Quantification of Impact of Land Use Systems on Runoff and Soil Loss from Ravine Ecosystem of Western India
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Runoff and Soil Loss Estimation
2.4. Plantation, Sodding of Grass and Crop Cultivation
2.5. Physicochemical Properties of Soil
2.6. Estimation of Active Soil Organic Carbon (Active SOC)
2.7. Mean Weight Diameter (MWD)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of Soil
3.2. Resistance to Penetration
3.3. Mean Weight Diameter
3.4. Runoff, Soil Loss and Available Plant Nutrients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, J.; Singh, A.K. Land Degradation in India—A Menace. In Proceedings of the Global Ravine Conference on Managing Ravines for Food and Livelihood Security, Gwalior, India, 7–10 March 2016; Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya: Gwalior, India, 2016; pp. 118–127. [Google Scholar]
- Ali, S.; Sethy, B.K.; Parandiyal, A.K.; Kumar, A.; Singh, R.K.; Somasundaram, J.; Mina, B.L. Quantification of hydrologic response of staggered contour trenching for horti-pastoral land use system in small ravine watersheds: A paired watershed approach. Land Degrad. Dev. 2017, 28, 1237–1252. [Google Scholar] [CrossRef]
- Singh, S.K. Soil Erosion: Cause, Affect and Remedies. J. Basic Appl. Eng. Res. 2016, 3, 338–341. [Google Scholar]
- Oldeman, L.R. Global extent of soil degradation. In Biannual Report; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1991; pp. 19–35. [Google Scholar]
- Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Seutloali, K.E.; Beckedahl, H.R. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth 2015, 6, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Srivastava, P.; Giri, N.; Kaushal, R.; Cerda, A.; Alam, N.M. Reversing land degradation through grasses: A systematic meta-analysis in the Indian tropics. Solid Earth 2017, 8, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.K.; Singh, A. Chambal ravines, perspective of formation and management options. In Management of Degraded Lands and Soil Helath; Verma, S.K., Trivedi, S.K., Singh, A., Tomar, A.S., Eds.; Biotech Books: New Delhi, India, 2015; pp. 31–45. [Google Scholar]
- Singh, R.K.; Kumar, G.; Meena, G.L. Characterization and delineation of ravine lands. In Ravine Land Management: Principles, Practices & Strategies; Singh, R.K., Kurothe, R.S., Kumar, A., Ali, S., Singh, A.K., Eds.; Directorate of Knowledge management in Agriculture, ICAR, KAB I, Pusa: New Delhi, India, 2021; pp. 1–20. [Google Scholar]
- Sharma, H.S. The Physiography of the Lower Chambal Valley and Its Agricultural Development: A Study in Applied Geomorphology Concepts; Concept Publishing Co.: New Delhi, India, 1979; p. 243. [Google Scholar]
- Sharma, H.S. Genesis of ravines of the Lower Chambal Valley, India. 21st Int. Geogr. Congr. India Ab Stracts Pap. 1968 1969, 59, 594–596. [Google Scholar]
- Pani, P.; Mohapatra, S.N. Ravine Erosion in India. Geography and You, September–October 2011. Available online: http://geographyandyou.com (accessed on 23 October 2022).
- Meena, G.L.; Kumar, A.; Ali, S.; Singh, R.K.; Meena, H.R.; Mina, B.L.; Kumar, G.; Kumar, K.; Kumawat, A.; Rashmi, I.; et al. Scientific Routes for Rehabilitation of Ravine Lands for Sustainable Development. Soil Water Conserv. Bull. 2020, 5, 1–6. [Google Scholar]
- National Commission on Agriculture (NCA). Report of the National Commission on Agriculture, Part 5: Resource Development; Government of India: New Delhi, India, 1976; pp. 107–322.
- Singh, R.K.; Kurothe, R.S.; Kumar, A.; Ali, S.; Singh, A.K.; Mishra, P.K. Ravine Land Management: Principles, Practices and Strategies; Directorate of Knowledge Management in Agricuture: Delhi, India; Indian Council of Agricultural Research: New Delhi, India, 2021; pp. 1–20. [Google Scholar]
- Sharda, V.N.; Dogra, P.; Prakash, C. Assessment of production lossess due to water erosion in rainfed areas of India. J. Soil Water Conserv. 2010, 65, 79–91. [Google Scholar] [CrossRef]
- National Initiative on Climate Resilient Agriculture. Final Report on “Idendification of Efficient Integrated Modules for Sustainable Management of Ravine (Chambal) and Carbon Sequestration for Climate Resilience in Madhya Pradesh”; Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya: Gwalior, India, 2014. [Google Scholar]
- Sikka, A.K.; Mishra, P.K.; Singh, R.K.; Rao, B.K.; Islam, A. Management of ravines for food, livelihood, and environment security. In Proceedings of the Global Ravine Conference on Managing Ravines for Food and Livelihood Security, Gwalior, India, 7–10 March 2016; Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya: Gwalior, India, 2016; pp. 1–14. [Google Scholar]
- Sharda, V.N.; Juyal, J.P.; Chandra, P.P.; Joshi, B.P. Training Manual on Soil and Water Conservation and Watershed Management; Central Soil & Water Conservation Research & Training Institute: Dehradun, India, 2007; Volume II, pp. 182–247. [Google Scholar]
- Singh, A.K.; Kumar, K.; Somasundaram, J. Management of Shallow Ravines and Marginal Lands. In Ravine Land Management: Principles, Practices & Strategies; Singh, R.K., Kurothe, R.S., Kumar, A., Ali, S., Singh, A.K., Eds.; Directorate of Knowledge Management in Agriculture, ICAR, KAB I, Pusa: New Delhi, India, 2021; pp. 32–47. [Google Scholar]
- Ali, S.; Kurothe, R.S.; Rao, B.K.; Singh, A.K. Rehabilitation of Medium and Deep Ravines. In Ravine Land Management: Principles, Practices & Strategies; Singh, R.K., Kurothe, R.S., Kumar, A., Ali, S., Singh, A.K., Eds.; Directorate of Knowledge Management in Agriculture, ICAR, KAB I, Pusa: New Delhi, India, 2021; pp. 48–67. [Google Scholar]
- Mitchell, D.J. The use of vegetation and land use parameters in modeling catchment sediment yields. In Vegetation and Erosion, Processes and Environments; Thornes, J.B., Ed.; Wiley & Chichester: Chichester, UK, 1990; pp. 289–314. [Google Scholar]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Hu, G.; Liu, H.; Yin, Y.; Song, Z. The Role of Legumes in Plant Community Succession of Degraded Grasslands in Northern China. Land Degrad. Dev. 2016, 27, 366–372. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.D.; Ritsema, C.J.; Stroosnijder, L.; Baartman, J.E.M. Sediment trapping with indigenous grass species showing differences in plant traits in northwest Ethiopia. Catena 2016, 147, 755–763. [Google Scholar] [CrossRef]
- Marshall, V.M.; Lewis, M.M.; Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid. Environ. 2012, 78, 1–12. [Google Scholar] [CrossRef]
- Guevara, J.C.; Grünwaldt, E.G.; Estevez, O.R.; Bisigato, A.J.; Blanco, L.J.; Biurrun, F.N.; Ferrando, C.A.; Chirino, C.C.; Morici, E.; Fernández, B.; et al. Range and livestock production in the Monte Desert, Argentina. J. Arid. Environ. 2009, 73, 228–237. [Google Scholar] [CrossRef]
- Harwood, M.R.; Hacker, J.B.; Mott, J.J. Field evaluation of seven grasses for use in the revegetation of lands disturbed by coal mining in Central Queensland. Aust. J. Exp. Agric. 1999, 39, 307–316. [Google Scholar] [CrossRef]
- Soni, M.L.; Yadava, N.D.; Beniwal, R.K.; Singh, J.P.; Kumar, S.; Birbal. Grass based strip cropping systems for controlling soil erosion and enhancing system productivity under drought situations of hot arid western Rajasthan. Int. J. Agric. Stat. Sci. 2013, 9, 685–692. [Google Scholar]
- Bhattarai, S.P.; Fox, J.; Gyasi-Agyei, Y. Enhancing buffel grass seed germination by acid treatment for rapid vegetation establishment on railway batters. J. Arid. Environ. 2008, 72, 255–262. [Google Scholar] [CrossRef]
- Chaturvedi, O.P.; Kaushal, R.; Tomar, J.M.S.; Prandiyal, A.K.; Panwar, P. Agroforestry for Wasteland Rehabilitation: Mined, Ravine, and Degraded Watershed Areas. In Agroforestry Systems in India: Livelihood Security & Ecosystem Services. Advances in Agroforestry; Dagar, J., Singh, A., Arunachalam, A., Eds.; Springer: New Delhi, India, 2014; Volume 10. [Google Scholar] [CrossRef]
- Ali, S.; Sethy, B.K.; Parandiyal, A.K.; Kumar, A.; Singh, R.K.; Somasundaram, J.; Mina, B.L. Long-term effects of rainwater conservation measure on improving yield, runoff use efficiency and soil properties of horti-pastoral system on the degraded ravine lands of India. Agric. Water Manag. 2020, 233, 106068. [Google Scholar] [CrossRef]
- Bray, R.A. Evidence for facultative apomixis in Cenchrus ciliaris. Euphytica 1978, 27, 801–804. [Google Scholar] [CrossRef]
- Emama, L.E.; Morgan, R.P.C. Contour grass strips: A laboratory simulation of their role in erosion control. Soil Technol. 1995, 8, 109–117. [Google Scholar]
- Tadesse, L.D.; Morgan, R.P.C. Contour grass strips: A laboratory simulation of their role in erosion control using live grasses. Soil Technol. 1996, 9, 83–89. [Google Scholar] [CrossRef]
- Van Dijk, P.M.; Kwaad, F.J.P.; Klapwijk, M. Retention of water and sediment by grass strips. Hydrol. Process. 1996, 10, 1069–1080. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Cerdan, O.; Lecomte, V.; Benkhadra, H.; Souchère, V.; Martin, P. Variability of soil surface characteristics influencing runoff and interrill erosion. Catena 2005, 62, 111–124. [Google Scholar] [CrossRef]
- Bhola, S.N.; Singh, G.; Dayal, R. Characteristics of Two Kota Soil Series. Indian For. 1969, 95, 253–262. [Google Scholar]
- Somasundaram, J.; Singh, R.K.; Parandiyal, A.K.; Ali, S.; Chauhan, V.; Sinha, N.K.; Lakaria, B.L.; Saha, R.; Chaudhary, R.S.; Coumar, M.V.; et al. Soil Properties under Different Land Use Systems in Parts of Chambal Region of Rajasthan. J. Agric. Phys. 2013, 13, 139–147. [Google Scholar]
- Dagar, J.C.; Singh, A.K. (Eds.) Ravine Lands: Greening for Livelihood and Environmental Security; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 433–443. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022.
- Srivastava, A.; Yetemen, O.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P. Influence of orographic precipitation on coevolving landforms and vegetation in semi-arid ecosystems. Earth Surf. Process. Landforms 2022, 47, 2846–2862. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Kroll, D.G.; Norman, J.; Yoder, D.C.; Molling, C.C.; Miller, P.S.; Panuska, J.C.; Topel, J.B.; Wakeman, P.L.; Karthikeyan, K.G. Instrumentation for Measuring Runoff, Sediment, and Chemical Losses from Agricultural Fields. J. Environ. Qual. 2006, 35, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Franklin, D.H.; Cabrera, M.L.; Steiner, J.L.; Endale, D.M.; Miller, W.P. Evaluation of percent flow captured by a small in-field runoff collector. Trans. ASAE 2001, 44, 551–554. [Google Scholar] [CrossRef]
- Piper, C.S. Soil Plant Analysis: A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants; University of Adelaide: Adelaide, Australia, 1950. [Google Scholar]
- Richards, L.A. Diagnosis and improvement of saline and alkali soils. In USDA Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1958. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in rice soils. Curr. Sci. 1956, 31, 196. [Google Scholar]
- Jackson, M.L. Soil chemical Analysis. In An Advance Course, 2nd ed.; University Wisconsin Madison: Madison, WI, USA, 1979. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 2000, 55, 69–78. [Google Scholar]
- Blair, G.J.; Lefroy, R.D.B.; Lise, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Van Bavel, C.H.M. Reports of the committee on physical analysis, 1951–1953. Soil Sci. Soc. Am. J. 1953, 17, 416–418. [Google Scholar] [CrossRef] [Green Version]
- van Bavel, C.H.M. Mean Weight-Diameter of Soil Aggregates as a Statistical Index of Aggregation. Soil Sci. Soc. Am. J. 1949, 14, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Bogunovic, I.; Kljak, K.; Dugan, I.; Grbeša, D.; Telak, L.J.; Duvnjak, M.; Kisic, I.; Solomun, M.K.; Pereira, P. Grassland Management Impact on Soil Degradation and Herbage Nutritional Value in a Temperate Humid Environment. Agriculture 2022, 12, 921. [Google Scholar] [CrossRef]
- Tang, W.; Yang, H.; Wang, W.; Wang, C.; Pang, Y.; Chen, D.; Hu, X. Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy 2022, 12, 1974. [Google Scholar] [CrossRef]
- Dominy, C.S.; Haynes, R.J.; van Antwerpen, R. Loss of soil organic matter and related soil properties under long-term sugarcane production on two contrasting soils. Biol. Fertil. Soils 2002, 36, 350–356. [Google Scholar]
- Rasiah, V.; Florentine, S.K.; Williams, B.L.; Westbrooke, M.E. The impact of deforestation and pasture abandonment on soil properties in the wet tropics of Australia. Geoderma 2004, 120, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Sharrow, S.H. Soil compaction by grazing livestock in silvopastures as evidenced by changes in soil physical properties. Agrofor. Syst. 2007, 71, 215–223. [Google Scholar] [CrossRef]
- Geissen, V.; Sánchez-Hernández, R.; Kampichler, C.; Ramos-Reyes, R.; Sepulveda-Lozada, A.; Ochoa-Goana, S.; de Jong, B.H.J.; Huerta-Lwanga, E.; Hernández-Daumas, S. Effects of land-use change on some properties of tropical soils—An example from Southeast Mexico. Geoderma 2009, 151, 87–97. [Google Scholar] [CrossRef]
- Mandal, U.K.; Yadav, S.K.; Sharma, K.L.; Ramesh, V.; Venkanna, K. Estimating permanganate-oxidizable active carbon as quick indicator for assessing soil quality under different land-use system of rainfed Alfisols. Indian J. Agric. Sci. 2011, 81, 927–931. [Google Scholar]
- Twum, E.K.A.; Nii-Annang, S. Impact of Soil Compaction on Bulk Density and Root Biomass of Quercus petraea L. at Reclaimed Post-Lignite Mining Site in Lusatia, Germany. Appl. Environ. Soil Sci. 2015, 2015, 504603. [Google Scholar] [CrossRef] [Green Version]
- De León-González, F.; Gutiérrez-Castorena, M.C.; González-Chávez, M.C.A.; Castillo-Juárez, H. Root-aggregation in a pumiceous sandy soil. Geoderma 2007, 142, 308–317. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Mamo, T.; Fritzsche, F.; Zech, W. Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma 2002, 105, 21–48. [Google Scholar] [CrossRef]
- Chen, G.-S.; Yang, Y.-S.; Xie, J.-S.; Guo, J.-F.; Gao, R.; Qian, W. Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: Effects on carbon storage. Ann. For. Sci. 2005, 62, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Nsabimana, D.; Klemedtson, L.; Kaplin, B.A.; Wallin, G. Soil carbon and nutrient accumulation under forest plantations in southern Rwanda. Afr. J. Environ. Sci. Technol. 2008, 2, 142–149. [Google Scholar]
- Behera, N.; Sahani, U. Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. For. Ecol. Manag. 2003, 174, 1–11. [Google Scholar] [CrossRef]
- Lemma, B.; Kleja, D.B.; Nilsson, I.; Olsson, M. Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma 2006, 136, 886–898. [Google Scholar] [CrossRef]
- Chamuah, G.S.; Gangopadhyay, S.K.; Walia, C.S.; Baruah, U. Soils of Jorhat district: Physiography relationship. Agropedology 1996, 6, 29–36. [Google Scholar]
- Sarkar, D.; Gangopadhyay, S.K.; Velayutham, M. Soil toposequence relationship and classification in lower outlier of Chhotanagpur plateau. Agropedology 2001, 11, 29–36. [Google Scholar]
- Meena, G.L.; Singh, R.S.; Singh, R.K.; Meena, H.R.; Meena, S.; Mina, B.L. Assessment of productivity potential of some soils of Aravali hills based on parametric approach. Indian J. Soil Conserv. 2017, 45, 28–39. [Google Scholar]
- Wilding, L.P.; Tessier, D. Genesis of vertisols, shrink-swell phenomenon. In Vertisols Their Distribution, Properties, Classification and Management; Wilding, L.P., Puentes, R., Eds.; A&M University Printing Center College Station: College Station, TX, USA, 1988; pp. 55–81. [Google Scholar]
- Gaikwad, S.T.; Rao, Y.S.; Verma, H.K.G. Characteristics of catenary soils development on basalt parent rock in Nagpur district of Maharashtra state. J. Indian Soc. Soil Sci. 1974, 22, 181–190. [Google Scholar]
- Kalhoro, S.A.; Xu, X.; Chen, W.; Hua, R.; Raza, R.; Ding, K. Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China). Sustainability 2017, 9, 1349. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Abid, M.; Lal, R. Tillage and drainage impact on soil qualityI. Aggregate stability, carbon and nitrogen pools. Soil Tillage Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Hati, K.M.; Painuli, D.K.; Chaudhary, R.S. Stability of Soil Aggregates under Different Vegetation Covers in a Vertisol of Central India. J. Agric. Phys. 2012, 12, 133–142. [Google Scholar]
- García-Ruiz, J.M.; Ruiz-Flaño, P.; Lasanta, T. Soil erosion after farmland abandonment in sub mediterranean mountains: A general outlook. In Soil Degradation and Desertification in Mediterranean Environments; Rubio, J.L., Calvo, A., Eds.; Geoforma Ediciones: Logroño, Spain, 1996; pp. 165–183. [Google Scholar]
- Collins, A.L.; Walling, D.E.; Sichingabula, H.M.; Leeks, G.J.L. Using 137Cs measurements to quantify soil erosion and redistribution rates for areas under different land use in the Upper Kaleya River basin, southern Zambia. Geoderma 2001, 104, 299–323. [Google Scholar] [CrossRef]
- Evans, R. An alternative way to assess water erosion of cultivated land ̶ field-based measurements: And analysis of some results. Appl. Geogr. 2002, 22, 187–208. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, L.Q.; Yang, M.Y.; Tian, J.L. Spatial distribution of soil erosion on different utilization soils in Yangou watershed by using 137Cs Tracer. J. Soil Water Conserv. 2003, 17, 74–77. [Google Scholar]
- Langbein, W.B.; Schumm, S.A. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Saco, P.M.; Heras, M.M.-D.L. Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour. Res. 2013, 49, 115–126. [Google Scholar] [CrossRef]
- Baartman, J.E.; Temme, A.J.; Saco, P.M. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surf. Process. Landforms 2018, 43, 2121–2135. [Google Scholar] [CrossRef] [Green Version]
- Kanthaliya, P.C.; Verma, A.; Yadav, K.K. Soil fertility status and fertilizer recommendations for major crops of Udaipur and Rajsamand districts of Rajasthan. Ecol. Environ. Conserv. 2009, 15, 799–804. [Google Scholar]
- Xie, X.; Xiang, Q.; Wu, T.; Zhu, M.; Xu, F.; Xu, Y.; Pu, L. Impacts of Agricultural Land Reclamation on Soil Nutrient Contents, Pools, Stoichiometry, and Their Relationship to Oat Growth on the East China Coast. Land 2021, 10, 355. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Tournebize, J.; Barré, P.; Mary, B.; Baudin, F. Storage or loss of soil active carbon in cropland soils: The effect of agricultural practices and hydrology. Geoderma 2022, 397, 115538. [Google Scholar] [CrossRef]
- Holz, M.; Augustine, J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma 2021, 397, 115045. [Google Scholar] [CrossRef]
Land Use | Soil Depth (cm) | Soil Texture | Bulk Density (g·cm−3) | Organic Carbon (%) | Texture Class | ||
---|---|---|---|---|---|---|---|
Sand (0.05–2.0 mm) | Silt (0.05–0.002 mm) | Clay (<0.002 mm) | |||||
Soybean Crop | 0–15 | 56.0 | 12.0 | 32.0 | 1.696 | 0.47 | scl * |
15–30 | 58.0 | 12.0 | 30.0 | 1.712 | 0.40 | scl | |
30–45 | 56.0 | 14.0 | 30.0 | 1.699 | 0.30 | scl | |
45–60 | 46.0 | 16.0 | 38.0 | 1.747 | 0.27 | sc ** | |
Mean ± SE | 54.00 ± 2.71 | 13.50 ± 0.96 | 32.50 ± 1.89 | 1.71 ± 0.01 | 0.36 ± 0.05 | ||
SD | 5.42 | 1.91 | 3.79 | 0.02 | 0.09 | ||
Agri-Horticulture | 0–15 | 56.0 | 16.0 | 28.0 | 1.610 | 0.43 | scl |
15–30 | 42.0 | 20.0 | 38.0 | 1.612 | 0.27 | CL *** | |
30–45 | 64.0 | 20.0 | 16.0 | 1.737 | 0.27 | SL **** | |
45–60 | 44.0 | 16.0 | 40.0 | 1.725 | 0.24 | c ***** | |
Mean ± SE | 51.50 ± 5.19 | 18.00 ± 1.15 | 30.50 ± 5.50 | 1.67 ± 0.03 | 0.30 ± 0.04 | ||
SD | 10.38 | 2.31 | 11.00 | 0.07 | 0.28 | ||
Horti-Pasture | 0–15 | 38.0 | 18.0 | 44.0 | 1.573 | 0.45 | c |
15–30 | 40.0 | 20.0 | 40.0 | 1.543 | 0.38 | c | |
30–45 | 36.0 | 20.0 | 44.0 | 1.659 | 0.27 | c | |
45–60 | 34.0 | 18.0 | 48.0 | 1.737 | 0.21 | c | |
Mean ± SE | 37.00 ± 1.29 | 19.00 ± 0.58 | 44.00 ± 1.63 | 1.63 ± 0.04 | 0.33 ± 0.05 | ||
SD | 2.58 | 1.15 | 3.27 | 0.09 | 0.11 | ||
Pasture | 0–15 | 48.0 | 18.0 | 34.0 | 1.619 | 0.56 | scl |
15–30 | 32.0 | 22.0 | 46.0 | 1.636 | 0.32 | c | |
30–45 | 42.0 | 18.0 | 40.0 | 1.756 | 0.23 | c | |
45–60 | 34.0 | 20.0 | 46.0 | 1.612 | 0.17 | c | |
Mean ± SE | 39.00 ± 3.70 | 19.50 ± 0.96 | 41.50 ± 2.87 | 1.66 ± 0.03 | 0.32 ± 0.09 | ||
SD | 7.39 | 1.91 | 5.74 | 0.07 | 0.17 | ||
Silviculture | 0–15 | 48.0 | 18.0 | 34.0 | 1.759 | 0.53 | scl |
15–30 | 46.0 | 18.0 | 36.0 | 1.720 | 0.44 | sc | |
30–45 | 52.0 | 18.0 | 30.0 | 1.773 | 0.60 | scl | |
45–60 | 54.0 | 16.0 | 30.0 | 1.695 | 0.53 | scl | |
Mean ± SE | 50.00 ± 1.83 | 17.50 ± 0.50 | 32.50 ± 1.50 | 1.74 ± 0.02 | 0.52 ± 0.03 | ||
SD | 3.65 | 1.00 | 3.00 | 0.04 | 0.07 | ||
Silvi-pasture | 0–15 | 58.0 | 12.0 | 30.0 | 1.801 | 0.47 | scl |
15–30 | 52.0 | 16.0 | 32.0 | 1.854 | 0.44 | scl | |
30–45 | 52.0 | 12.0 | 36.0 | 1.658 | 0.41 | sc | |
45–60 | 50.0 | 14.0 | 36.0 | 1.789 | 0.30 | sc | |
Mean ± SE | 53.00 ± 1.73 | 13.50 ± 0.96 | 33.50 ± 1.50 | 1.78 ± 0.04 | 0.40 ± 0.04 | ||
SD | 3.46 | 1.91 | 3.00 | 0.08 | 0.20 |
Years | Annual Rainfall (mm) | Seasonal Rainfall (mm) | Runoff Generating Rainfall (mm) | Monsoon Season Rainfall Events (Nos.) | Runoff Generating Events (Nos.) | Deviation from Normal Monsoon Rainfall, i.e., 675.10 mm (%) |
---|---|---|---|---|---|---|
2011 | 1066.50 | 1029.40 | 885.10 | 36 | 17 | 31.11 |
2012 | 782.30 | 731.70 | 462.00 | 35 | 12 | −31.57 |
2013 | 1038.60 | 987.80 | 674.40 | 57 | 22 | −0.10 |
2014 | 703.70 | 636.20 | 478.32 | 32 | 10 | −29.15 |
2015 | 803.70 | 644.20 | 378.40 | 30 | 8 | −43.95 |
2016 | 1021.00 | 988.00 | 846.20 | 37 | 24 | 25.34 |
2017 | 495.40 | 463.00 | 291.00 | 27 | 6 | −56.90 |
2018 | 798.00 | 798.00 | 340.90 | 42 | 15 | −49.50 |
2019 | 1415.20 | 1368.60 | 719.60 | 53 | 15 | 6.59 |
Mean ± SD | 902.71 ± 265.21 | 849.66 ± 272.42 | 563.99 ± 222.38 | 38.78 ± 10.20 | 14.33 ± 6.06 | 16.46 ± 32.94 |
Std. Error | 88.40 | 90.81 | 74.13 | 3.40 | 2.02 | 10.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meena, G.L.; Sethy, B.K.; Meena, H.R.; Ali, S.; Kumar, A.; Singh, R.K.; Meena, R.S.; Meena, R.B.; Sharma, G.K.; Mina, B.L.; et al. Quantification of Impact of Land Use Systems on Runoff and Soil Loss from Ravine Ecosystem of Western India. Agriculture 2023, 13, 773. https://doi.org/10.3390/agriculture13040773
Meena GL, Sethy BK, Meena HR, Ali S, Kumar A, Singh RK, Meena RS, Meena RB, Sharma GK, Mina BL, et al. Quantification of Impact of Land Use Systems on Runoff and Soil Loss from Ravine Ecosystem of Western India. Agriculture. 2023; 13(4):773. https://doi.org/10.3390/agriculture13040773
Chicago/Turabian StyleMeena, Gopal Lal, Bira Kishore Sethy, Hem Raj Meena, Shakir Ali, Ashok Kumar, Rajive Kumar Singh, Raghuvir Singh Meena, Ram Bhawan Meena, Gulshan Kumar Sharma, Bansi Lal Mina, and et al. 2023. "Quantification of Impact of Land Use Systems on Runoff and Soil Loss from Ravine Ecosystem of Western India" Agriculture 13, no. 4: 773. https://doi.org/10.3390/agriculture13040773