One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Surface Photochemical Modification
2.3. Electrical Sensing
3. Results and Discussion
3.1. Photochemical Attachment of Azide-Modified Aptamers to Graphene Surface
3.2. NT-proBNP Measurements by Photochemically Modified Graphene Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dasgupta, A.; Wahed, A.; Cardiac Markers. Clinical Chemistry, Immunology and Laboratory Quality Control; Elsevier: Amsterdam, The Netherlands, 2014; pp. 127–144. [Google Scholar]
- Harpaz, D.; Seet, R.C.S.; Marks, R.S.; Tok, A.I.Y. B-Type Natriuretic Peptide as a Significant Brain Biomarker for Stroke Triaging Using a Bedside Point-of-Care Monitoring Biosensor. Biosensors 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Komarova, N.; Panova, O.; Titov, A.; Kuznetsov, A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022, 10, 1085. [Google Scholar] [CrossRef]
- Pollok, N.E.; Rabin, C.; Walgama, C.T.; Smith, L.; Richards, I.; Crooks, R.M. Electrochemical Detection of NT-proBNP Using a Metalloimmunoassay on a Paper Electrode Platform. ACS Sens. 2020, 5, 853–860. [Google Scholar] [CrossRef]
- Song, K.-S.; Nimse, S.; Sonawane, M.; Warkad, S.; Kim, T. Ultra-Sensitive NT-proBNP Quantification for Early Detection of Risk Factors Leading to Heart Failure. Sensors 2017, 17, 2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Lin, H.-Y.; Li, K.-H.; Ma, H.-P.; Huang, P.-C.; Shiesh, S.-C.; Lee, G.-B. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens. Bioelectron. 2018, 122, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system. Lab Chip 2019, 19, 1676–1685. [Google Scholar] [CrossRef]
- Tai, T.-Y.; Sinha, A.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, S.-L.; Lee, G.-Y.; Chyi, J.-I.; Shiesh, S.-C.; Lee, G.-B.; Wang, Y.-L. Design and Demonstration of Tunable Amplified Sensitivity of AlGaN/GaN High Electron Mobility Transistor (HEMT)-Based Biosensors in Human Serum. Anal. Chem. 2019, 91, 5953–5960. [Google Scholar] [CrossRef]
- Nekrasov, N.; Jaric, S.; Kireev, D.; Emelianov, A.V.; Orlov, A.V.; Gadjanski, I.; Nikitin, P.I.; Akinwande, D.; Bobrinetskiy, I. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosens. Bioelectron. 2022, 200, 113890. [Google Scholar] [CrossRef]
- Nekrasov; Kireev; Emelianov; Bobrinetskiy Graphene-Based Sensing Platform for On-Chip Ochratoxin A Detection. Toxins 2019, 11, 550. [CrossRef] [Green Version]
- Emelianov, A.V.; Nekrasov, N.P.; Moskotin, M.V.; Fedorov, G.E.; Otero, N.; Romero, P.M.; Nevolin, V.K.; Afinogenov, B.I.; Nasibulin, A.G.; Bobrinetskiy, I.I. Individual SWCNT Transistor with Photosensitive Planar Junction Induced by Two-Photon Oxidation. Adv. Electron. Mater. 2021, 7, 2000872. [Google Scholar] [CrossRef]
- Hao, Z.; Pan, Y.; Huang, C.; Wang, Z.; Lin, Q.; Zhao, X.; Liu, S. Modulating the Linker Immobilization Density on Aptameric Graphene Field Effect Transistors Using an Electric Field. ACS Sens. 2020, 5, 2503–2513. [Google Scholar] [CrossRef] [PubMed]
- Gwyther, R.E.A.; Nekrasov, N.P.; Emelianov, A.V.; Nasibulin, A.G.; Ramakrishnan, K.; Bobrinetskiy, I.; Jones, D.D. Differential Bio-Optoelectronic Gating of Semiconducting Carbon Nanotubes by Varying the Covalent Attachment Residue of a Green Fluorescent Protein. Adv. Funct. Mater. 2022, 32, 2112374. [Google Scholar] [CrossRef]
- Brse, S.; Banert, K. (Eds.) Organic Azides; John Wiley & Sons, Ltd.: Chichester, UK, 2009; ISBN 9780470682517. [Google Scholar]
- Park, J.; Yan, M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Mishyn, V.; Rodrigues, T.; Leroux, Y.R.; Aspermair, P.; Happy, H.; Bintinger, J.; Kleber, C.; Boukherroub, R.; Knoll, W.; Szunerits, S. Controlled covalent functionalization of a graphene-channel of a field effect transistor as an ideal platform for (bio)sensing applications. Nanoscale Horiz. 2021, 6, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Tregubov, A.A.; Nikitin, P.I.; Nikitin, M.P. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem. Rev. 2018, 118, 10294–10348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munief, W.-M.; Lu, X.; Teucke, T.; Wilhelm, J.; Britz, A.; Hempel, F.; Lanche, R.; Schwartz, M.; Law, J.K.Y.; Grandthyll, S.; et al. Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens. Bioelectron. 2019, 126, 136–142. [Google Scholar] [CrossRef]
- Rodrigues, T.; Mishyn, V.; Leroux, Y.R.; Butruille, L.; Woitrain, E.; Barras, A.; Aspermair, P.; Happy, H.; Kleber, C.; Boukherroub, R.; et al. Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury. Nano Today 2022, 43, 101391. [Google Scholar] [CrossRef]
- Thomas, S.K.; Jamieson, W.D.; Gwyther, R.E.A.; Bowen, B.J.; Beachey, A.; Worthy, H.L.; Macdonald, J.E.; Elliott, M.; Castell, O.K.; Jones, D.D. Site-Specific Protein Photochemical Covalent Attachment to Carbon Nanotube Side Walls and Its Electronic Impact on Single Molecule Function. Bioconjug. Chem. 2020, 31, 584–594. [Google Scholar] [CrossRef]
- Leinonen, H.; Pettersson, M.; Lajunen, M. Water-soluble carbon nanotubes through sugar azide functionalization. Carbon N. Y. 2011, 49, 1299–1304. [Google Scholar] [CrossRef]
- Bose, S.; Drzal, L.T. Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites. Carbon Lett. 2015, 16, 101–106. [Google Scholar] [CrossRef]
- Ai, Z.; Wang, L.; Guo, Q.; Kong, D.; Wu, Y.; Liu, Y.; Wei, D. Short-wavelength ultraviolet dosimeters based on DNA nanostructure-modified graphene field-effect transistors. Chem. Commun. 2021, 57, 5071–5074. [Google Scholar] [CrossRef]
- Saha, R.; Chen, I.A. Effect of UV Radiation on Fluorescent RNA Aptamers’ Functional and Templating Ability. ChemBioChem 2019, 20, 2609–2617. [Google Scholar] [CrossRef] [Green Version]
- Danielson, E.; Sontakke, V.A.; Porkovich, A.J.; Wang, Z.; Kumar, P.; Ziadi, Z.; Yokobayashi, Y.; Sowwan, M. Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. Sens. Actuators B Chem. 2020, 320, 128432. [Google Scholar] [CrossRef]
- Emelianov, A.V.; Kireev, D.; Levin, D.D.; Bobrinetskiy, I.I. The effect of ultraviolet light on structural properties of exfoliated and CVD graphene. Appl. Phys. Lett. 2016, 109, 173101. [Google Scholar] [CrossRef]
- Liu, L.-H.; Zorn, G.; Castner, D.G.; Solanki, R.; Lerner, M.M.; Yan, M. A simple and scalable route to wafer-size patterned graphene. J. Mater. Chem. 2010, 20, 5041. [Google Scholar] [CrossRef] [Green Version]
- Ziem, B.; Rahn, J.; Donskyi, I.; Silberreis, K.; Cuellar, L.; Dernedde, J.; Keil, G.; Mettenleiter, T.C.; Haag, R. Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus. Macromol. Biosci. 2017, 17, 1600499. [Google Scholar] [CrossRef]
- Leinonen, H.; Rintala, J.; Siitonen, A.; Lajunen, M.; Pettersson, M. New nitrene functionalizations onto sidewalls of carbon nanotubes and their spectroscopic analysis. Carbon N. Y. 2010, 48, 2425–2434. [Google Scholar] [CrossRef]
- Ducos, P.J. Nano/biosensors Based On Large-Area Graphene. Publicly Accessible Penn Dissertations. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2017. [Google Scholar]
- Cernat, A.; Györfi, S.J.; Irimes, M.-B.; Tertiș, M.; Bodoki, A.; Pralea, I.-E.; Suciu, M.; Cristea, C. Click chemistry on azide-functionalized graphene oxide. Electrochem. Commun. 2019, 98, 23–27. [Google Scholar] [CrossRef]
- Raj, N.; Crooks, R.M. Detection Efficiency of Ag Nanoparticle Labels for a Heart Failure Marker Using Linear and Square-Wave Anodic Stripping Voltammetry. Biosensors 2022, 12, 203. [Google Scholar] [CrossRef]
- Alawieh, H.; El Chemaly, T.; Alam, S.; Khraiche, M. Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors 2019, 19, 5003. [Google Scholar] [CrossRef]
- Degregory, P.R.; Tapia, J.; Wong, T.; Villa, J.; Richards, I.; Crooks, R.M. Managing Heart Failure at Home With Point-of-Care Diagnostics. IEEE J. Transl. Eng. Health Med. 2017, 5, 1–6. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005, 95, 948–954. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Petersen, C.; Salvo, P.; Ghimenti, S.; Franzini, M.; Biagini, D.; Hangouët, M.; Trivella, M.G.; Di Francesco, F.; Paolicchi, A.; et al. Determination and stability of N-terminal pro-brain natriuretic peptide in saliva samples for monitoring heart failure. Sci. Rep. 2021, 11, 13088. [Google Scholar] [CrossRef]
- Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef]
- Ben Halima, H.; Bellagambi, F.G.; Hangouët, M.; Alcacer, A.; Pfeiffer, N.; Heuberger, A.; Zine, N.; Bausells, J.; Elaissari, A.; Errachid, A. A novel electrochemical strategy for NT-proBNP detection using IMFET for monitoring heart failure by saliva analysis. Talanta 2023, 251, 123759. [Google Scholar] [CrossRef]
Parameter | Sensor GFETs * | Control GFETs ** |
---|---|---|
R before UV, kOhm | 390 ± 130 | 470 ± 200 |
R after UV, kOhm | 360 ± 200 | 560 ± 140 |
Dirac point before UV, V | 0.183 ± 0.004 | 0.261 ± 0.004 |
Dirac point after UV, V | 0.135 ± 0.004 | 0.244 ± 0.004 |
Raman I(G) before/I(G) after | 1.97 | 1.48 |
Element | Sensor GFETs | Control GFETs |
---|---|---|
C | 3.6 ± 1.4 | 3 ± 1 |
N | 0.52 ± 0.45 | 0.45 ± 0.31 |
O | 57 ± 13 | 58 ± 11 |
Si | 39 ± 7 | 39 ± 3 |
FET Type | Receptor Type | Response Time | LOD | Detection Range | Ref |
---|---|---|---|---|---|
GFET | aptamer | 75 s | 0.01 pg/mL | 0.1–104 pg/mL | This work |
rGO-FET | antibody | 15 min | 30 pg/mL | 1–104 pg/mL | [18] |
AlGaN/GaN HEMT | aptamer | 5 min | 220 pg/mL | 102–104 pg/mL | [8] |
AlGaN/GaN HEMT | antibody | - | 1 pM (~10 pg/mL) | 0.1–103 pM | [37] |
Si(n+)/SiO2/Si3N4 | antibody | - | 0.02 pg/mL | 10–2 × 104 pg/mL | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekrasov, N.; Kudriavtseva, A.; Orlov, A.V.; Gadjanski, I.; Nikitin, P.I.; Bobrinetskiy, I.; Knežević, N.Ž. One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP. Biosensors 2022, 12, 1071. https://doi.org/10.3390/bios12121071
Nekrasov N, Kudriavtseva A, Orlov AV, Gadjanski I, Nikitin PI, Bobrinetskiy I, Knežević NŽ. One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP. Biosensors. 2022; 12(12):1071. https://doi.org/10.3390/bios12121071
Chicago/Turabian StyleNekrasov, Nikita, Anastasiia Kudriavtseva, Alexey V. Orlov, Ivana Gadjanski, Petr I. Nikitin, Ivan Bobrinetskiy, and Nikola Ž. Knežević. 2022. "One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP" Biosensors 12, no. 12: 1071. https://doi.org/10.3390/bios12121071
APA StyleNekrasov, N., Kudriavtseva, A., Orlov, A. V., Gadjanski, I., Nikitin, P. I., Bobrinetskiy, I., & Knežević, N. Ž. (2022). One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP. Biosensors, 12(12), 1071. https://doi.org/10.3390/bios12121071