VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition
Abstract
:1. Introduction
- A lightweight intelligent learning method, termed as VGNet, is proposed for multiple categories of corn disease detection.
- Fine-grained corn disease images are collected and can be used for the parameter optimization of corn disease recognition models.
- Evaluation results show that the accuracy of the proposed method in disease detection reaches 98.3%, which can satisfy the detection requirements of practical scenarios.
2. Materials and Methods
2.1. Image Samples
2.1.1. Images for Pretraining
2.1.2. Images for Parameter Optimization
2.1.3. Data Preprocessing
2.2. Backbone Network
2.2.1. CNN and VGG16 Network
2.2.2. Proposed Approach and Processes
2.3. VGNet
2.3.1. Batch Normalization
2.3.2. Replacing Fully Connected Layers by GAP Layer
2.3.3. L2 Normalization
2.4. Transfer Learning and Fine-Tuning
2.4.1. Parameter Fine-Tuning
2.4.2. Experimental Environment
2.5. Evaluation of Proposed Method
3. Results
3.1. Effects of Fine-Turning Training Mechanism
3.2. Effects of Transfer Learning on Multiple Datasets
3.3. Effects of Augmentation
4. Discussion
4.1. Obfuscation Matrix Analysis and Quantitative Statistics
4.2. Comparison with State-of-the-Art Methods
4.3. Feature Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Wang, X.; Zhai, Y.; Li, C.; Gao, Z. Precise variable spraying system based on improved genetic proportional-integral-derivative control algorithm. Trans. Inst. Meas. Control 2021, 43, 3255–3266. [Google Scholar] [CrossRef]
- Roshan, S.H.; Kazemitabar, S.J.; Kheradmandian, G. Artificial Intelligence Aided Agricultural Sensors for Plant Frostbite Protection. Appl. Artif. Intell. 2022, 36, 2031814. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, X.; Sun, Z.; Gu, W.; Cui, L.; Jin, Y.; Lan, Y. Joint path planning and scheduling for vehicle-assisted multiple Unmanned Aerial Systems plant protection operation. Comput. Electron. Agric. 2022, 200, 107221. [Google Scholar] [CrossRef]
- Godara, S.; Toshniwal, D.; Bana, R.S.; Singh, D.; Bedi, J.; Parsad, R.; Dabas, J.P.S.; Jhajhria, A.; Godara, S.; Kumar, R.; et al. AgrIntel: Spatio-temporal profiling of nationwide plant-protection problems using helpline data. Eng. Appl. Artif. Intell. 2023, 117, 105555. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Zhang, C.; Zheng, Q.; Liu, L. Fault-tolerant control based on fractional sliding mode: Crawler plant protection robot. Comput. Electr. Eng. 2023, 105, 108527. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, Y.; Guo, Q.; Huang, H.; Tan, Z.; Luo, S. Numerical simulation of the spatial and temporal distributions of the downwash airflow and spray field of a co-axial eight-rotor plant protection UAV in hover. Comput. Electron. Agric. 2023, 206, 107634. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Zhang, Z. Crop Disease Recognition Based on Modified Light-Weight CNN With Attention Mechanism. IEEE Access 2022, 10, 112066–112075. [Google Scholar] [CrossRef]
- Haque, M.A.; Marwaha, S.; Deb, C.K.; Nigam, S.; Arora, A. Recognition of diseases of maize crop using deep learning models. Neural Comput. Appl. 2023, 35, 7407–7421. [Google Scholar] [CrossRef]
- Hua, J.; Zhu, T.; Liu, J. Leaf Classification for Crop Pests and Diseases in the Compressed Domain. Sensors 2023, 23, 48. [Google Scholar] [CrossRef]
- Kurmi, Y.; Gangwar, S.; Chaurasia, V.; Goel, A. Leaf images classification for the crops diseases detection. Multimed. Tools Appl. 2022, 81, 8155–8178. [Google Scholar] [CrossRef]
- Youk, G.; Kim, M. Transformer-Based Synthetic-to-Measured SAR Image Translation via Learning of Representational Features. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Naseem, A.; Rehman, M.A.; Qureshi, S.; Ide, N. Graphical and Numerical Study of a Newly Developed Root-Finding Algorithm and Its Engineering Applications. IEEE Access 2023, 11, 2375–2383. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Chandel, N.S.; Jat, D.; Tiwari, M.K.; Rajwade, Y.A.; Subeesh, A. Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Comput. Appl. 2022, 34, 20539–20573. [Google Scholar] [CrossRef]
- Liang, D.; Tang, W.; Fu, Y. Sustainable Modern Agricultural Technology Assessment by a Multistakeholder Transdisciplinary Approach. IEEE Trans. Eng. Manag. 2023, 70, 1061–1075. [Google Scholar] [CrossRef]
- Tu, J.; Aznoli, F.; Navimipour, N.J.; Yalçin, S. A new service recommendation method for agricultural industries in the fog-based Internet of Things environment using a hybrid meta-heuristic algorithm. Comput. Ind. Eng. 2022, 172, 108605. [Google Scholar] [CrossRef]
- Almadani, B.; Mostafa, S.M. IIoT Based Multimodal Communication Model for Agriculture and Agro-Industries. IEEE Access 2021, 9, 10070–10088. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Wang, X.; Li, J.; Han, Q. Chat with ChatGPT on Industry 5.0: Learning and Decision-Making for Intelligent Industries. IEEE CAA J. Autom. Sinica 2023, 10, 831–834. [Google Scholar] [CrossRef]
- Jia, M.; Li, J.; Zhang, J.; Wei, N.; Yin, Y.; Chen, H.; Yan, S.; Wang, Y. Identification and validation of cuproptosis related genes and signature markers in bronchopulmonary dysplasia disease using bioinformatics analysis and machine learning. BMC Med. Inform. Decis. Mak. 2023, 23, 69. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Y.; Zhou, Y.; Tang, X.; Tang, L.; Wang, J. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Comput. Biol. Med. 2023, 152, 106388. [Google Scholar] [CrossRef]
- Bacon, W.; Holinski, A.; Pujol, M.; Wilmott, M.; Morgan, S.L. Correction: Ten simple rules for leveraging virtual interaction to build higher-level learning into bioinformatics short courses. PLoS Comput. Biol. 2023, 19, e1010964. [Google Scholar] [CrossRef]
- Ramana, K.; Aluvala, R.; Kumar, M.R.; Nagaraja, G.; Krishna, A.V.; Nagendra, P. Leaf Disease Classification in Smart Agriculture Using Deep Neural Network Architecture and IoT. J. Circuits Syst. Comput. 2022, 31, 2240004:1–2240004:27. [Google Scholar] [CrossRef]
- Bajpai, C.; Sahu, R.; Naik, K.J. Deep learning model for plant-leaf disease detection in precision agriculture. Int. J. Intell. Syst. Technol. Appl. 2023, 21, 72–91. [Google Scholar] [CrossRef]
- Pal, A.; Kumar, V. AgriDet: Plant Leaf Disease severity classification using agriculture detection framework. Eng. Appl. Artif. Intell. 2023, 119, 105754. [Google Scholar] [CrossRef]
- Kwaghtyo, D.K.; Eke, C.I. Smart farming prediction models for precision agriculture: A comprehensive survey. Artif. Intell. Rev. 2023, 56, 5729–5772. [Google Scholar] [CrossRef]
- Surampudi, S.; Kumar, V. Flood Depth Estimation in Agricultural Lands From L and C-Band Synthetic Aperture Radar Images and Digital Elevation Model. IEEE Access 2023, 11, 3241–3256. [Google Scholar] [CrossRef]
- Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020, 97, 103910. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Huang, Y.; Tian, Y.; Yuan, L. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis. Comput. Electron. Agric. 2022, 193, 106717. [Google Scholar] [CrossRef]
- Vishnoi, V.K.; Kumar, K.; Kumar, B.; Mohan, S.; Khan, A.A. Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network. IEEE Access 2023, 11, 6594–6609. [Google Scholar] [CrossRef]
- Prabhakar, M.L.C.; Merina, R.D.; Mani, V. IoT Based Air Quality Monitoring and Plant Disease Detection for Agriculture. Autom. Control Comput. Sci. 2023, 57, 115–122. [Google Scholar] [CrossRef]
- Amrani, A.; Sohel, F.; Diepeveen, D.; Murray, D.; Jones, M.G.K. Deep learning-based detection of aphid colonies on plants from a reconstructed Brassica image dataset. Comput. Electron. Agric. 2023, 205, 107587. [Google Scholar] [CrossRef]
- Quach, B.M.; Cuong, D.V.; Pham, N.; Huynh, D.; Nguyen, B.T. Leaf recognition using convolutional neural networks based features. Multimed. Tools Appl. 2023, 82, 777–801. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, Z. Research on plant leaf recognition method based on multi-feature fusion in different partition blocks. Digit. Signal Process. 2023, 134, 103907. [Google Scholar] [CrossRef]
- Jin, H.; Li, Y.; Qi, J.; Feng, J.; Tian, D.; Mu, W. GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition. Comput. Electron. Agric. 2022, 198, 107055. [Google Scholar] [CrossRef]
- Laxmi, S.; Gupta, S.K. Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition. Eng. Appl. Artif. Intell. 2022, 110, 104687. [Google Scholar] [CrossRef]
- Reddy, S.R.G.; Varma, G.P.S.; Davuluri, R.L. Resnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classification. Comput. Electr. Eng. 2023, 105, 108492. [Google Scholar] [CrossRef]
- Janani, M.; Jebakumar, R. Detection and classification of groundnut leaf nutrient level extraction in RGB images. Adv. Eng. Softw. 2023, 175, 103320. [Google Scholar] [CrossRef]
- Kumar, R.R.; Athimoolam, J.; Appathurai, A.; Rajendiran, S. Novel segmentation and classification algorithm for detection of tomato leaf disease. Concurr. Comput. Pract. Exp. 2023, 35, e7674. [Google Scholar] [CrossRef]
- Cui, S.; Su, Y.L.; Duan, K.; Liu, Y. Maize leaf disease classification using CBAM and lightweight Autoencoder network. J. Ambient Intell. Humaniz. Comput. 2023, 14, 7297–7307. [Google Scholar] [CrossRef]
- Charak, A.S.; Sinha, A.; Jain, T. Novel approach for quantification for severity estimation of blight diseases on leaves of tomato plant. Expert Syst. J. Knowl. Eng. 2023, 40, e13174. [Google Scholar] [CrossRef]
- Ashwini, C.; Sellam, V. EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction. Neural Comput. Appl. 2023, 35, 11125–11139. [Google Scholar] [CrossRef]
- Cen, H.; Zhu, Y.; Sun, D.; Zhai, L.; He, Y. Current status and future perspective of the application of deep learning in plant phenotype research. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–16. [Google Scholar]
- Zhang, J.; Rao, Y.; Man, C.; Jiang, Z.; Li, S. Identification of cucumber leaf diseases using deep learning and small sample size for agricultural Internet of Things. Int. J. Distrib. Sens. Netw. 2021, 17, 155014772110074. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Liang, Q.; Xiang, S.; Hu, Y.; Coppola, G.; Zhang, D.; Sun, W. PD2SE-Net: Computer-assisted plant disease diagnosis and severity estimation network. Comput. Electron. Agric. 2019, 157, 518–529. [Google Scholar] [CrossRef]
- AI Challenger 2018. Available online: https://github.com/AIChallenger/AI_Challenger_2018 (accessed on 6 December 2022).
- Zhong, Y.; Zhao, M. Research on deep learning in apple leaf disease recognition. Comput. Electron. Agric. 2020, 168. [Google Scholar] [CrossRef]
- He, Y.; Zeng, H.; Fan, Y.; Ji, S.; Wu, J. Application of Deep Learning in Integrated Pest Management: A Real-Time System for Detection and Diagnosis of Oilseed Rape Pests. Mob. Inf. Syst. 2019, 2019, 4570808:1–4570808:14. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Li, M. Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput. Electron. Agric. 2020, 172, 105341. [Google Scholar] [CrossRef]
- Hughes, D.P.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput. Electron. Agric. 2020, 175, 105456. [Google Scholar] [CrossRef]
- Hsiao, T.; Chang, Y.; Chou, H.; Chiu, C. Filter-based deep-compression with global average pooling for convolutional networks. J. Syst. Archit. 2019, 95, 9–18. [Google Scholar] [CrossRef]
- Kaya, A.; Keçeli, A.S.; Catal, C.; Yalic, H.Y.; Temuçin, H.; Tekinerdogan, B. Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 2019, 158, 20–29. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Dataset | Classes | Samples | Features Type | Image Type |
---|---|---|---|---|
ImageNet | 1000 | 14,197,122 | coarse-grained | RGB |
PlantVillage | 38 | 54,306 | fine-grained | RGB |
AI Challenger | 61 | 45,285 | fine-grained | RGB |
Parameters | Setting Values |
---|---|
Initial learning rate (SGD, Adam) | 0.001, 0.005, 0.01 |
Momentum (SGD) | 0.9 |
Small constant (Adam) | |
Weight decay (SGD, Adam) | 0.00005 |
L2 normalization parameter | 0.12 |
Iteration | 5000 |
Optimizer | Initial Learning Rate | Loss | Accuracy (%) |
---|---|---|---|
SGD | 0.01 | 0.103 | 85.6 |
SGD | 0.005 | 0.089 | 89.1 |
SGD | 0.001 | 0.061 | 93.0 |
Adam | 0.01 | 0.074 | 91.3 |
Adam | 0.005 | 0.058 | 94.4 |
Adam | 0.001 | 0.035 | 98.3 |
Learning Types | Pretrained Images | Accuracy on Original Images (%) | Accuracy on Augmented Images (%) |
---|---|---|---|
Learning from Scratch | — | 69.6 | 89.5 |
Transfer learning | ImageNet | 93.5 | 94.6 |
Transfer learning | PlantVillage | 98.3 | 99.4 |
Transfer learning | AI Challenger | 97.3 | 91.3 |
Types | ANTH | TR | SCR | CR | SLB | PHLS | DLS | PHBS | NLB |
---|---|---|---|---|---|---|---|---|---|
Samples | 1070 | 1150 | 1300 | 1420 | 1500 | 1200 | 1160 | 1280 | 1420 |
Positive | 214 | 230 | 260 | 284 | 300 | 240 | 232 | 256 | 284 |
Negative | 2086 | 2070 | 2040 | 2016 | 2000 | 2060 | 2068 | 2044 | 2016 |
TP | 211 | 229 | 260 | 283 | 299 | 237 | 230 | 255 | 283 |
FN | 3 | 1 | 0 | 1 | 1 | 3 | 2 | 1 | 1 |
TN | 2076 | 2058 | 2027 | 2004 | 1988 | 2050 | 2057 | 2032 | 2004 |
FP | 4 | 1 | 1 | 0 | 2 | 2 | 3 | 0 | 0 |
Pre (%) | 98.1 | 99.6 | 99.6 | 100.0 | 99.3 | 99.2 | 98.7 | 100.0 | 100.0 |
Rec (%) | 98.6 | 99.6 | 100.0 | 99.7 | 99.7 | 98.8 | 99.1 | 99.6 | 99.7 |
F1 (%) | 98.4 | 99.6 | 99.8 | 99.8 | 99.5 | 99.0 | 98.9 | 99.8 | 99.8 |
Acc (%) | 99.4 |
Methods | Network Layers | Parameters (Millions) | Weights (MB) | Times (s) | Loss Value |
---|---|---|---|---|---|
AlexNet | 8 | 60.9 | 224 | 50.14 | 0.912 |
ResNet50 | 50 | 25.5 | 102 | 88.78 | 0.587 |
InceptionV3 | 46 | 24.7 | 96 | 86.02 | 0.271 |
VGG16 | 16 | 138 | 533 | 226.32 | 0.196 |
VGNet | 14 | 22.9 | 79.5 | 75.21 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Guan, Z. VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition. Agriculture 2023, 13, 1606. https://doi.org/10.3390/agriculture13081606
Fan X, Guan Z. VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition. Agriculture. 2023; 13(8):1606. https://doi.org/10.3390/agriculture13081606
Chicago/Turabian StyleFan, Xiangpeng, and Zhibin Guan. 2023. "VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition" Agriculture 13, no. 8: 1606. https://doi.org/10.3390/agriculture13081606
APA StyleFan, X., & Guan, Z. (2023). VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition. Agriculture, 13(8), 1606. https://doi.org/10.3390/agriculture13081606