Unlocking the Power of Eggs: Nutritional Insights, Bioactive Compounds, and the Advantages of Omega-3 and Omega-6 Enriched Varieties
Abstract
:1. Introduction
2. Nutritional Profile of Eggs
3. Bioactive Compounds in Eggs
3.1. Types of Bioactive Compounds in Eggs
3.1.1. Proteins and Peptides
3.1.2. Phospholipids and Lecithin
3.1.3. Omega-3 Fatty Acids
3.1.4. Vitamins and Minerals
3.1.5. Immunomodulatory Compounds
3.2. Health Benefits of Bioactive Compounds in Eggs
3.2.1. Immune System Modulation
3.2.2. Anti-Cancer Properties
3.2.3. Cardiometabolic Health
3.2.4. Muscle Protein Synthesis
3.2.5. Weight Management and Body Composition
3.3. Clarifying Misconceptions About Egg Consumption and Its Impact on Cardiovascular and Bone Health
3.4. Factors Affecting Bioactive Compound Levels Dietary Influences
4. Omega-3 and Omega-6 Enrichment in Eggs
4.1. Methods of Enrichment
4.1.1. Oil Sources for Enrichment
4.1.2. Considerations for Eggshell Quality
4.1.3. Types of Enriched Eggs
4.1.4. Other Specialty Eggs
4.2. Regulatory Oversight
4.2.1. Egg Safety Final Rule
4.2.2. Egg Regulatory Program Standards
4.2.3. Nutritional Claims and Labelling
4.3. Market Trends and Consumer Demand
4.3.1. Demand Drivers and Challenges
4.3.2. Future Opportunities
5. Health Benefits of Regular Egg Consumption
5.1. Impact of Eggs on Cardiovascular Health, Weight Management, and Muscle Growth
5.2. Clarifying Misconceptions Around Egg Consumption and Cholesterol
6. Future Directions and Emerging Trends in Omega-3- and Omega-6-Enriched Eggs
6.1. Impact on Nutritional Profile
6.2. Production Methods
6.2.1. Innovative Feeding Practices
6.2.2. Tailored Feed Formulations
6.2.3. Sustainable Practices
6.2.4. Impact on Egg Quality
6.2.5. Regulatory Considerations
6.3. Research and Development
6.3.1. Overview of Omega-Enriched Eggs
6.3.2. Health Benefits, Consumer Awareness, and Allergy Considerations
6.3.3. Methodological Considerations
6.3.4. Market Trends and Opportunities
6.3.5. Environmental Impact
6.3.6. Challenges and Barriers
6.3.7. Market Acceptance
6.3.8. Production Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gavril, R.N.R.; Usturoi, M.G.; Usturoi, A. Table Eggs Quality, According to the Storage Period. Curr. Opin. Biotechnol. 2013, 24, S83. [Google Scholar] [CrossRef]
- Anton, M.; Nau, F.; Guérin-Dubiard, C. Bioactive Fractions of Eggs for Human and Animal Health. In Improving the Safety and Quality of Eggs and Egg Products; Elsevier: Amsterdam, The Netherlands, 2011; pp. 321–345. [Google Scholar]
- Adeoye, A.A.; Oyeleye, O.O.; Olorunsola, R.A.; Udoh, J.E.; Oladepo, A.D. Table Egg Quality and Nutritional Composition Assessements of Different Breeds and Ages of Laying Hens. Slovak J. Anim. Sci. 2023, 56, 38–45. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Sugano, M.; Matsuoka, R. Nutritional Viewpoints on Eggs and Cholesterol. Foods 2021, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.J. The Fifty Year Rehabilitation of the Egg. Nutrients 2015, 7, 8716–8722. [Google Scholar] [CrossRef]
- Usturoi, A.; Simeanu, C.; Usturoi, M.G.; Dolis, M.G.; Ratu, R.N.; Simeanu, D. Influence of Packaging Type on the Dynamics of Powdered Eggs Chemical Composition. Mater. Plast. 2017, 54, 380–385. [Google Scholar] [CrossRef]
- Antoni, R. Dietary Saturated Fat and Cholesterol: Cracking the Myths around Eggs and Cardiovascular Disease. J. Nutr. Sci. 2023, 12, e97. [Google Scholar] [CrossRef] [PubMed]
- Fabro, C.; Romanzin, A.; Spanghero, M. Fatty Acid Profile of Table Eggs from Laying Hens Fed Hempseed Products: A Meta-Analysis. Livest. Sci. 2021, 254, 104748. [Google Scholar] [CrossRef]
- Usturoi, M.G.; Rațu, R.N.; Mihail Radu-Rusu, R.; Ivancia, M.; Usturoi, A. Fatty Acid Profile in Eggs and Eggs Products. Sci. Papers. Ser. D Anim. Sci. 2021, 64, 399–403. [Google Scholar]
- Kovacs-Nolan, J.; Phillips, M.; Mine, Y. Advances in the Value of Eggs and Egg Components for Human Health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J. Bioactive Egg Components and Inflammation. Nutrients 2015, 7, 7889–7913. [Google Scholar] [CrossRef] [PubMed]
- Mens, A.J.W.; van Krimpen, M.M.; Kar, S.K.; Guiscafre, F.J.; Sijtsma, L. Enriching Table Eggs with N-3 Polyunsaturated Fatty Acids through Dietary Supplementation with the Phototrophically Grown Green Algae Nannochloropsis Limnetica: Effects of Microalgae on Nutrient Retention, Performance, Egg Characteristics and Health Parameters. Poult. Sci. 2022, 101, 101869. [Google Scholar] [CrossRef] [PubMed]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary Enrichment of Eggs with Omega-3 Fatty Acids: A Review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- Nistor, L.I.; Albu, A.; Nistor, A.C.; Usturoi, M.G. Aspects of Eggs Quality Provided from Free Range and Conventional Systems. J. Microbiol. Biotechnol. Food Sci. 2015, 5, 186–189. [Google Scholar] [CrossRef]
- Criste, F.L.; Mierlita, D.; Simeanu, D.; Boisteanu, P.C.; Pop, I.M.; Georgescu, B.; Nacu, G. Study of Fatty Acids Profile and Oxidative Stability of Egg Yolk from Hens Fed a Diet Containing White Lupine Seeds Meal. Rev. Chim. 2018, 69, 2454–2460. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Boisteanu, P.C.; Simeanu, D.; Postolache, A.N.; Lazar, R.; Vintu, C.R. Study on the Profile of Fatty Acids of Broiler Chicken Raised and Slaughtered in Industrial System. Rev. Chim. 2019, 70, 4089–4094. [Google Scholar] [CrossRef]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; López-Torres, M.; Viveros, A.; Arija, I.; Álvarez, M.D.; de Pascual-Teresa, S.; Chamorro, S. Enriching Eggs with Bioactive Compounds through the Inclusion of Grape Pomace in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef]
- Pal, M.; Molnár, J. The Role of Eggs as an Important Source of Nutrition in Human Health. Int. J. Food Sci. Agric. 2021, 5, 180–182. [Google Scholar] [CrossRef]
- Bílková, B.; Świderská, Z.; Zita, L.; Laloë, D.; Charles, M.; Beneš, V.; Stopka, P.; Vinkler, M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. J. Agric. Food Chem. 2018, 66, 11854–11863. [Google Scholar] [CrossRef]
- Krawczyk, J.; Lewko, L.; Sokołowicz, Z.; Koseniuk, A.; Kraus, A. Effect of Hen Genotype and Laying Time on Egg Quality and Albumen Lysozyme Content and Activity. Animals 2023, 13, 1611. [Google Scholar] [CrossRef] [PubMed]
- Valverde, D.; Laca, A.; Estrada, L.N.; Paredes, B.; Rendueles, M.; Díaz, M. Egg Yolk Fractions as Basic Ingredient in the Development of New Snack Products. Int. J. Gastron. Food Sci. 2016, 3, 23–29. [Google Scholar] [CrossRef]
- Raţu, gavril; Usturoi, R.N. Effects of Temperature and Storage Time on Hen Eggs Quality. J. Biotechnol. 2012.
- Houchins, J.; Fulgoni, V.L., III; Papanikolaou, Y. Eggs Contribute Essential Nutrients to the Diet of American Children across Ethnicities. Curr. Dev. Nutr. 2024, 8, 103339. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Derbyshire, E.; Gibson, S. The Nutritional Properties and Health Benefits of Eggs. Nutr. Food Sci. 2010, 40, 263–279. [Google Scholar] [CrossRef]
- Stadelman, W.J.; Cotterill, O. Egg Science and Technology; Haworth Press: New York, NY, USA, 1995. [Google Scholar]
- Radu-Rusu, R.M.; Usturoi, M.G.; Leahu, A.; Amariei, S.; Radu-Rusu, C.G.; Vacaru-Opriş, I. Chemical Features, Cholesterol and Energy Content of Table Hen Eggs from Conventional and Alternative Farming Systems. S. Afr. J. Anim. Sci. 2014, 44, 33. [Google Scholar] [CrossRef]
- McCance, R.A.; Widdowson, E.M. The Composition of Foods; The Royal Society of Chemistry: London, UK, 2006. [Google Scholar]
- Zeisel, S.H.; Mar, M.H.; Howe, J.C.; Holden, J.M. Concentrations of Choline-Containing compounds and Betaine in Common Foods. J. Nutr. 2003, 133, 1302–1307. [Google Scholar] [CrossRef]
- Nistor, A.C.; Nistor, L.I.; Usturoi, M.G. A Review of Fatty Acid and Amino Acids Profile from Pasteurized Egg Liquids Produced in Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2018, 75, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Ariza, A.G.; González, F.J.; Arbulu, A.A.; Bermejo, J.V.; Vallejo, M.E. Hen Breed and Variety Factors as a Source of Variability for the Chemical Composition of Eggs. J. Food Compost. Anal. 2021, 95, 103673. [Google Scholar] [CrossRef]
- Chen, G.; Cai, Y.; Su, Y.; Gao, B.; Wu, H.; Cheng, J. Effects of Spirulina Algae as a Feed Supplement on Nutritional Value and Flavour Components of Silkie Hens Eggs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1408–1417. [Google Scholar] [CrossRef]
- Rațu, R.N.; Ciobanu, M.M.; Radu-Rusu, R.M.; Usturoi, M.G.; Ivancia, M.; Doliș, M.G. Study on the chemical composition and nitrogen fraction of milk from different animal species. Sci. Papers. Ser. D Anim. Sci. 2021, 64, 374–379. [Google Scholar]
- Escamilla Rosales, M.F.; Olvera Rosales, L.; Jara Gutiérrez, C.E.; Jaimez Ordaz, J.; Santana Sepúlveda, P.A.; González Olivares, L.G. Proteins of Milk, Egg and Fish as a Source of Antioxidant Peptides: Production, Mechanism of Action and Health Benefits. Food Rev. Int. 2024, 40, 1600–1620. [Google Scholar] [CrossRef]
- Kuang, H.; Yang, F.; Zhang, Y.; Wang, T.; Chen, G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. Cholesterol 2018, 2018, 6303810. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Lahti, T.; Tanaka, T.; Nickerson, M.T. Egg Proteins: Fractionation, Bioactive Peptides and Allergenicity. J. Sci. Food Agric. 2018, 98, 5547–5558. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E. Comparison of Fatty Acid, Cholesterol, Vitamin A and E Composition, and Trans Fats in Eggs from Brown and White Egg Strains That Were Molted or Nonmolted. Poult. Sci. 2013, 92, 3259–3265. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, E.; Roldan, N.; Garcia-Alvarez, B.; Pérez-Gill, J. Protein and Lipid Fingerprinting of Native-like Membrane Complexes by Combining TLC and Protein Electrophoresis. J. Lipid Res. 2019, 60, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Seuss-Baum, I.; Nau, F.; Guérin-Dubiard, C.; Nys, Y.; Bain, M. The Nutritional Quality of Eggs. In Improving the Safety and Quality of Egg and Egg Products; Egg Safety and Nutritional Quality; Woodhead Publishing: Cambridge, UK, 2011; Volume 2, pp. 201–236. [Google Scholar]
- Abeyrathne, E.D.N.S.; Nam, K.-C.; Huang, X.; Ahn, D.U. Egg Yolk Lipids: Separation, Characterization, and Utilization. Food Sci. Biotechnol. 2022, 31, 1243–1256. [Google Scholar] [CrossRef]
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of Dietary Marigold Extract on Lutein Content, Yolk Color and Fatty Acid Profile of Omega-3 Eggs: Lutein Content in Omega-3 Eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. [Google Scholar] [CrossRef]
- Sanlier, N.; Üstün, D. Egg Consumption and Health Effects: A Narrative Review. J. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Somaratne, G.; Nau, F.; Ferrua, M.J.; Singh, J.; Ye, A.; Dupont, D.; Singh, R.P.; Floury, J. Characterization of Egg White Gel Microstructure and Its Relationship with Pepsin Diffusivity. Food Hydrocoll. 2020, 98, 105258. [Google Scholar] [CrossRef]
- Patil, S.; Rao, B.; Matondkar, M.; Bhushette, P.; Sonawane, S.K. Review on understanding of egg yolk as functional ingredients. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4627. [Google Scholar] [CrossRef]
- Manzoor, S.; Fayaz, U.; Dar, A.H.; Dash, K.K.; Shams, R.; Bashir, I.; Pandey, V.K.; Abdi, G. Sustainable Development Goals through Reducing Food Loss and Food Waste: A Comprehensive Review. Future Foods 2024, 9, 100362. [Google Scholar] [CrossRef]
- Vizzoto, F.; Testa, F.; Iraldo, F. Strategies to Reduce Food Waste in the Foodservices Sector: A Systematic Review. Int. J. Hosp. Manag. 2021, 95, 102933. [Google Scholar] [CrossRef]
- Schiavone, A.; Barroeta, A.C. Improving the Safety and Quality of Eggs and Egg Products; Van, I.F., Nys, Y., Bain, M., Eds.; Woodhead Publishing: Cambridge, UK, 2011; Volume 2. [Google Scholar]
- Tang, S.G.H.; Sieo, C.C.; Kalavathy, R.; Saad, W.Z.; Yong, S.T.; Wong, H.K.; Ho, Y.W. Chemical Compositions of Egg Yolks and Egg Quality of Laying Hens Fed Prebiotic, Probiotic, and Synbiotic Diets: Chemical Compositions and Egg Quality. J. Food Sci. 2015, 80, C1686–C1695. [Google Scholar] [CrossRef]
- Naber, E.C. Modifying Vitamin Composition of Eggs: A Review. J. Appl. Poult. Res. 1993, 2, 385–393. [Google Scholar] [CrossRef]
- Wallace, T.C.; Fulgoni, V.L. Usual Choline Intakes Are Associated with Egg and Protein Food Consumption in the United States. Nutrients 2017, 9, 839. [Google Scholar] [CrossRef]
- Cho, C.E.; Aardema, N.D.J.; Bunnell, M.L.; Larson, D.P.; Aguilar, S.S.; Bergeson, J.R.; Malysheva, O.V.; Caudill, M.A.; Lefevre, M. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients 2020, 12, 2220. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Karlsson, T. Choline—A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10303. [Google Scholar] [CrossRef]
- Ranard, K.M.; Jeon, S.; Mohn, E.S.; Griffiths, J.C.; Johnson, E.J.; Erdman, J.W., Jr. Dietary Guidance for Lutein: Consideration for Intake Recommendations Is Scientifically Supported. Eur. J. Nutr. 2017, 56 (Suppl. S3), 37–42. [Google Scholar] [CrossRef]
- Zampiga, M.; Calini, F.; Sirri, F. Importance of Feed Efficiency for Sustainable Intensification of Chicken Meat Production: Implications and Role for Amino Acids, Feed Enzymes and Organic Trace Minerals. Worlds. Poult. Sci. J. 2021, 77, 639–659. [Google Scholar] [CrossRef]
- Nys, Y.; Schlegel, P.; Durosoy, S.; Jondreville, C.; Narcy, A. Adapting Trace Mineral Nutrition of Birds for Optimising the Environment and Poultry Product Quality. Worlds. Poult. Sci. J. 2018, 74, 225–238. [Google Scholar] [CrossRef]
- Sarantidi, E.; Ainatzoglou, A.; Papadimitriou, C.; Stamoula, E.; Maghiorou, K.; Miflidi, A.; Trichopoulou, A.; Mountzouris, K.C.; Anagnostopoulos, A.K. Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food. Foods 2023, 12, 3470. [Google Scholar] [CrossRef]
- Anton, M.; Nau, F.; Nys, Y. Bioactive Egg Components and Their Potential Uses. Worlds. Poult. Sci. J. 2006, 62, 429–438. [Google Scholar] [CrossRef]
- Nolasco, E.; Yang, J.; Ciftci, O.; Vu, D.C.; Alvarez, S.; Purdum, S.; Majumder, K. Evaluating the Effect of Cooking and Gastrointestinal Digestion in Modulating the Bio-Accessibility of Different Bioactive Compounds of Eggs. Food Chem. 2021, 344, 128623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chelliappan, B.; Antonysamy, M. Recent Advances in Applications of Bioactive Egg Compounds in Nonfood Sectors. Front. Bioeng. Biotechnol. 2021, 9, 738993. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Paik, H.-D. Anticancer and Immunomodulatory Activity of Egg Proteins and Peptides: A Review. Poult. Sci. 2019, 98, 6505–6516. [Google Scholar] [CrossRef]
- Carter, S.; Connole, E.S.; Hill, A.M.; Buckley, J.D.; Coates, A.M. Eggs and Cardiovascular Disease Risk: An Update of Recent Evidence. Curr. Atheroscler. Rep. 2023, 25, 373–380. [Google Scholar] [CrossRef]
- Schade, D.S.; Gonzales, K.; Kaminsky, N.; Adolphe, A.; Shey, L.; Eaton, R.P. Resolving the Egg and Cholesterol Intake Controversy: New Clinical Insights into Cholesterol Regulation by the Liver and Intestine. Endocr. Pract. 2022, 28, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.; Vassallo, D.V.; Wiggers, G.A. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection against Cardiovascular Problems. Curr. Pharm. Des. 2020, 26, 3676–3683. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Bioactive Peptides Derived from Egg Proteins: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2508–2530. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive Peptides from Egg: A Review. Nutr. Food Sci. 2015, 45, 190–212. [Google Scholar] [CrossRef]
- Trziszka, T.; Różański, H.; Polanowski, A. Eggs as a Very Promising Source of Biomedical and Nutraceutical Preparations: A Review. J. Life Sci. 2013, 8, 862. [Google Scholar] [CrossRef]
- Legros, J.; Jan, S.; Bonnassie, S.; Gautier, M.; Croguennec, T.; Pezennec, S.; Cochet, M.-F.; Nau, F.; Andrews, S.C.; Baron, F. The Role of Ovotransferrin in Egg-White Antimicrobial Activity: A Review. Foods 2021, 10, 823. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J. Proteomic Analysis of Fertilized Egg White during Early Incubation. EuPA Open Proteom. 2014, 2, 38–59. [Google Scholar] [CrossRef]
- Mann, K.; Mann, M. In-Depth Analysis of the Chicken Egg White Proteome Using an LTQ Orbitrap Velos. Proteome Sci. 2011, 9, 7. [Google Scholar] [CrossRef]
- Anton, M. Egg Yolk: Structures, Functionalities, and Processes. J. Sci. Food Agric. 2013, 93, 2871–2880. [Google Scholar] [CrossRef]
- Palacios, L.E. Egg Yolk Lecithin Fractionation and Characterization; Department of Food Science and Human Nutrition, Center for Crops Iowa State University: Ames, IA, USA, 2024. [Google Scholar]
- Ohman, M.; Akerfeldt, T.; Nilsson, I.; Rosen, C.; Hansson, L.-O.; Carlsson, M.; Larsson, A. Biochemical Effects of Consumption of Eggs Containing Omega-3 Polyunsaturated Fatty Acids. Ups. J. Med. Sci. 2008, 113, 315–323. [Google Scholar] [CrossRef]
- Shakoor, H.; Khan, M.I.; Sahar, A.; Khan, M.K.I.; Faiz, F.; Basheer Ahmad, H. Development of Omega-3 Rich Eggs through Dietary Flaxseed and Bio-Evaluation in Metabolic Syndrome. Food Sci. Nutr. 2020, 8, 2619–2626. [Google Scholar] [CrossRef]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of Different Omega-3 Polyunsaturated Fatty Acid (n-3 PUFA) Sources (Flaxseed, Isochrysis Galbana, Fish Oil and DHA Gold) on n-3 LC-PUFA Enrichment (Efficiency) in the Egg Yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Attia, Y.; Sagan, A.A.A.; Hussein, E.-S.O.S.; Olal, M.J.; Ebeid, T.A.; Alabdullatif, A.A.; Alhotan, R.A.; Qaid, M.M.; Tufarelli, V.; Pugliese, G.; et al. Enhancing the Nutritional Values of Egg Yolks of Laying Hens by Different Dietary Sources of Omega-3 Fatty Acids, Vitamin e and Trace Elements. Livest. Sci. 2024, 289, 105573. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Alqarni, M.; Awad, D.A.B.; Algammal, A.M.; Nyamota, R.; Wahed, M.I.I.; Shah, M.A.; Amin, M.N.; Adetuyi, B.O.; Hetta, H.F.; et al. Dairy-Derived and Egg White Proteins in Enhancing Immune System against COVID-19. Front. Nutr. 2021, 8, 629440. [Google Scholar] [CrossRef] [PubMed]
- Elkin, R.G.; Harvatine, K.J. A Review of Recent Studies on the Enrichment of Eggs and Poultry Meat with Omega-3 Polyunsaturated Fatty Acids: Novel Findings and Unanswered Questions. Poult. Sci. 2023, 102, 102938. [Google Scholar] [CrossRef] [PubMed]
- Dullius, A.; Fassina, P.; Giroldi, M.; Goettert, M.I.; Volken de Souza, C.F. A Biotechnological Approach for the Production of Branched Chain Amino Acid Containing Bioactive Peptides to Improve Human Health: A Review. Food Res. Int. 2020, 131, 109002. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, J.-H.; Lee, Y.-J.; Paik, H.-D.; Park, E. Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods 2022, 11, 121. [Google Scholar] [CrossRef]
- Meram, C.; Wu, J. Anti-Inflammatory Effects of Egg Yolk Livetins (α, β, and γ-Livetin) Fraction and Its Enzymatic Hydrolysates in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Food Res. Int. 2017, 100, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Mah, E.; Chen, C.-Y.O.; Liska, D.J. The Effect of Egg Consumption on Cardiometabolic Health Outcomes: An Umbrella Review. Public Health Nutr. 2020, 23, 935–955. [Google Scholar] [CrossRef]
- Kouvari, M.; Damigou, E.; Florentin, M.; Kosti, R.I.; Chrysohoou, C.; Pitsavos, C.S.; Panagiotakos, D.B. Egg Consumption, Cardiovascular Disease and Cardiometabolic Risk Factors: The Interaction with Saturated Fatty Acids. Results from the ATTICA Cohort Study (2002–2012). Nutrients 2022, 14, 5291. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, J.; Leite, J.O.; de Ogburn, R.; Puglisi, M.J.; VanHeest, J.; Fernandez, M.L. Consuming Eggs for Breakfast Influences Plasma Glucose and Ghrelin, While Reducing Energy Intake during the next 24 Hours in Adult Men. Nutr. Res. 2010, 30, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Missimer, A.; Dimarco, D.M.; Andersen, C.J.; Murillo, A.G.; Vergara-Jimenez, M.; Fernandez, M.L. Consuming Two Eggs per Day, as Compared to an Oatmeal Breakfast, Increases Plasma Ghrelin While Maintaining the LDL/HDL Ratio. Nutrients 2017, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Mason, P. The Importance of Eggs in an Environmentally Sustainable Diet. Nutr. Bull. 2023, 48, 400–410. [Google Scholar] [CrossRef]
- Andersen, C.J.; Huang, L.; Zhai, F.; Esposito, C.P.; Greco, J.M.; Zhang, R.; Woodruff, R.; Sloan, A.; Van Dyke, A.R. Consumption of Different Egg-Based Diets Alters Clinical Metabolic and Hematological Parameters in Young, Healthy Men and Women. Nutrients 2023, 15, 3747. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested Protein Dose Response of Muscle and Albumin Protein Synthesis after Resistance Exercise in Young Men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, M.J.; Fernandez, M.L. The Health Benefits of Egg Protein. Nutrients 2022, 14, 2904. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar Muscle Protein Synthesis Rates Subsequent to a Meal in Response to Increasing Doses of Whey Protein at Rest and after Resistance Exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Garrido-Miguel, M.; Mesas, A.E.; Fernández-Rodríguez, R.; Fernández-Franco, S.; Pozuelo-Carrascosa, D.P.; López-Gil, J.F.; Martínez-Vizcaíno, V. The Role of Protein Intake in the Relationship between Egg Consumption and Body Composition in Young Adults. A Mediation Analysis. Clin. Nutr. 2022, 41, 2356–2363. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Y.; Li, Q.; Dang, S.; Yan, H. Body Fat Mass, Fat Distribution and Egg Consumption: A Population-Based Study in Chinese Adults: Egg Consumption and Body Fat in Rural Chinese. J. Am. Coll. Nutr. 2020, 39, 528–536. [Google Scholar] [CrossRef]
- Tabatabaeyan, A.; Lotfi, K.; Mirzaei, S.; Asadi, A.; Akhlaghi, M.; Saneei, P. The Association between Egg Consumption and Metabolic Health Status in Overweight and Obese Adolescents. Sci. Rep. 2023, 13, 2778. [Google Scholar] [CrossRef]
- Emrani, A.S.; Beigrezaei, S.; Zademohammadi, F.; Salehi-Abargouei, A. The Effect of Whole Egg Consumption on Weight and Body Composition in Adults: A Systematic Review and Meta-Analysis of Clinical Trials. Syst. Rev. 2023, 12, 125. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, J.-H.; Chen, C.; Kang, Y.-N. Association between Egg Consumption and Cholesterol Concentration: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Rashidi-Pourfard, N.; Salehi-Abargouei, A.; Karimi, M.; Haghighatdoost, F. Effects of Egg Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Am. Coll. Nutr. 2018, 37, 99–110. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.D.; Chitchumroonchokchai, C.; Li, J.; Mah, E.; Labyk, A.N.; Reverri, E.J.; Ballard, K.D.; Volek, J.S.; Bruno, R.S. Replacing Carbohydrate during a Glucose Challenge with the Egg White Portion or Whole Eggs Protects against Postprandial Impairments in Vascular Endothelial Function in Prediabetic Men by Limiting Increases in Glycaemia and Lipid Peroxidation. Br. J. Nutr. 2018, 119, 259–270. [Google Scholar] [CrossRef]
- Godos, J.; Micek, A.; Brzostek, T.; Toledo, E.; Iacoviello, L.; Astrup, A.; Franco, O.H.; Galvano, F.; Martinez-Gonzalez, M.A.; Grosso, G. Egg Consumption and Cardiovascular Risk: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2021, 60, 1833–1862. [Google Scholar] [CrossRef]
- Fratoni, V.; Brandi, M.L. B Vitamins, Homocysteine and Bone Health. Nutrients 2015, 7, 2176–2192. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional Intake and Bone Health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Olagunju, M.T.; Abodunrin, O.R.; Omotoso, I.O.; Adewole, I.E.; Ola, O.M.; Abel, C.; Akinsolu, F.T. Egg Consumption and Bone Mass Density among the Elderly: A Scoping Review. PLOS Glob. Public Health 2024, 4, e0002519. [Google Scholar] [CrossRef] [PubMed]
- Obianwuna, U.E.; Oleforuh-Okoleh, V.U.; Wang, J.; Zhang, H.-J.; Qi, G.-H.; Qiu, K.; Wu, S.-G. Natural Products of Plants and Animal Origin Improve Albumen Quality of Chicken Eggs. Front. Nutr. 2022, 9, 875270. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Ranjitkar, S. Recent Advances in Fermented Feeds towards Improved Broiler Chicken Performance, Gastrointestinal Tract Microecology and Immune Responses: A Review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative Stress in Poultry Production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, J.A.; Hahn, G.L. Livestock Production System Management Responses to Thermal Challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kpomasse, C.C.; Kouame, Y.A.E.; N’nanle, O.; Houndonougbo, F.M.; Tona, K.; Oke, O.E. The Productivity and Resilience of the Indigenous Chickens in the Tropical Environments: Improvement and Future Perspectives. J. Appl. Anim. Res. 2023, 51, 456–469. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Cachaldora, P.; Garcia-Rebollar, P.; Alvarez, C.; De Blas, J.C.; Mendez, J. Effect of Type and Level of Basal Fat and Level of Fish Oil Supplementation on Yolk Fat Composition and N−3 Fatty Acids Deposition Efficiency in Laying Hens. Anim. Feed. Sci. Technol. 2008, 141, 104–114. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Abdelati, K.A. Effect of Dietary Graded Levels of Leucaena Leucocepahala Seeds on Layers Performance, Egg Quality and Bird Parameters. Int. J. Poult. Sci. 2009, 8, 475–479. [Google Scholar] [CrossRef]
- Milinsk, M.C.; Murakami, A.E.; Gomes, S.T.M.; Matsushita, M.; de Souza, N.E. Fatty Acid Profile of Egg Yolk Lipids from Hens Fed Diets Rich in N-3 Fatty Acids. Food Chem. 2003, 83, 287–292. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Omega-6/Omega-3 Fatty Acid Ratio: Health Implications. OCL 2010, 17, 267–275. [Google Scholar] [CrossRef]
- Coorey, R.; Novinda, A.; Williams, H.; Jayasena, V. Omega-3 Fatty Acid Profile of Eggs from Laying Hens Fed Diets Supplemented with Chia, Fish Oil, and Flaxseed: Omega-3 in Eggs from Chia Fed Hens. J. Food Sci. 2015, 80, S180–S187. [Google Scholar] [CrossRef] [PubMed]
- Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative Omega-3 Fatty Acid Enrichment of Egg Yolks from First-Cycle Laying Hens Fed Flaxseed Oil or Ground Flaxseed. Poult. Sci. 2017, 96, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, K. Consumers’ Willingness to Pay for Food Quality—The Case of Eggs. Food Econ. Acta Agric. Scand. Sect. C 2004, 1, 78–90. [Google Scholar] [CrossRef]
- Zamani, O.; Bittmann, T.; Ortega, D.L. The Effect of Avian Influenza Outbreaks on Retail Price Premiums in the United States Poultry Market. Poult. Sci. 2024, 103, 104102. [Google Scholar] [CrossRef]
- Eggersdorfer, N.S.A. Is the World Supply of Omega-3 Fatty Acids Adequate for Optimal Human Health? Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 147–154. [Google Scholar]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef]
- Li, D.; Weisinger, H.S.; Weisinger, R.S.; Mathai, M.; Armitage, J.A.; Vingrys, A.J.; Sinclair, A.J. Omega 6 to Omega 3 Fatty Acid Imbalance Early in Life Leads to Persistent Reductions in DHA Levels in Glycerophospholipids in Rat Hypothalamus Even after Long-Term Omega 3 Fatty Acid Repletion. Prostaglandins Leukot. Essent. Fatty Acids 2006, 74, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, L.R.; Geier, M.S.; Hughes, R.J.; Bastian, S.E.; Gibson, R.A. Assessment of Omega-3 and Omega-6 Fatty Acid Profiles and Ratio of Omega-6/Omega-3 of White Eggs Produced by Laying Hens Fed Diets Enriched with Omega-3 Rich Vegetable Oil. Open Agric. 2024, 9, 20220274. [Google Scholar] [CrossRef]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Grimaldi, R.; Souza, M.R.; Lara, L.J.C.; Lana, A.M.Q. Effects of Lipid Sources in the Diet of Laying Hens on the Fatty Acid Profiles of Egg Yolks. Poult. Sci. 2010, 89, 2484–2490. [Google Scholar] [CrossRef] [PubMed]
- Maina, A.N.; Lewis, E.; Kiarie, E.G. Egg Production, Egg Quality, and Fatty Acids Profiles in Eggs and Tissues in Lohmann LSL Lite Hens Fed Algal Oils Rich in Docosahexaenoic Acid (DHA). Poult. Sci. 2023, 102, 102921. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Szczurek, W.; Puchała, M.; Józefiak, D. Effect of Selected Feed Additives on Egg Performance and Eggshell Quality in Laying Hens Fed a Diet with Standard or Decreased Calcium Content. Ann. Anim. Sci. 2018, 18, 167–183. [Google Scholar] [CrossRef]
- Yalçin, H.; Unal, M.K. The Enrichment of Hen Eggs with Omega-3 Fatty Acids. J. Med. Food 2010, 13, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Kralik, Z.; Kralik, G.; Košević, M.; Galović, O.; Samardžić, M. Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals 2023, 13, 321. [Google Scholar] [CrossRef]
- Soesanto, I.R.H.; Yani, A.; Tanti, A. Identification of Market Demand for Omega-3 Eggs in Bogor Regency. J. Ilmu-Ilmu Peternak. 2024, 34, 171–178. [Google Scholar] [CrossRef]
- United States Food and Drug Administration (FDA). Egg Regulatory Program Standards (ERPS). 2017. Available online: https://www.fda.gov/food/regulatory-program-standards-food/egg-regulatory-program-standards-erps (accessed on 8 December 2024).
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin; Official Journal of the European Union Law: Luxembourg, 2004; pp. 55–205.
- Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority, and Laying Down Procedures in Matters of Food Safety; Official Journal of the European Union Law: Luxembourg, 2002; pp. 1–24.
- Council Directive 1999/74/EC of 19 July 1999 Laying Down Minimum Standards for the Protection of Laying Hens; Official Journal of the European Communities Law: Luxembourg, 1999; pp. 53–57.
- United States Department of Agriculture (USDA). USDA Guidelines. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 8 December 2024).
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers; Official Journal of the European Union Law: Luxembourg, 2011; pp. 18–63.
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; Official Journal of the European Union Law: Luxembourg, 2006; pp. 9–25.
- Khan, S.A.; Khan, A.; Khan, S.A.; Beg, M.A.; Ali, A.; Damanhouri, G. Comparative Study of Fatty-Acid Composition of Table Eggs from the Jeddah Food Market and Effect of Value Addition in Omega-3 Bio-Fortified Eggs. Saudi J. Biol. Sci. 2017, 24, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Bakhtavoryan, R.; Hovhannisyan, V.; Devadoss, S.; Lopez, J. An Empirical Evaluation of Egg Demand in the United States. J. Agric. Appl. Econ. 2021, 53, 280–300. [Google Scholar] [CrossRef]
- Medina-Cruz, M.F.; Zárate-Contreras, D.; Pérez-Ruiz, R.V.; Aguilar-Toalá, J.E.; Rosas-Espejel, M.; Cruz-Monterrosa, R.G. Nutritional Aspects, Production and Viability in the Market of Organic Chicken Eggs: Review. Food Chem. Adv. 2024, 4, 100595. [Google Scholar] [CrossRef]
- Egg Guidance Documents & Regulatory Information. Available online: https://www.fda.gov/food/guidance-documents-regulatory-information-topic-food-and-dietary-supplements/egg-guidance-regulation-and-other-information (accessed on 2 December 2024).
- United States Congress Senate. To Amend the Federal Meat Inspection ACT, the Poultry Products Inspection ACT, the Egg Products Inspection ACT, and the Federal Food, Drug, and Cosmetic ACT to Provide for Improved Public Health and Food Safety Through Enhanced Enforcement; Bibliogov: Secaucus, NJ, USA, 2011. [Google Scholar]
- Mulatsih, S.; Soesanto, I.R.; Retnani, Y.; Yani, A.; Mutia, R.; Tanti, A. Exploring the Potential of Omega-3 Enriched Egg Industry in Indonesia: Production, Consumer Demand, and Competitiveness. J. Ilmu Produksi Teknol. Has. Peternak. 2024, 12, 75–81. [Google Scholar] [CrossRef]
- Bourre, J.M.; Galea, F. An Important Source of Omega-3 Fatty Acids, Vitamins D and E, Carotenoids, Iodine and Selenium: A New Natural Multi-Enriched Egg. J. Nutr. Health Aging 2006, 10, 371–376. [Google Scholar] [PubMed]
- Palmieri, N.; Stefanoni, W.; Latterini, F.; Pari, L. Factors Influencing Italian Consumers’ Willingness to Pay for Eggs Enriched with Omega-3-Fatty Acids. Foods 2022, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Magette, W.L. Development and Testing of an Environmental Management System for Organic Wastes from Intensive Pig and Poultry Units: Literature Review; Environmental Protection Agency: County Wexford, Ireland, 2001.
- Myers, M.; Ruxton, C.H.S. Eggs: Healthy or Risky? A Review of Evidence from High Quality Studies on Hen’s Eggs. Nutrients 2023, 15, 2657. [Google Scholar] [CrossRef] [PubMed]
- Haward, R.; Chacko, J.; Konjeti, S.; Metri, G.R.; Binoy, B.K.; Haward, R.; Raju, S. Debunking the Myth: Eggs and Heart Disease. Cureus 2024, 16, e59952. [Google Scholar] [CrossRef]
- Wang, M.X.; Wong, C.H.; Kim, J.E. Impact of whole egg intake on blood pressure, lipids and lipoproteins in middle-aged and older population: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 653–664. [Google Scholar] [CrossRef]
- Rong, Y.; Chen, L.; Zhu, T.; Song, Y.; Yu, M.; Shan, Z.; Sands, A.; Hu, F.B.; Liu, L. Egg Consumption and Risk of Coronary Heart Disease and Stroke: Dose-Response Meta-Analysis of Prospective Cohort Studies. BMJ 2013, 346, e8539. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.P.; Chen, S.; Li, Y.; Schwab, A.L.; Stampfer, M.J.; Sacks, F.M.; Rosner, B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Egg Consumption and Risk of Cardiovascular Disease: Three Large Prospective US Cohort Studies, Systematic Review, and Updated Meta Analysis. BMJ 2020, 368, m513. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Narasimhan, B.; Wang, Z.; Virk, H.U.H.; Farrell, A.M.; Zhang, H.; Tang, W.W. Association Between Egg Consumption and Risk of Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Am. J. Med. 2020, 134, 76–83.e2. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Raman, G.; Vishwanathan, R.; Jacques, P.F.; Johnson, E.J. Dietary Cholesterol and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2015, 102, 276–294. [Google Scholar] [CrossRef]
- Huang, J.; Liao, L.M.; Weinstein, S.J.; Sinha, R.; Graubard, B.I.; Albanes, D. Association between Plant and Animal Protein Intake and Overall and Cause-Specific Mortality. JAMA Intern. Med. 2020, 180, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food Groups and Risk of Coronary Heart Disease, Stroke and Heart Failure: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.C.; Andersen, C.J. Assessment of Dietary Patterns Represents a Potential, yet Variable, Measure of Inflammatory Status: A Review and Update. Dis. Markers 2019, 2019, 3102870. [Google Scholar] [CrossRef]
- Zappala, G.; Platania, A.; Paladino, G.; Nicolosi, L.K.; Ragusa, R.; Marranzano, M. Meal Habits and Metabolic Status in Southern Italian Adults. Nutr. Healthy Aging 2019, 5, 199–207. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Egg Consumption and Human Health: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr. 2020, 71, 325–331. [Google Scholar] [CrossRef]
- Olagunju, M.; Aleru, E.O.; Abodunrin, O.R.; Adedini, C.B.; Ola, O.M.; Abel, C.; Adewole, I.E.; Okunbor, H.N.; Akinsolu, F.T. Association between Meal Skipping and the Double Burden of Malnutrition among University Students. N. Afr. J. Food Nutr. Res. 2024, 8, 167. [Google Scholar] [CrossRef]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in Consumption of Omega-3 and Omega-6 Fatty Acids in the United States during the 20th Century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G.; Sim, J.S. Omega-3 Fatty Acids in Table Eggs. World’s Poult. Sci. J. 2021, 77, 65–78. [Google Scholar]
- Koppenol, A.; Van Harn, J.; Hendriks, W.H.; Dekker, R.A.; Van Krimpen, M.M. Enriching Eggs with Omega-3 Fatty Acids: A Review. Anim. Feed Sci. Technol. 2022, 292, 115432. [Google Scholar] [CrossRef]
- Hargis, P.S.; Van Elswyk, M.E. Modifying Egg Yolk Lipids with Dietary Omega-3 Fatty Acids. Poult. Sci. 2020, 99, 4042–4050. [Google Scholar]
- Beynen, A.C.; Van Der Horst, H.; Van Hoek, M. Omega-6/Omega-3 Balance in Enriched Eggs: Effects of Linseed Oil Feeding to Hens. Food Chem. 2021, 343, 128501. [Google Scholar] [CrossRef]
- Kokoszyński, D. Guinea Fowl, Goose, Turkey, Ostrich, and Emu Eggs. In Egg Innovations and Strategies for Improvements; Elsevier: Amsterdam, The Netherlands, 2017; pp. 33–43. [Google Scholar]
- Newberry, R.C. Commercial Free-Range Egg Production Practices. In Egg Innovations and Strategies for Improvements; Elsevier: Amsterdam, The Netherlands, 2017; pp. 89–102. [Google Scholar]
- Pesti, G.M.; Choct, M. The Future of Feed Formulation for Poultry: Toward More Sustainable Production of Meat and Eggs. Anim. Nutr. 2023, 15, 71–87. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Oancea, A.G. Sustainable Poultry Feeding Strategies for Achieving Zero Hunger and Enhancing Food Quality. Agriculture 2024, 14, 1811. [Google Scholar] [CrossRef]
- Philippe, F.X.; Mahmoudi, Y.; Cinq-Mars, D.; Lefrançois, M.; Moula, N.; Palacios, J.; Pelletier, F.; Godbout, S. Comparison of Egg Production, Quality and Composition in Three Production Systems for Laying Hens. Livest. Sci. 2020, 232, 103917. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Varzaru, I.; Saracila, M.; Oancea, A.G. Designing Nutrition for Health-Incorporating Dietary by-Products into Poultry Feeds to Create Functional Foods with Insights into Health Benefits, Risks, Bioactive Compounds, Food Component Functionality and Safety Regulations. Foods 2023, 12, 4001. [Google Scholar] [CrossRef]
- Ijomah, T.I.; Idemudia, C.; Eyo-Udo, N.L.; Anjorin, K.F. Innovative Digital Marketing Strategies for SMEs: Driving Competitive Advantage and Sustainable Growth. Int. J. Manag. Entrep. Res. 2024, 6, 2173–2188. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Williams, A.N.; Salahuddin, M.; Gadekar, S.; Lohakare, J. Algae as an Alternative Source of Protein in Poultry Diets for Sustainable Production and Disease Resistance: Present Status and Future Considerations. Front. Vet. Sci. 2024, 11, 1382163. [Google Scholar] [CrossRef]
- Muharam, H.; Wandrial, S.; Rumondang, P.R.; Handayani, M.A.; Masruchan, M. Innovative Strategies in Digital Marketing: Enhancing Consumer Engagement and Brand Loyalty. Global 2024, 2, 1629–1643. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciortino, C.; Baviera-Puig, A.; Modica, F. Analyzing Consumer Trends in Functional Foods: A Cluster Analysis Approach. J. Agric. Food Res. 2024, 15, 101041. [Google Scholar] [CrossRef]
- Bist, R.B.; Bist, K.; Poudel, S.; Subedi, D.; Yang, X.; Paneru, B.; Mani, S.; Wang, D.; Chai, L. Sustainable Poultry Farming Practices: A Critical Review of Current Strategies and Future Prospects. Poult. Sci. 2024, 103, 104295. [Google Scholar] [CrossRef]
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs, The Nutrition (Amendment etc.) (EU Exit) Regulations 2019: Practical Changes for Industry; Official Journal of the European Union Law: Luxembourg, 2004.
- Barnett, J.; McConnon, A.; Kennedy, J.; Raats, M.; Shepherd, R.; Verbeke, W.; Fletcher, J.; Kuttschreuter, M.; Lima, L.; Wills, J.; et al. Development of Strategies for Effective Communication of Food Risks and Benefits across Europe: Design and Conceptual Framework of the FoodRisC Project. BMC Public Health 2011, 11, 308. [Google Scholar] [CrossRef]
- Doyon, M.; Bergeron, S.; Saulais, L.; Labonté, M.È.; Provencher, V. Do Consumers Value Welfare and Environmental Attributes in Egg Production Similarly in Fresh Eggs and Prepared Meals? Animals 2023, 13, 324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahmani, D.; Kallas, Z.; Pappa, M.; Gil, J.M. Are Consumers’ Egg Preferences Influenced by Animal-Welfare Conditions and Environmental Impacts? Sustainability 2019, 11, 6218. [Google Scholar] [CrossRef]
- Wägeli, S.; Janssen, M.; Hamm, U. Organic Consumers’ Preferences and Willingness-to-Pay for Locally Produced Animal Products: Preferences for Locally Produced Animal Products. Int. J. Consum. Stud. 2016, 40, 357–367. [Google Scholar] [CrossRef]
- Antony, B.; Benny, M.; Jose, S.; Jacob, S.; Nedumpilly, V.; Ajimol, M.S.; Abraham, G. Development of Omega-3 Enriched Egg Using Fish-Oil Based Fowl Feed Supplement. J. Appl. Poult. Res. 2024, 33, 100429. [Google Scholar] [CrossRef]
Nutrient | Egg White | Egg Yolk | Whole Egg | References |
---|---|---|---|---|
Energy (kcal) | 52 | 322 | 155 | [4,24,25] |
Protein (g) | 10.9 | 15.9 | 12.6 | [7,10] |
Total lipids (fat) (g) | 0.2 | 27.0 | 10.6 | [4,10,26] |
Saturated fat (g) | 0.0 | 9.6 | 3.3 | [4,27,28] |
Monounsaturated fat (g) | 0.0 | 12.7 | 4.0 | [4,27,29] |
Polyunsaturated fat (g) | 0.0 | 4.2 | 1.2 | [25,30,31] |
Cholesterol (mg) | 0 | 1085 | 373 | [25,27,30] |
Carbohydrates (g) | 0.3 | 0.4 | 0.7 | [4,27,30] |
Sugars (g) | 0.4 | 0.5 | 1.0 | [23,27,30] |
Fiber (g) | 0.0 | 0.0 | 0.0 | [25,30,31] |
Vitamins | [4,27,30,31] | |||
Vitamin A (µg) | 0 | 770 | 160 | [4,26,29,31] |
Vitamin D (IU) | 0 | 145 | 87 | [26,29,31] |
Vitamin E (mg) | 0 | 3.0 | 1.05 | [4,26,29,31] |
Vitamin B2 (Riboflavin) (mg) | 0.44 | 0.528 | 0.457 | [4,25,32,33] |
Vitamin B12 (µg) | 0 | 2.0 | 1.11 | [4,26,29] |
Folate (µg) | 4 | 146 | 47 | [27,30,33] |
Minerals | [25,30,32] | |||
Calcium (mg) | 7 | 129 | 50 | [26,29,30,33] |
Iron (mg) | 0.1 | 7.0 | 1.2 | [29,31,33] |
Potassium (mg) | 163 | 109 | 126 | [26,29,30] |
Magnesium (mg) | 11 | 3.0 | 7.0 | [26,29,31] |
Phosphorus (mg) | 15 | 586 | 172 | [25,27,30] |
Sodium (mg) | 166 | 48 | 124 | [4,10,26,30] |
Zinc (mg) | 0.0 | 5.3 | 1.0 | [26,29,30] |
Selenium (mg) | 20 | 60 | 30.7 | [20,26,30,31] |
Type of Egg | Dietary Modification | Key Nutritional Benefits | Additional Notes | Reference |
---|---|---|---|---|
Omega-3-enriched eggs | Diets fortified with omega-3 sources, such as flaxseed | Contain significantly higher levels of omega-3 fatty acids, including ALA, DHA, and EPA. Reported to improve cardiovascular health, brain function, and reduce inflammation | Some studies show up to a 12-fold increase in omega-3 content compared to conventional eggs. May have lower cholesterol levels | [74,124,125,126] |
Standard eggs | Conventional poultry diets | Lower omega-3 fatty acid levels compared to enriched varieties. | Australian study reports 1.3% omega-3 fatty acids in yolks | [127] |
Organic eggs | Organic feed and farming practices | Slightly higher nutrient levels than standard eggs but lower omega-3 content than omega-3-enriched eggs | Australian study reports similar omega-3 levels as standard eggs (approximately 1.3%) | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usturoi, M.G.; Rațu, R.N.; Crivei, I.C.; Veleșcu, I.D.; Usturoi, A.; Stoica, F.; Radu Rusu, R.-M. Unlocking the Power of Eggs: Nutritional Insights, Bioactive Compounds, and the Advantages of Omega-3 and Omega-6 Enriched Varieties. Agriculture 2025, 15, 242. https://doi.org/10.3390/agriculture15030242
Usturoi MG, Rațu RN, Crivei IC, Veleșcu ID, Usturoi A, Stoica F, Radu Rusu R-M. Unlocking the Power of Eggs: Nutritional Insights, Bioactive Compounds, and the Advantages of Omega-3 and Omega-6 Enriched Varieties. Agriculture. 2025; 15(3):242. https://doi.org/10.3390/agriculture15030242
Chicago/Turabian StyleUsturoi, Marius Giorgi, Roxana Nicoleta Rațu, Ioana Cristina Crivei, Ionuț Dumitru Veleșcu, Alexandru Usturoi, Florina Stoica, and Răzvan-Mihail Radu Rusu. 2025. "Unlocking the Power of Eggs: Nutritional Insights, Bioactive Compounds, and the Advantages of Omega-3 and Omega-6 Enriched Varieties" Agriculture 15, no. 3: 242. https://doi.org/10.3390/agriculture15030242
APA StyleUsturoi, M. G., Rațu, R. N., Crivei, I. C., Veleșcu, I. D., Usturoi, A., Stoica, F., & Radu Rusu, R.-M. (2025). Unlocking the Power of Eggs: Nutritional Insights, Bioactive Compounds, and the Advantages of Omega-3 and Omega-6 Enriched Varieties. Agriculture, 15(3), 242. https://doi.org/10.3390/agriculture15030242