmood, N.M.A. Relationship between Serum Levels of Some Trace Elements, Disease Duration and Severity in Patients with Knee Osteoarthritis. Pharmacol. Pharm. 2015, 6, 489–495. [Google Scholar] [CrossRef]
- Choi, S.; Liu, X.; Pan, Z. Zinc Deficiency and Cellular Oxidative Stress: Prognostic Implications in Cardiovascular Diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-Finger Proteins in Health and Disease. Cell Death Discov. 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Hudson, N.O.; Buck-Koehntop, B.A. Zinc Finger Readers of Methylated DNA. Molecules 2018, 23, 2555. [Google Scholar] [CrossRef] [PubMed]
- Ortega, D.R.; Esquivel, D.F.G.; Ayala, T.B.; Pineda, B.; Manzo, S.G.; Quino, J.M.; Mora, P.C.; de la Cruz, V.P. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- García-Villarino, M.; Signes-Pastor, A.J.; Karagas, M.R.; Riaño-Galán, I.; Rodríguez-Dehli, C.; Grimalt, J.O.; Junqué, E.; Fernández-Somoano, A.; Tardón, A. Exposure to Metal Mixture and Growth Indicators at 4–5 Years. A Study in the INMA-Asturias Cohort. Environ. Res. 2022, 204, 112375. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.G.; Specht, A.; Punshon, T.; Jackson, B.P.; Bidlack, F.B.; Bakalar, C.A.; Mukherjee, R.; Davis, M.; Steadman, D.W.; Weisskopf, M.G. Lead Exposure across the Life Course and Age at Death. Sci. Total Environ. 2024, 927, 171975. [Google Scholar] [CrossRef] [PubMed]
- Ericson, B.; Gabelaia, L.; Keith, J.; Kashibadze, T.; Beraia, N.; Sturua, L.; Kazzi, Z. Elevated Levels of Lead (Pb) Identified in Georgian Spices. Ann. Glob. Health 2020, 86, 124. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Luo, J.; Ippolito, J.A.; Lu, R.; Hao, Z.; Li, L. Metal Contamination in Soils and Windowsill Dusts: Implication of Multiple Sources on Dust Metal Accumulation within a City Affected by Pb Smelting. Environ. Sci. Pollut. Res. Int. 2022, 29, 68447–68459. [Google Scholar] [CrossRef]
- Colburn, T.D.; Holdsworth, C.T.; Craig, J.C.; Hirai, D.M.; Montgomery, S.; Poole, D.C.; Musch, T.I.; Kenney, M.J. ATP-Sensitive K+ Channel Inhibition in Rats Decreases Kidney and Skeletal Muscle Blood Flow without Increasing Sympathetic Nerve Discharge. Respir. Physiol. Neurobiol. 2020, 278, 103444. [Google Scholar] [CrossRef] [PubMed]
- Erndt-Marino, J.; Trinkle, E.; Hahn, M.S. Hyperosmolar Potassium (K+) Treatment Suppresses Osteoarthritic Chondrocyte Catabolic and Inflammatory Protein Production in a 3-Dimensional in Vitro Model. Cartilage 2019, 10, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Yiannikourides, A.; Latunde-Dada, G.O. A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders. Medicines 2019, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Nganvongpanit, K.; Buddhachat, K.; Brown, J.L. Comparison of Bone Tissue Elements Between Normal and Osteoarthritic Pelvic Bones in Dogs. Biol. Trace Elem. Res. 2016, 171, 344–353. [Google Scholar] [CrossRef]
- Martins, A.C.; Krum, B.N.; Queirós, L.; Tinkov, A.A.; Skalny, A.V.; Bowman, A.B.; Aschner, M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. J. Agric. Food Chem. 2020, 68, 12893–12903. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, M.; Sun, T.; Zhang, J.; Zhao, Y.; Li, J.; Li, Z. Can Manganese Dioxide Microspheres Be Used as Intermediaries to Alleviate Intervertebral Disc Degeneration with Strengthening Drugs? Front. Bioeng. Biotechnol. 2022, 10, 866290. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Karandish, M.; Asghari Jafarabadi, M.; Heidari, L.; Nikbakht, R.; Babaahmadi Rezaei, H.; Mousavi, R. Metabolic and Hormonal Effects of Melatonin and/or Magnesium Supplementation in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutr. Metab. 2021, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Pelczyńska, M.; Moszak, M.; Bogdański, P. The Role of Magnesium in the Pathogenesis of Metabolic Disorders. Nutrients 2022, 14, 1714. [Google Scholar] [CrossRef]
- Babapour, M.; Mohammadi, H.; Kazemi, M.; Hadi, A.; Rezazadegan, M.; Askari, G. Associations between Serum Magnesium Concentrations and Polycystic Ovary Syndrome Status: A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2021, 199, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Cybulska, A.M.; Rachubińska, K.; Szkup, M.; Schneider-Matyka, D.; Baranowska-Bosiacka, I.; Chlubek, D.; Lubkowska, A.; Panczyk, M.; Sołek-Pastuszka, J.; Grochans, E. Serum Levels of Proinflammatory Cytokines and Selected Bioelements in Perimenopausal Women with Regard to Body Mass Index. Aging 2021, 13, 25025. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Bogdański, P.; Skrypnik, D.; Skrypnik, K.; Skalny, A.V.; Aaseth, J.; Skalnaya, M.G.; Suliburska, J. Trace Element and Mineral Levels in Serum, Hair, and Urine of Obese Women in Relation to Body Composition, Blood Pressure, Lipid Profile, and Insulin Resistance. Biomolecules 2021, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.; Francis, M.; Shroff, R.; Pahuja, N.; Khamar, P.; Girrish, M.; Nuijts, R.M.; Roy, A.S. Corneal Biomechanical Changes and Tissue Remodeling after SMILE and LASIK. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5703–5712. [Google Scholar] [CrossRef]
- Martiniakova, M.; Mondockova, V.; Kovacova, V.; Babikova, M.; Zemanova, N.; Biro, R.; Penzes, N.; Omelka, R. Interrelationships among Metabolic Syndrome, Bone-Derived Cytokines, and the Most Common Metabolic Syndrome-Related Diseases Negatively Affecting Bone Quality. Diabetol. Metab. Syndr. 2024, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.; McMahon, S.B. The Physiological Function of Different Voltage-Gated Sodium Channels in Pain. Nat. Rev. Neurosci. 2021, 22, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Liu, J.; Zhang, D.; Liang, P.; Lu, P.; Shen, J.; Miao, C.; Zuo, Y.; Zhou, C. Elevated Expression and Activity of Sodium Leak Channel Contributes to Neuronal Sensitization of Inflammatory Pain in Rats. Front. Mol. Neurosci. 2021, 14, 723395. [Google Scholar] [CrossRef] [PubMed]
Micro-/Macroelements | Study Group Concentration [mg/kg d.m.] | Control Group Concentration [mg/kg d.m.] | p (t-Student’s Test) |
---|---|---|---|
Cu | 2.43 ± 1.22 (1.68–3.18) | 3.77 ± 1.89 (2.60–4.94) | 0.086 |
Fe | 145.47 ± 57.73 (109.69–181.25) | 124.11 ± 51.38 (92.26–155.96) | 0.296 |
Mn | 0.45 ± 0.23 (0.31–0.59) | 0.44 ± 0.22 (0.30–0.58) | 0.446 |
Pb | 0.97 ± 0.48 (0.67–1.27) | 0.59 ± 0.29 (0.41–0.77) | 0.067 |
Zn | 32.78 ± 16.39 (22.62–42.94) | 22.23 ± 11.12 (15.34–29.12) | 0.021 |
Na | 14,536.27 ± 7268.14 (10,031.43–19,041.11) | 13,492.97 ± 1962.21 (12,276.78–14,709.16) | 0.689 |
Mg | 55,756.86 ± 27,878.43 (38,477.63–73,036.09) | 126.22 ± 63.11 (87.10–165.34) | <0.001 |
K | 313.15 ± 156.57 (216.10–410.20) | 305.80 ± 145.13 (215.85–395.75) | 0.628 |
Ca | 5463.94 ± 2731.97 (3770.65–7157.23) | 1532.36 ± 722.63 (1084.47–1980.25) | 0.014 |
P | 5301.50 ± 2650.75 (3658.55–6944.45) | 1425.29 ± 712.64 (983.59–1866.99) | 0.006 |
Micro-/Macroelements | Gender | Study Group Concentration [mg/kg d.m.] | Control Group Concentration [mg/kg d.m.] | p (t-Student’s Test) |
---|---|---|---|---|
Cu | Women | 2.31 ± 1.16 (1.59–3.03) | 3.58 ± 1.79 (2.47–4.69) | 0.054 |
Men | 2.55 ± 1.27 (1.76–3.34) | 3.96 ± 1.98 (2.73–5.19) | ||
Fe | Women | 138.20 ± 49.35 (107.61–168.79) | 117.90 ± 51.38 (86.05–149.75) | 0.313 |
Men | 152.74 ± 63.06 (113.66–191.82) | 130.32 ± 63.06 (91.24–169.40) | ||
Mn | Women | 0.43 ± 0.21 (0.30–0.56) | 0.42 ± 0.21 (0.29–0.55) | 0.410 |
Men | 0.47 ± 0.23 (0.32–0.62) | 0.46 ± 0.23 (0.32–0.60) | ||
Pb | Women | 0.92 ± 0.46 (0.63–1.21) | 0.56 ± 0.28 (0.39–0.73) | 0.032 |
Men | 1.02 ± 0.51 (0.70–1.34) | 0.62 ± 0.31 (0.43–0.81) | ||
Zn | Women | 31.14 ± 15.57 (21.49–40.79) | 21.12 ± 10.56 (14.57–27.67) | 0.081 |
Men | 34.42 ± 17.21 (23.75–45.09) | 23.34 ± 11.67 (16.11–30.57) | ||
Na | Women | 13,809.46 ± 6904.73 (9529.86–18,089.06) | 12,818.32 ± 1962.21 (11,602.13–14,034.51) | 0.511 |
Men | 15,263.08 ± 7631.54 (10,533.00–19,993.16) | 14,167.62 ± 7083.81 (9777.03–18,558.21) | ||
Mg | Women | 52,969.02 ± 26,484.51 (36,553.75–69,384.29) | 119.91 ± 59.95 (82.75–157.07) | <0.001 |
Men | 58,544.70 ± 29,272.35 (40,401.51–76,687.89) | 132.53 ± 66.27 (91.46–173.60) | ||
K | Women | 297.49 ± 148.75 (205.30–389.68) | 290.51 ± 145.13 (200.56–380.46) | 0.081 |
Men | 328.81 ± 164.41 (226.91–430.71) | 321.09 ± 160.54 (221.58–420.60) | ||
Ca | Women | 5190.74 ± 2595.37 (3582.11–6799.37) | 1455.74 ± 722.63 (1007.85–1903.63) | 0.010 |
Men | 5737.14 ± 2868.57 (3959.18–7515.10) | 1608.98 ± 804.49 (1110.35–2107.61) | ||
P | Women | 5036.43 ± 515.50 (4716.92–5355.94) | 1354.03 ± 677.01 (934.41–1773.65) | 0.004 |
Men | 5566.57 ± 434.98 (5296.97–5836.17) | 1496.55 ± 434.98 (1226.95–1766.15) |
Micro-/Macroelements | BMI Category | Study Group Concentration [mg/kg d.m.] | Control Group Concentration [mg/kg d.m.] | p (t-Student’s Test) |
---|---|---|---|---|
Cu | Normal | 2.41 ± 1.21 (1.66–3.16) | 3.73 ± 1.86 (2.57–4.89) | 0.034 |
Overweight | 2.48 ± 1.24 (1.71–3.25) | 3.84 ± 1.92 (2.65–5.03) | ||
Obese | 2.78 ± 1.39 (1.92–3.64) | 4.32 ± 2.16 (2.98–5.66) | ||
Fe | Normal | 142.86 ± 49.35 (112.27–173.45) | 121.88 ± 51.38 (90.03–153.73) | 0.388 |
Overweight | 147.62 ± 49.25 (117.09–178.15) | 125.94 ± 51.58 (93.97–157.91) | ||
Obese | 158.26 ± 49.05 (127.86–188.66) | 135.02 ± 51.68 (102.99–167.05) | ||
Mn | Normal | 0.45 ± 0.23 (0.31–0.59) | 0.44 ± 0.22 (0.30–0.58) | 0.551 |
Overweight | 0.45 ± 0.23 (0.31–0.59) | 0.44 ± 0.22 (0.30–0.58) | ||
Obese | 0.50 ± 0.25 (0.35–0.65) | 0.49 ± 0.24 (0.34–0.64) | ||
Pb | Normal | 1.01 ± 0.51 (0.70–1.32) | 0.61 ± 0.30 (0.42–0.80) | 0.494 |
Overweight | 1.01 ± 0.51 (0.70–1.32) | 0.62 ± 0.31 (0.43–0.81) | ||
Obese | 1.08 ± 0.54 (0.75–1.41) | 0.66 ± 0.30 (0.47–0.85) | ||
Zn | Normal | 33.13 ± 16.57 (22.86–43.40) | 22.47 ± 11.23 (15.51–29.43) | 0.512 |
Overweight | 34.59 ± 17.30 (23.87–45.31) | 23.46 ± 11.73 (16.19–30.73) | ||
Obese | 37.53 ± 18.77 (25.90–49.16) | 25.45 ± 12.72 (17.56–33.34) | ||
Na | Normal | 14,714.63 ± 7357.31 (10,154.52–19,274.74) | 13,658.53 ± 1962.21 (12,442.34–14,874.72) | 0.712 |
Overweight | 15,798.78 ± 7899.39 (10,902.69–20,694.87) | 14,664.87 ± 1962.21 (13,448.68–15,881.06) | ||
Obese | 15,810.37 ± 7905.19 (10,910.69–20,710.05) | 14,675.62 ± 1962.21 (13,459.43–15,891.81) | ||
Mg | Normal | 57,844.52 ± 28,922.26 (39,918.32–75,770.72) | 130.95 ± 65.47 (90.37–171.53) | <0.001 |
Overweight | 58,036.66 ± 29,018.33 (40,050.91–76,022.41) | 131.38 ± 65.69 (90.66–172.10) | ||
Obese | 63,993.44 ± 31,996.72 (44,161.67–83,825.21) | 144.87 ± 72.44 (99.97–189.77) | ||
K | Normal | 311.72 ± 155.86 (215.12–408.32) | 304.41 ± 145.13 (214.46–394.36) | 0.612 |
Overweight | 341.70 ± 170.85 (235.81–447.59) | 333.68 ± 142.13 (245.59–421.77) | ||
Obese | 349.16 ± 174.58 (240.95–457.37) | 340.97 ± 147.41 (249.60–432.34) | ||
Ca | Normal | 5676.78 ± 2838.39 (3917.53–7436.03) | 1592.05 ± 722.63 (1144.16–2039.94) | 0.012 |
Overweight | 5931.62 ± 2965.81 (4093.39–7769.85) | 1663.52 ± 728.32 (1212.10–2114.94) | ||
Obese | 5811.28 ± 2905.64 (4010.35–7612.21) | 1629.77 ± 711.23 (1188.95–2070.59) | ||
P | Normal | 5102.98 ± 515.50 (4783.47–5422.49) | 1371.92 ± 685.96 (946.76–1797.08) | 0.021 |
Overweight | 5358.55 ± 515.50 (5039.04–5678.06) | 1440.63 ± 720.32 (994.17–1887.09) | ||
Obese | 5829.82 ± 515.50 (5510.31–6149.33) | 1567.33 ± 783.66 (1081.61–2053.05) |
Micro-/ Macroelements | Pain Intensivity According to VAS | p-Value (ANOVA) | ||||||
---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Cu | 3.67 ± 1.83 (2.53–4.81) | 3.73 ± 1.86 (2.57–4.89) | 1.24 ± 0.62 (0.86–1.62) | 2.00 ± 1.00 (1.38–2.62) | 2.31 ± 1.16 (1.59–3.03) | 2.69 ± 1.34 (1.86–3.52) | 0.87 ± 0.33 (0.67–1.07) | 0.178 |
Fe | 159.31 ± 72.40 (114.44–204.18) | 143.87 ± 52.23 (111.50–176.24) | 144.58 ± 51.99 (112.36–176.80) | 164.38 ± 71.55 (120.03–208.73) | 149.49 ± 63.11 (110.37–188.61) | 138.30 ± 59.31 (101.54–175.06) | 129.98 ± 49.05 (99.58–160.38) | 0.345 |
Mn | 0.43 ± 0.21 (0.30–0.56) | 0.54 ± 0.27 (0.37–0.71) | 0.42 ± 0.21 (0.29–0.55) | 0.97 ± 0.48 (0.67–1.27) | 0.33 ± 0.17 (0.23–0.43) | 0.15 ± 0.07 (0.10–0.20) | 0.20 ± 0.10 (0.14–0.26) | 0.067 |
Pb | 0.99 ± 0.49 (0.68–1.30) | 1.04 ± 0.52 (0.72–1.36) | 1.05 ± 0.53 (0.72–1.38) | 0.72 ± 0.36 (0.50–0.94) | 0.98 ± 0.49 (0.68–1.28) | 1.75 ± 0.88 (1.21–2.29) | 0.89 ± 0.45 (0.61–1.17) | 0.285 |
Zn | 34.53 ± 17.27 (23.83–45.23) | 49.17 ± 24.59 (33.93–64.41) | 29.59 ± 14.79 (20.42–38.76) | 33.51 ± 15.77 (23.74–43.28) | 31.76 ± 12.93 (23.75–39.77) | 20.03 ± 10.02 (13.82–26.24) | 20.38 ± 10.19 (14.06–26.70) | 0.012 |
Na | 14,283.33 ± 7141.66 (9856.88–18,709.78) | 11,949.09 ± 5974.55 (8246.03–15,652.15) | 11,573.47 ± 5786.73 (7986.81–15,160.13) | 17,103.67 ± 8551.83 (11,803.19–22,404.15) | 23,110.00 ± 11,555.00 (15,948.14–30,271.86) | 26,733.33 ± 13,366.67 (18,448.59–35,018.07) | 8700.00 ± 3335.67 (6632.53–10,767.47) | 0.045 |
Mg | 42,560.79 ± 21,280.40 (29,371.06–55,750.52) | 38,477.23 ± 19,238.62 (26,553.01–50,401.45) | 104,701.59 ± 52,350.79 (72,254.23–137,148.95) | 68,470.70 ± 34,235.35 (47,251.41–89,689.99) | 149,490.00 ± 63,112.89 (110,372.23–188,607.77) | 138,300.00 ± 59,309.11 (101,539.83–175,060.17) | 129,975.00 ± 49,046.74 (99,575.52–160,374.48) | 0.501 |
K | 208.50 ± 95.19 (149.50–267.50) | 317.56 ± 158.78 (219.15–415.97) | 367.18 ± 183.59 (253.39–480.97) | 630.55 ± 176.19 (521.35–739.75) | 326.00 ± 163.00 (224.97–427.03) | 150.00 ± 20.00 (137.60–162.40) | 155.00 ± 25.00 (139.50–170.50) | 0.223 |
Ca | 8591.87 ± 4295.94 (5929.22–11,254.52) | 9804.29 ± 4902.15 (6765.91–12,842.67) | 3358.17 ± 1679.09 (2317.46–4398.88) | 13,544.17 ± 3917.26 (11,116.23–15,972.11) | 982.00 ± 491.00 (677.68–1286.32) | 1753.33 ± 876.66 (1209.97–2296.69) | 887.50 ± 443.75 (612.46–1162.54) | 0.429 |
P | 5087.33 ± 2543.66 (3510.75–6663.91) | 6754.10 ± 3377.05 (4660.98–8847.22) | 3669.00 ± 1834.50 (2531.97–4806.03) | 7663.17 ± 3831.59 (5288.33–10,038.01) | 3176.10 ± 1292.80 (2374.81–3977.39) | 2903.00 ± 1114.24 (2212.39–3593.61) | 2038.00 ± 1019.00 (1406.42–2669.58) | 0.309 |
Microelement/Macronutrient | Cu | Fe | Zn | Na | Mg | K | P | Ca |
---|---|---|---|---|---|---|---|---|
Cu | 1.00 | 0.12 | 0.11 | −0.21 | 0.41 * | 0.21 | −0.31 | −0.12 |
Fe | 0.12 | 1.00 | 0.38 * | 0.33 * | 0.21 | 0.26 | 0.48 * | 0.22 |
Zn | 0.11 | 0.38 * | 1.00 | −0.41 | −0.16 | 0.51 * | 0.62 * | 0.89 * |
Na | −0.21 | 0.33 * | −0.41 | 1.00 | 0.31 | 0.62 * | −0.06 | 0.15 |
Mg | 0.41 * | 0.21 | −0.16 | 0.31 | 1.00 | −0.10 | 0.15 | 0.74 * |
K | 0.21 | 0.26 | 0.51 * | 0.62 * | −0.10 | 1.00 | 0.33 | 0.32 |
P | −0.31 | 0.48 * | 0.62 * | −0.06 | 0.15 | 0.33 | 1.00 | 0.92 * |
Ca | −0.12 | 0.22 | 0.89 * | 0.15 | 0.74 * | 0.32 | 0.92 * | 1.00 |
Microelement/Macronutrient | Cu | Fe | Zn | Na | Mg | K | P | Ca |
---|---|---|---|---|---|---|---|---|
Cu | 1.00 | 0.21 | −0.32 | 0.13 | 0.03 | −0.18 | 0.12 | 0.25 |
Fe | 0.21 | 1.00 | 0.29 | −0.18 | −0.59 | −0.46 | 0.33 | −0.09 |
Zn | −0.32 | 0.29 | 1.00 | 0.26 | 0.22 | 0.47 | 0.73 * | −0.07 |
Na | 0.13 | −0.18 | 0.26 | 1.00 | 0.49 | 0.74 * | 0.25 | 0.39 |
Mg | 0.03 | −0.59 | 0.22 | 0.49 | 1.00 | 0.15 | 0.36 | 0.52 |
K | −0.18 | −0.46 | 0.47 | 0.74 * | 0.15 | 1.00 | 0.28 | 0.11 |
P | 0.12 | 0.33 | 0.73 * | 0.25 | 0.36 | 0.28 | 1.00 | 0.95 * |
Ca | 0.25 | −0.09 | −0.07 | 0.39 | 0.52 | 0.11 | 0.95 * | 1.00 |
Microelement/Macronutrient | Exposure | Study Group | Control Group | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|---|---|
Cu | In the norm | 98 | 69 | Referent | ||
Under the norm | 41 | 30 | 2.19 | 2.01; 3.54 | 0.045 | |
Above the norm | 41 | 3 | 0.11 | 0.03; 0.81 | 0.76 | |
Fe concentration | In the norm | 70 | 56 | Referent | ||
Under the norm | 60 | 3 | 13.33 | 4.52; 39.31 | 0.001 | |
Above the norm | 50 | 43 | 0.95 | 0.48; 1.90 | 0.89 | |
Zn concentration | In the norm | 65 | 51 | Referent | ||
Under the norm | 75 | 3 | 37.25 | 8.13; 170.66 | 0.001 | |
Above the norm | 40 | 48 | 1.96 | 0.39; 9.95 | 0.39 | |
Na concentration | In the norm | 68 | 54 | Referent | ||
Under the norm | 62 | 3 | 31.00 | 7.05; 136.35 | 0.001 | |
Above the norm | 50 | 45 | 1.04 | 0.50; 2.15 | 0.92 | |
Mg concentration | In the norm | 64 | 49 | Referent | ||
Under the norm | 72 | 4 | 18.00 | 4.87; 66.51 | 0.001 | |
Above the norm | 44 | 49 | 0.91 | 0.42; 1.97 | 0.82 | |
K concentration | In the norm | 66 | 53 | Referent | ||
Under the norm | 70 | 2 | 28.00 | 6.45; 121.55 | 0.001 | |
Above the norm | 44 | 47 | 0.89 | 0.38; 2.06 | 0.79 | |
P concentration | In the norm | 63 | 54 | Referent | ||
Under the norm | 65 | 3 | 27.86 | 6.17; 125.76 | 0.001 | |
Above the norm | 52 | 45 | 0.95 | 0.41; 2.20 | 0.91 | |
Ca concentration | In the norm | 65 | 51 | Referent | ||
Under the norm | 68 | 3 | 33.33 | 7.86; 141.45 | 0.001 | |
Above the norm | 47 | 48 | 0.94 | 0.38; 2.32 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strojny, D.; Sobański, D.; Wojdyła, R.; Skóra, K.; Hoczela, M.; Wyczarska-Dziki, K.; Miller, M.; Masternak, M.; Staszkiewicz, R.; Wieczorek, J.; et al. Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine. J. Clin. Med. 2025, 14, 1252. https://doi.org/10.3390/jcm14041252
Strojny D, Sobański D, Wojdyła R, Skóra K, Hoczela M, Wyczarska-Dziki K, Miller M, Masternak M, Staszkiewicz R, Wieczorek J, et al. Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine. Journal of Clinical Medicine. 2025; 14(4):1252. https://doi.org/10.3390/jcm14041252
Chicago/Turabian StyleStrojny, Damian, Dawid Sobański, Roman Wojdyła, Klaudia Skóra, Martyna Hoczela, Katarzyna Wyczarska-Dziki, Mateusz Miller, Mateusz Masternak, Rafał Staszkiewicz, Jerzy Wieczorek, and et al. 2025. "Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine" Journal of Clinical Medicine 14, no. 4: 1252. https://doi.org/10.3390/jcm14041252
APA StyleStrojny, D., Sobański, D., Wojdyła, R., Skóra, K., Hoczela, M., Wyczarska-Dziki, K., Miller, M., Masternak, M., Staszkiewicz, R., Wieczorek, J., Wieczorek-Olcha, W., Waltoś-Tutak, B., Gogol, P., & Grabarek, B. O. (2025). Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine. Journal of Clinical Medicine, 14(4), 1252. https://doi.org/10.3390/jcm14041252