Interoperability and Targeted Attacks on Terrorist Organizations Using Intelligent Tools from Network Science
Abstract
:1. Introduction
2. Methodology, Attack Strategies and Datasets
- (i)
- randomness (random node removal, averaging the results of 1000 interactions),
- (ii)
- high strength centrality (participators),
- (iii)
- high betweenness centrality (mediators),
- (iv)
- high clustering coefficient centrality (team leaders),
- (v)
- high recalculated strength centrality,
- (vi)
- high recalculated betweenness centrality,
- (vii)
- high recalculated clustering coefficient centrality
Network | Terrorist Organization | Number of Nodes | Year of Significant Terrorist Attack | Selected Year for Removing Nodes |
---|---|---|---|---|
1 | “Jamaah Islamiah Section of Indonesia” [99,100] | 27 | 2004 | 2003 |
2 | “Hamburg Cell” [102,103] | 34 | 2001 | 2000 |
3 | “Al-Qaeda Section of Madrid” [104,105] | 54 | 2003 | 2002 |
4 | “Jamaah Islamiah Section of the Philippines” [106,107] | 16 | 2004 | 2003 |
3. Results
4. Discussion
Comparative Analysis with the Existing Literature
5. Conclusions
5.1. Key Findings
- Effectiveness of Recalculated Betweenness Centrality: Removing nodes based on high recalculated betweenness centrality was found to be the most effective strategy in reducing Interoperability. The effectiveness of this strategy was observed universally across different-sized networks. The dynamic nature of recalculated betweenness centrality is the key factor for outperforming the greedy algorithm, highlighting the importance of updating network data, and reflecting the ever-changing nature of terrorist organizations. The above finding suggests strongly that nodes acting as “mediators” are the best targets, and this is our insight provided to the law enforcement authorities.
- Limitations of Random Node Removal: Random node removal was less effective, emphasizing the importance of targeted interventions based on topological network analysis with centralities.
- Impact of Network Size: While the main results hold for all four networks examined, the size of the network introduces nuances concerning the effectiveness of different strategies. This fact emphasizes the need for a tailored approach based on each network’s characteristics.
- Critical Nodes for Counterterrorism: Regardless of the network’s structure, nodes with high betweenness centrality consistently emerged as critical points of vulnerability and thus represent optimal targets for counterterrorism efforts.
5.2. Implications and Contributions
5.3. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganor, B. Trends in Modern International Terrorism. In To Protect and To Serve: Policing in an Age of Terrorism; Weisburd, D., Feucht, T., Hakimi, I., Mock, L., Perry, S., Eds.; Springer: New York, NY, USA, 2011; pp. 11–42. ISBN 978-0-387-73685-3. [Google Scholar]
- Combs, C.C. Terrorism in the Twenty-First Century; Taylor & Francis: Abingdon, UK, 2022; ISBN 978-1-00-060984-4. [Google Scholar]
- Richards, A. The Problem with ‘Radicalization’: The Remit of ‘Prevent’ and the Need to Refocus on Terrorism in the UK. Int. Aff. 2011, 87, 143–152. [Google Scholar] [CrossRef]
- Tsintsadze-Maass, E.; Maass, R.W. Groupthink and Terrorist Radicalization. Terror. Polit. Violence 2014, 26, 735–758. [Google Scholar] [CrossRef]
- Trimbur, M.; Amad, A.; Horn, M.; Thomas, P.; Fovet, T. Are Radicalization and Terrorism Associated with Psychiatric Disorders? A Systematic Review. J. Psychiatr. Res. 2021, 141, 214–222. [Google Scholar] [CrossRef]
- Chermak, S.M. Transnational Terrorism; Routledge: Oxford, UK, 2019; ISBN 978-1-351-87782-4. [Google Scholar]
- Ahmad, F.; Monaghan, J. Mapping Criminological Engagements Within Radicalization Studies. Br. J. Criminol. 2019, 59, 1288–1308. [Google Scholar] [CrossRef]
- Kundnani, A. Radicalisation: The Journey of a Concept. Race Cl. 2012, 54, 3–25. [Google Scholar] [CrossRef]
- Wolfowicz, M.; Litmanovitz, Y.; Weisburd, D.; Hasisi, B. What Is the State of the Quantitative Literature on Risk Factors for Radicalization and Recruitment to Terrorism? In Understanding Recruitment to Organized Crime and Terrorism; Weisburd, D., Savona, E.U., Hasisi, B., Calderoni, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 25–53. ISBN 978-3-030-36639-1. [Google Scholar]
- Silke, A. Holy Warriors: Exploring the Psychological Processes of Jihadi Radicalization. Eur. J. Criminol. 2008, 5, 99–123. [Google Scholar] [CrossRef]
- Webber, D.; Kruglanski, A.W. Psychological Factors in Radicalization. In The Handbook of the Criminology of Terrorism; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 33–46. ISBN 978-1-118-92398-6. [Google Scholar]
- Stohl, C.; Stohl, M. Networks of Terror: Theoretical Assumptions and Pragmatic Consequences. Commun. Theory 2007, 17, 93–124. [Google Scholar] [CrossRef]
- Cherney, A. Working with Radicalised Individuals: Insights from a Secondary and Tertiary Prevention Program. Behav. Sci. Terror. Polit. Aggress. 2022, 0, 1–21. [Google Scholar] [CrossRef]
- Cherney, A.; Putra, I.E.; Putera, V.S.; Erikha, F.; Magrie, M.F. The Push and Pull of Radicalization and Extremist Disengagement: The Application of Criminological Theory to Indonesian and Australian Cases of Radicalization. J. Criminol. 2021, 54, 407–424. [Google Scholar] [CrossRef]
- Cherney, A. Designing and Implementing Programmes to Tackle Radicalization and Violent Extremism: Lessons from Criminology. Dyn. Asymmetric Confl. 2016, 9, 82–94. [Google Scholar] [CrossRef]
- Rahimullah, R.H.; Larmar, S.; Abdalla, M. Radicalization and Terrorism: Research within the Australian Context. Int. J. Criminol. Sociol. 2013, 2, 180–185. [Google Scholar] [CrossRef]
- Paolo, B.; Vigna, S. Axioms for Centrality. Internet Math. 2010, 3–4, 222–262. [Google Scholar]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Kolaczyk, E.D.; Csárdi, G. Networked Experiments. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 187–205. ISBN 978-3-030-44129-6. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Statistical Models for Network Graphs. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 87–113. ISBN 978-3-030-44129-6. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Visualizing Network Data. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 29–41. ISBN 978-3-030-44129-6. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Dynamic Networks. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 207–223. ISBN 978-3-030-44129-6. [Google Scholar]
- Hughes, C.E.; Bright, D.A.; Chalmers, J. Social Network Analysis of Australian Poly-Drug Trafficking Networks: How do Drug Traffickers Manage Multiple Illicit Drugs? Soc. Netw. 2017, 51, 135–147. [Google Scholar] [CrossRef]
- Marwell, G.; Oliver, P.E.; Prahl, R. Social Networks and Collective Action: A Theory of the Critical Mass. III. Am. J. Sociol. 1988, 94, 502–534. [Google Scholar] [CrossRef]
- Das, K.; Samanta, S.; Pal, M. Study on Centrality Measures in Social Networks: A Survey. Soc. Netw. Anal. Min. 2018, 8, 13. [Google Scholar] [CrossRef]
- Farooq, A.; Joyia, G.J.; Uzair, M.; Akram, U. Detection of Influential Nodes Using Social Networks Analysis Based on Network Metrics. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–6. [Google Scholar]
- Li, G.; Hu, J.; Song, Y.; Yang, Y.; Li, H.-J. Analysis of the Terrorist Organization Alliance Network Based on Complex Network Theory. IEEE Access 2019, 7, 103854–103862. [Google Scholar] [CrossRef]
- Fu, J.; Fan, Y.; Wang, Y.; Wang, S. Network Analysis of Terrorist Activities. J. Syst. Sci. Complex. 2014, 27, 1079–1094. [Google Scholar] [CrossRef]
- Matusitz, J. Social Network Theory: A Comparative Analysis of the Jewish Revolt in Antiquity and the Cyber Terrorism Incident over Kosovo. Inf. Secur. J. Glob. Perspect. 2011, 20, 34–44. [Google Scholar] [CrossRef]
- Xu, F.; Sun, D.; Li, Z.; Li, B. Exploring Structural Features of Terrorist Organization’s Online Supporting Community via Social Network Modeling. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 274–278. [Google Scholar]
- Wang, T.; Krim, H. Statistical Classification of Social Networks. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 3977–3980. [Google Scholar]
- Fu, J.; Chai, J.; Sun, D.; Wang, S. Multi-Factor Analysis of Terrorist Activities Based on Social Network. In Proceedings of the 2012 Fifth International Conference on Business Intelligence and Financial Engineering, Lanzhou, China, 18–21 August 2012; pp. 476–480. [Google Scholar]
- Knoke, D. Emerging Trends in Social Network Analysis of Terrorism and Counterterrorism. In Emerging Trends in the Social and Behavioral Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–15. ISBN 978-1-118-90077-2. [Google Scholar]
- Elhajj, A.; Elsheikh, A.; Addam, O.; Alzohbi, M.; Zarour, O.; Aksaç, A.; Öztürk, O.; Özyer, T.; Ridley, M.; Alhajj, R. Estimating the Importance of Terrorists in a Terror Network. In Mining Social Networks and Security Informatics; Özyer, T., Erdem, Z., Rokne, J., Khoury, S., Eds.; Lecture Notes in Social Networks; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 267–283. ISBN 978-94-007-6359-3. [Google Scholar]
- Leuprecht, C.; Walther, O.; Skillicorn, D.B.; Ryde-Collins, H. Hezbollah’s Global Tentacles: A Relational Approach to Convergence with Transnational Organized Crime. Terror. Polit. Violence 2017, 29, 902–921. [Google Scholar] [CrossRef]
- Pilny, A.; Proulx, J.D. Using Interorganizational Communication Networks to Predict Terrorist Attacks. Commun. Res. 2022, 49, 3–32. [Google Scholar] [CrossRef]
- Rai, A.K.; Kumar, S. Identifying the Leaders and Main Conspirators of the Attacks in Terrorist Networks. ETRI J. 2022, 44, 977–990. [Google Scholar] [CrossRef]
- Mishra, A.K.; Rajpoot, V.; Bhardwaj, R.; Mishra, P.K.; Dwivedi, P. A Fuzzy-GA for Predicting Terrorist Networks in Social Media. In Dark Web Pattern Recognition and Crime Analysis Using Machine Intelligence; IGI Global: Pennsylvania, PA, USA, 2022; pp. 126–160. ISBN 978-1-66843-942-5. [Google Scholar]
- Mithoo, P.; Kumar, M. A Role Of Link Analysis in Social Networking: A Survey. In Proceedings of the 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Mangalore, India, 1–3 December 2022; Volume 7, pp. 272–275. [Google Scholar]
- Iyer, S.; Killingback, T.; Sundaram, B.; Wang, Z. Attack Robustness and Centrality of Complex Networks. PLoS ONE 2013, 8, e59613. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, K.; Wang, M.; Yan, X. Enhancing Robustness of Metro Networks Using Strategic Defense. Phys. Stat. Mech. Its Appl. 2018, 503, 1081–1091. [Google Scholar] [CrossRef]
- Piraveenan, M.; Uddin, S.; Chung, K.S.K. Measuring Topological Robustness of Networks under Sustained Targeted Attacks. In Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, Turkey, 26–29 August 2012; pp. 38–45. [Google Scholar]
- McMillan, C.; Felmlee, D.; Braines, D. Dynamic Patterns of Terrorist Networks: Efficiency and Security in the Evolution of Eleven Islamic Extremist Attack Networks. J. Quant. Criminol. 2020, 36, 559–581. [Google Scholar] [CrossRef]
- Birkeland, M.S.; Heir, T. Making Connections: Exploring the Centrality of Posttraumatic Stress Symptoms and Covariates after a Terrorist Attack. Eur. J. Psychotraumatol. 2017, 8, 1333387. [Google Scholar] [CrossRef] [PubMed]
- Asal, V.H.; Rethemeyer, R.K.; Anderson, I.; Stein, A.; Rizzo, J.; Rozea, M. The Softest of Targets: A Study on Terrorist Target Selection. J. Appl. Secur. Res. 2009, 4, 258–278. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Chen, D.; Zhang, X. Analysis of Network Robustness in Weighted and Unweighted Approaches: A Case Study of the Air Transport Network in the Belt and Road Region. J. Adv. Transp. 2021, 2021, e8810254. [Google Scholar] [CrossRef]
- Jensen, M.A.; Ferguson, N.; Kane, S.; LaFree, G. Choosing Where to Fight: Do Social Networks Distinguish American ISIS Foreign Fighters from ISIS-Inspired Terrorists? J. Confl. Resolut. 2023, Vol. 0, 00220027231164925. [Google Scholar] [CrossRef]
- Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Entropy and Network Centralities as Intelligent Tools for the Investigation of Terrorist Organizations. Entropy 2021, 23, 1334. [Google Scholar] [CrossRef]
- Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links. Mathematics 2022, 10, 1092. [Google Scholar] [CrossRef]
- Bongar, B.; Brown, L.M.; Beutler, L.E.; Breckenridge, J.N.; Zimbardo, P.G. Psychology of Terrorism; Oxford University Press: Oxford, UK, 2006; ISBN 0-19-803854-2. [Google Scholar]
- Primoratz, I. State Terrorism and Counter-Terrorism. In Terrorism: The Philosophical Issues; Springer: Berlin/Heidelberg, Germany, 2004; pp. 113–127. [Google Scholar]
- Nester, W.R. Terrorism and Counterterrorism. In Globalization, War, and Peace in the Twenty-First Century; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–94. [Google Scholar]
- Braithwaite, A. The Logic of Public Fear in Terrorism and Counter-Terrorism. J. Police Crim. Psychol. 2013, 28, 95–101. [Google Scholar] [CrossRef]
- Richardson, L. The Roots of Terrorism; Routledge: Oxford, UK, 2013; ISBN 1-135-44847-7. [Google Scholar]
- Richardson, L. What Terrorists Want: Understanding the Enemy, Containing the Threat; Random House: New York, NY, USA, 2006; ISBN 1-58836-554-9. [Google Scholar]
- Rezaei, R.; Chiew, T.K.; Lee, S.P. An Interoperability Model for Ultra Large Scale Systems. Adv. Eng. Softw. 2014, 67, 22–46. [Google Scholar] [CrossRef]
- Geraci, A. IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries; IEEE Press: Piscataway, NJ, USA, 1991; ISBN 1-55937-079-3. [Google Scholar]
- Interoperability: Definition, Evaluation and Application. Available online: https://www.ffe.de/en/publications/interoperabilitaet-begriffsklaerung-bewertung-und-anwendung/ (accessed on 27 July 2023).
- NATO Interoperability: Connecting Forces. Available online: https://www.nato.int/cps/en/natohq/topics_84112.htm (accessed on 27 July 2023).
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018; ISBN 0-19-252749-5. [Google Scholar]
- Vince, A. A Framework for the Greedy Algorithm. Discrete Appl. Math. 2002, 121, 247–260. [Google Scholar] [CrossRef]
- Goyal, A.; Lu, W.; Lakshmanan, L.V.S. CELF++: Optimizing the Greedy Algorithm for Influence Maximization in Social Networks. In Proceedings of the 20th International Conference Companion on World Wide Web; Association for Computing Machinery, Hyderabad, India, 28 March–1 April 2021; pp. 47–48. [Google Scholar]
- Edmonds, J. Matroids and the Greedy Algorithm. Math. Program. 1971, 1, 127–136. [Google Scholar] [CrossRef]
- Heidari, M.; Asadpour, M.; Faili, H. SMG: Fast Scalable Greedy Algorithm for Influence Maximization in Social Networks. Phys. Stat. Mech. Its Appl. 2015, 420, 124–133. [Google Scholar] [CrossRef]
- Council Of The European, European Union, Criminal Offence to Participate in a Criminal Organisation. Off. J. Eur. Union 1998, 31998F0733, 1–3.
- The EU’s Fight against Organised Crime. Available online: https://www.consilium.europa.eu/en/policies/eu-fight-against-crime/ (accessed on 10 July 2023).
- Jackson, R.; Smyth, M.B.; Gunning, J. Critical Terrorism Studies: A New Research Agenda; Routledge: Oxford, UK, 2009; ISBN 978-1-134-05051-2. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Network Topology Inference. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 115–140. ISBN 978-3-030-44129-6. [Google Scholar]
- Rodríguez, J.A.; Estrada, E.; Gutiérrez, A. Functional Centrality in Graphs. Linear Multilinear Algebra 2007, 55, 293–302. [Google Scholar] [CrossRef]
- Klein, D.J. Centrality Measure in Graphs. J. Math. Chem. 2010, 47, 1209–1223. [Google Scholar] [CrossRef]
- Kolaczyk, E.D.; Csárdi, G. Modeling and Prediction for Processes on Network Graphs. In Statistical Analysis of Network Data with R.; Springer International Publishing: Cham, Switzerland, 2020; pp. 141–167. ISBN 978-3-030-44129-6. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Descriptive Analysis of Network Graph Characteristics. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–68. ISBN 978-3-030-44129-6. [Google Scholar]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-38707-1. [Google Scholar]
- White, D.R.; Borgatti, S.P. Betweenness Centrality Measures for Directed Graphs. Soc. Netw. 1994, 16, 335–346. [Google Scholar] [CrossRef]
- Goñi, J.; van den Heuvel, M.P.; Avena-Koenigsberger, A.; Velez de Mendizabal, N.; Betzel, R.F.; Griffa, A.; Hagmann, P.; Corominas-Murtra, B.; Thiran, J.-P.; Sporns, O. Resting-Brain Functional Connectivity Predicted by Analytic Measures of Network Communication. Proc. Natl. Acad. Sci. USA 2014, 111, 833–838. [Google Scholar] [CrossRef]
- Bang-Jensen, J.; Gutin, G.; Yeo, A. When the Greedy Algorithm Fails. Discrete Optim. 2004, 1, 121–127. [Google Scholar] [CrossRef]
- Cuesta, Á.; Barrero, D.F.; R-Moreno, M.D. A Descriptive Analysis of Twitter Activity in Spanish around Boston Terror Attacks. In Proceedings of the Computational Collective Intelligence. Technologies and Applications: 5th International Conference, ICCCI 2013, Craiova, Romania, 11–13 September 2013; Proceedings 5. Springer: Berlin/Heidelberg, Germany, 2013; pp. 631–640. [Google Scholar]
- Fischer-Preßler, D.; Schwemmer, C.; Fischbach, K. Collective Sense-Making in Times of Crisis: Connecting Terror Management Theory with Twitter User Reactions to the Berlin Terrorist Attack. Comput. Hum. Behav. 2019, 100, 138–151. [Google Scholar] [CrossRef]
- Leenuse, M.L.; Pankaj, D.S. Detection and Prediction of Terrorist Activities and Threatening Events in Twitter-A Survey. In Proceedings of the 2023 International Conference on Control, Communication and Computing (ICCC), Thiruvananthapuram, India, 19–21 May 2023; IEEE, 2023; pp. 1–6. [Google Scholar]
- Kusen, E.; Strembeck, M. Dynamics of Personal Responses to Terror Attacks: A Temporal Network Analysis Perspective. 2022. Available online: https://eprints.cs.univie.ac.at/7565/1/complexis22-responses.pdf (accessed on 6 June 2023).
- Buntain, C.; Golbeck, J.; Liu, B.; LaFree, G. Evaluating Public Response to the Boston Marathon Bombing and Other Acts of Terrorism through Twitter. In Proceedings of the International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016; Volume 10, pp. 555–558. [Google Scholar]
- Sarker, A.; Chakraborty, P.; Sha, S.S.; Khatun, M.; Hasan, M.R.; Banerjee, K. Improvised Technique for Analyzing Data and Detecting Terrorist Attack Using Machine Learning Approach Based on Twitter Data. J. Comput. Commun. 2020, 8, 50–62. [Google Scholar] [CrossRef]
- Grobelscheg, L.; Sliwa, K.; Kušen, E.; Strembeck, M. On the Dynamics of Narratives of Crisis during Terror Attacks. In Proceedings of the 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), Milan, Italy, 29 November–1 December 2022; IEEE, 2022; pp. 1–8. [Google Scholar]
- Ishengoma, F.R. Online Social Networks and Terrorism 2.0 in Developing Countries. arXiv 2014, arXiv:14100531. [Google Scholar]
- Schafer, V.; Truc, G.; Badouard, R.; Castex, L.; Musiani, F. Paris and Nice Terrorist Attacks: Exploring Twitter and Web Archives. Media War Confl. 2019, 12, 153–170. [Google Scholar] [CrossRef]
- Najjar, E.; Al-augby, S. Sentiment Analysis Combination in Terrorist Detection on Twitter: A Brief Survey of Approaches and Techniques. Res. Intell. Comput. Eng. Sel. Proc. RICE 2020 2021, 1254, 231–240. [Google Scholar]
- Garg, P.; Garg, H.; Ranga, V. Sentiment Analysis of the Uri Terror Attack Using Twitter. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; IEEE, 2017; pp. 17–20. [Google Scholar]
- Giavazzi, F.; Iglhaut, F.; Lemoli, G.; Rubera, G. Terrorist Attacks, Cultural Incidents, and the Vote for Radical Parties: Analyzing Text from Twitter. Am. J. Polit. Sci. 2023. [Google Scholar] [CrossRef]
- Burnap, P.; Williams, M.L.; Sloan, L.; Rana, O.; Housley, W.; Edwards, A.; Knight, V.; Procter, R.; Voss, A. Tweeting the Terror: Modelling the Social Media Reaction to the Woolwich Terrorist Attack. Soc. Netw. Anal. Min. 2014, 4, 206. [Google Scholar] [CrossRef]
- Simon, T.; Goldberg, A.; Aharonson-Daniel, L.; Leykin, D.; Adini, B. Twitter in the Cross Fire—The Use of Social Media in the Westgate Mall Terror Attack in Kenya. PLoS ONE 2014, 9, e104136. [Google Scholar] [CrossRef]
- Arifin, V.; Jallow, F.B.; Lubis, A.; Bahaweres, R.B.; Rofiq, A.A. Using Deep Learning Model to Predict Terms Use by Terrorist to Pre-Plan an Attack on A Real-Time Twitter Tweets from Rapid Miner. In Proceedings of the 2022 10th International Conference on Cyber and IT Service Management (CITSM), Yogyakarta, Indonesia, 20–21 September 2022; IEEE, 2022; pp. 1–6. [Google Scholar]
- Shu, K.; Bhattacharjee, A.; Alatawi, F.; Nazer, T.H.; Ding, K.; Karami, M.; Liu, H. Combating Disinformation in a social Media Age. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1385. [Google Scholar] [CrossRef]
- Aïmeur, E.; Amri, S.; Brassard, G. Fake News, Disinformation and Misinformation in Social Media: A review. Soc. Netw. Anal. Min. 2023, 13, 30. [Google Scholar] [CrossRef]
- Nela, A.; Parruca, E. Impact of Social Media Disinformation and of Fake News Overexposure on the Actual Capacities and the Psychological Wellbeing During the COVID-19 Pandemic: A Systemic Literature Review. Glob. Psychother. 2023, 3, 126–132. [Google Scholar] [CrossRef]
- Gottlieb, M.; Dyer, S. Information and Disinformation: Social Media in the COVID-19 Crisis. Acad. Emerg. Med. 2020, 27, 640. [Google Scholar] [CrossRef]
- Bradshaw, S.; Howard, P.N. The Global Organization of Social Media Disinformation Campaigns. J. Int. Aff. 2018, 71, 23–32. [Google Scholar]
- John Jay & ARTIS Transnational Terrorism Database. Available online: http://doitapps.jjay.cuny.edu/jjatt/index.php (accessed on 16 December 2021).
- CASOS|Computational Analysis of Social and Organizational Systems (Carnegie Mellon University). Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- John Jay & ARTIS Transnational Terrorism Database Austrailian Embassy Bombing Data Set [Data set] 2016. Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- Jemaah Islamiyah—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Jemaah_Islamiyah&oldid=1025043319 (accessed on 26 June 2021).
- Australian Embassy Bombing in Jakarta—Wikipedia. Available online: https://en.wikipedia.org/wiki/Australian_Embassy_bombing_in_Jakarta (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Hamburg Cell 9/11 [Data Set] 2001. Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- Hamburg Cell—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Hamburg_cell&oldid=977822420 (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Madrid Train Bombing 2004 [Data Set] 2004. Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- Madrid Train Bombings—Wikipedia. 2004. Available online: https://en.wikipedia.org/w/index.php?title=2004_Madrid_train_bombings&oldid=1037095728 (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Phillippines Bombing [Data Set] 2000. Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- Rizal Day Bombings—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Rizal_Day_bombings&oldid=1033689495 (accessed on 10 August 2021).
- Cunningham, S.F.E. Dan Terrorist Network Adaptation to a Changing Environment. In Crime and Networks; Routledge: Oxford, UK, 2013; ISBN 978-1-315-88501-8. [Google Scholar]
- Xu, J.; Hu, D.; Chen, H. The Dynamics of Terrorist Networks: Understanding the Survival Mechanisms of Global Salafi Jihad. J. Homel. Secur. Emerg. Manag. 2009, 6. [Google Scholar] [CrossRef]
- Karthika, S.; Geetha, R.; Bose, S. Whom to Remove? Breaking the Covert Network. In Proceedings of the 2013 Fifth International Conference on Advanced Computing (ICoAC), Chennai, India, 18–20 December 2013; pp. 348–354. [Google Scholar]
- Elmhadhbi, L.; Karray, M.-H.; Archimède, B.; Otte, J.N.; Smith, B. An Ontological Approach to Enhancing Information Sharing in Disaster Response. Information 2021, 12, 432. [Google Scholar] [CrossRef]
- Hu, D. Analysis and Applications of Social Network Formation. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2009. [Google Scholar]
- Reis, J.; Amorim, M.; Melão, N.; Cohen, Y.; Costa, J. Counterintelligence Technologies: An Exploratory Case Study of Preliminary Credibility Assessment Screening System in the Afghan National Defense and Security Forces. Information 2021, 12, 122. [Google Scholar] [CrossRef]
- Scripps, J.; Tan, P.-N.; Esfahanian, A.-H. Exploration of Link Structure and Community-Based Node Roles in Network Analysis. In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE, USA, 28–31 October 2007; pp. 649–654. [Google Scholar]
- Ji, J.; Wu, G.; Duan, C.; Ren, Y.; Wang, Z. Greedily Remove k Links to Hide Important Individuals in Social Network. In Proceedings of the Security and Privacy in Social Networks and Big Data; Meng, W., Furnell, S., Eds.; Springer: Singapore, 2019; pp. 223–237. [Google Scholar]
- Christopoulos, K.; Baltsou, G.; Tsichlas, K. Local Community Detection in Graph Streams with Anchors. Information 2023, 14, 332. [Google Scholar] [CrossRef]
- Camacho, D.; Luzón, M.V.; Cambria, E. New Research Methods & Algorithms in Social Network Analysis. Future Gener. Comput. Syst. 2021, 114, 290–293. [Google Scholar] [CrossRef]
- Ballinger, O. Insurgency as Complex Network: Image Co-Appearance and Hierarchy in the PKK. Soc. Netw. 2023, 74, 182–205. [Google Scholar] [CrossRef]
- Choudhary, P. A Survey on Social Network Analysis for Counter-Terrorism. Int. J. Comput. Appl. 2015, 112, 24–29. [Google Scholar]
- Carley, K. Dynamic Network Analysis for Counter-Terrorism. 2005. Available online: https://www.researchgate.net/profile/Kathleen-Carley/publication/228770516_Dynamic_network_analysis_for_counter-terrorism/links/00b7d517d66cece937000000/Dynamic-network-analysis-for-counter-terrorism.pdf (accessed on 20 June 2023).
- Scott, J.; Carrington, P.J. The SAGE Handbook of Social Network Analysis. SAGE: Newcastle upon Tyne, UK, 2011; ISBN 978-1-4462-5011-2. [Google Scholar]
Initial Values | is the number of removed nodes is the Interoperability of the network after sequentially removing nodes. Initially, for , we have is the set of nodes-vertices of the network is the set of surviving nodes-vertices is the set of removed nodes-vertices |
Iterative Loop While :
| is the Interoperability after sequentially removing nodes, where the -th node, is node : where: is the initial size of the giant component, without any node removal. is the size of the giant component after sequentially removing nodes, where the -th node, is node . |
Sequential Node Removal in “Jamaah Islamiah Section of Indonesia” | |||||||
---|---|---|---|---|---|---|---|
Strength Centrality | Betweenness Centrality | Clustering Coefficient Centrality | Strength Centrality Recalculated | Betweenness Centrality Recalculated | Clustering Coefficient Centrality Recalculated | Greedy Algorithm | |
Attack | Node | Node | Node | Node | Node | Node | Node |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | X1579 | X1556 | X1504 | X1579 | X1556 | X1506 | X1561 |
2 | X177 | X1561 | X1563 | X1595 | X1580 | X801 | X1580 |
3 | X1595 | X1590 | X1570 | X1590 | X1590 | X1574 | X1579 |
4 | X1590 | X1553 | X1574 | X1582 | X1579 | X1570 | X1553 |
5 | X1553 | X1580 | X801 | X177 | X1582 | X1563 | X577 |
6 | X1556 | X1579 | X1506 | X1580 | X177 | X1504 | X1509 |
7 | X1562 | X1595 | X177 | X1562 | X1595 | X177 | X177 |
8 | X1580 | X1562 | X1553 | X1556 | X1562 | X1561 | X800 |
9 | X1582 | X1509 | X1561 | X1558 | X1506 | X1556 | X1504 |
10 | X1504 | X1582 | X1579 | X1563 | X801 | X1558 | X1507 |
11 | X1561 | X577 | X1556 | X1570 | X1558 | X1534 | X1556 |
12 | X1563 | X177 | X1562 | X1553 | X1534 | X802 | X1562 |
13 | X1574 | X1504 | X1582 | X1506 | X802 | X598 | X1563 |
14 | X577 | X1563 | X1595 | X801 | X598 | X1595 | X1570 |
15 | X1570 | X800 | X1580 | X1534 | X1574 | X1590 | X1574 |
16 | X598 | X1507 | X577 | X802 | X1570 | X1582 | X1582 |
17 | X801 | X1570 | X800 | X598 | X1563 | X1580 | X1590 |
18 | X1506 | X1574 | X1507 | X1574 | X1561 | X1579 | X1595 |
19 | X800 | X598 | X1509 | X1561 | X1553 | X1562 | |
20 | X1509 | X802 | X1590 | X1509 | X1509 | X1553 | |
21 | X1534 | X1534 | X598 | X1507 | X1507 | X1509 | |
22 | X1558 | X1558 | X802 | X1504 | X1504 | X1507 | |
23 | X1507 | X801 | X1534 | X800 | X800 | X800 | |
24 | X802 | X1506 | X1558 | X577 | X577 | X577 |
Sequential Node Removal in “Hamburg Cell” | |||||||
---|---|---|---|---|---|---|---|
Strength Centrality | Betweenness Centrality | Clustering Coefficient Centrality | Strength Centrality Recalculated | Betweenness Centrality Recalculated | Clustering Coefficient Centrality Recalculated | Greedy Algorithm | |
Attack | Node | Node | Node | Node | Node | Node | Node |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | X64 | X65 | X1030 | X64 | X65 | X1035 | X65 |
2 | X62 | X60 | X1032 | X62 | X64 | X1032 | X60 |
3 | X1005 | X61 | X1035 | X1005 | X61 | X1030 | X61 |
4 | X60 | X62 | X1017 | X65 | X62 | X63 | X1005 |
5 | X61 | X64 | X1016 | X61 | X1005 | X66 | X63 |
6 | X65 | X1005 | X66 | X60 | X60 | X1017 | X64 |
7 | X66 | X58 | X63 | X57 | X66 | X1016 | X62 |
8 | X57 | X1017 | X58 | X63 | X57 | X60 | X57 |
9 | X63 | X650 | X60 | X1017 | X1039 | X58 | X58 |
10 | X1016 | X1016 | X62 | X1032 | X1035 | X62 | X66 |
11 | X1017 | X57 | X1005 | X1012 | X1034 | X1005 | X650 |
12 | X1012 | X66 | X64 | X1016 | X1033 | X650 | X1011 |
13 | X58 | X1012 | X61 | X1039 | X1032 | X64 | X1012 |
14 | X1032 | X1035 | X1012 | X1035 | X1031 | X1039 | X1016 |
15 | X650 | X63 | X65 | X1034 | X1030 | X1034 | |
16 | X1030 | X1011 | X57 | X1033 | X1017 | X1033 | |
17 | X1011 | X1015 | X650 | X1031 | X1016 | X1031 | |
18 | X1015 | X1030 | X1011 | X1030 | X1015 | X1015 | |
19 | X1034 | X1031 | X1015 | X1015 | X1012 | X1012 | |
20 | X1035 | X1032 | X1031 | X1011 | X1011 | X1011 | |
21 | X1039 | X1033 | X1033 | X650 | X650 | X65 | |
22 | X1031 | X1034 | X1034 | X66 | X63 | X61 | |
23 | X1033 | X1039 | X1039 | X58 | X58 | X57 |
Sequential Node Removal in “Al-Qaeda Section of Madrid” | |||||||
---|---|---|---|---|---|---|---|
Strength Centrality | Betweenness Centrality | Clustering Coefficient Centrality | Strength Centrality Recalculated | Betweenness Centrality Recalculated | Clustering Coefficient Centrality Recalculated | Greedy Algorithm | |
Attack | Node | Node | Node | Node | Node | Node | Node |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | X3136 | X3132 | X3135 | X3136 | X3132 | X3165 | X3141 |
2 | X3132 | X3141 | X3142 | X3132 | X3136 | X3156 | X3134 |
3 | X3157 | X3137 | X3156 | X3141 | X3161 | X3142 | X3179 |
4 | X3138 | X3162 | X3165 | X3157 | X3141 | X3135 | X3135 |
5 | X3142 | X3159 | X3143 | X3160 | X3159 | X3143 | X3138 |
6 | X3134 | X3136 | X3157 | X3138 | X3157 | X3157 | X3132 |
7 | X3143 | X3161 | X3140 | X3161 | X3138 | X3140 | X3136 |
8 | X3156 | X3134 | X3138 | X3180 | X3160 | X3138 | X3137 |
9 | X3179 | X3160 | X3161 | X3165 | X3165 | X3161 | X3140 |
10 | X3140 | X3179 | X3137 | X3143 | X3153 | X3136 | X3162 |
11 | X3141 | X3143 | X3132 | X3159 | X3180 | X3159 | X3142 |
12 | X3161 | X3157 | X3179 | X3153 | X3179 | X3160 | X3153 |
13 | X3135 | X3138 | X3136 | X3179 | X3162 | X3153 | X3143 |
14 | X3137 | X3135 | X3134 | X3162 | X3156 | X3180 | X3156 |
15 | X3160 | X3140 | X3141 | X3156 | X3143 | X3179 | X3160 |
16 | X3153 | X3142 | X3162 | X3142 | X3142 | X3162 | |
17 | X3162 | X3156 | X3180 | X3140 | X3140 | X3141 | |
18 | X3180 | X3180 | X3153 | X3137 | X3137 | X3137 | |
19 | X3165 | X3153 | X3160 | X3134 | X3134 | X3134 | |
20 | X3159 | X3165 | X3159 | X3135 | X3135 | X3132 |
Sequential Node Removal in “Jamaah Islamiah Section of the Philippines” | |||||||
---|---|---|---|---|---|---|---|
Strength Centrality | Betweenness Centrality | Clustering Coefficient Centrality | Strength Centrality Recalculated | Betweenness Centrality Recalculated | Clustering Coefficient Centrality Recalculated | Greedy Algorithm | |
Attack | Node | Node | Node | Node | Node | Node | Node |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | X153 | X159 | X189 | X153 | X159 | X1564 | X162 |
2 | X162 | X151 | X650 | X162 | X153 | X1549 | X151 |
3 | X163 | X162 | X1502 | X1567 | X1567 | X1502 | X153 |
4 | X1567 | X1567 | X1549 | X163 | X162 | X650 | X155 |
5 | X183 | X153 | X1564 | X183 | X151 | X189 | X159 |
6 | X151 | X155 | X183 | X151 | X183 | X159 | X1567 |
7 | X155 | X163 | X163 | X159 | X163 | X1567 | X163 |
8 | X1549 | X183 | X155 | X1564 | X587 | X183 | X183 |
9 | X1564 | X189 | X159 | X189 | X1564 | X163 | X1549 |
10 | X159 | X650 | X1567 | X587 | X1549 | X155 | |
11 | X1502 | X1502 | X162 | X1549 | X1502 | X153 | |
12 | X189 | X1549 | X151 | X1502 | X650 | X587 | |
13 | X650 | X1564 | X153 | X650 | X189 | X162 | |
14 | X587 | X587 | X587 | X155 | X155 | X151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyropoulos, A.Z.; Ioannidis, E.; Antoniou, I. Interoperability and Targeted Attacks on Terrorist Organizations Using Intelligent Tools from Network Science. Information 2023, 14, 580. https://doi.org/10.3390/info14100580
Spyropoulos AZ, Ioannidis E, Antoniou I. Interoperability and Targeted Attacks on Terrorist Organizations Using Intelligent Tools from Network Science. Information. 2023; 14(10):580. https://doi.org/10.3390/info14100580
Chicago/Turabian StyleSpyropoulos, Alexandros Z., Evangelos Ioannidis, and Ioannis Antoniou. 2023. "Interoperability and Targeted Attacks on Terrorist Organizations Using Intelligent Tools from Network Science" Information 14, no. 10: 580. https://doi.org/10.3390/info14100580
APA StyleSpyropoulos, A. Z., Ioannidis, E., & Antoniou, I. (2023). Interoperability and Targeted Attacks on Terrorist Organizations Using Intelligent Tools from Network Science. Information, 14(10), 580. https://doi.org/10.3390/info14100580