Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Material Characterization and Electrochemical Instruments
2.3. Synthesis and Preparation of Ni-HHTP
2.4. Fabrication of Paper-Based Electrochemical Sensors
2.5. Modification of Paper-Based Electrochemical Sensors
3. Results and Discussion
3.1. Material Characterization
3.2. Optimization of Paper-Based Electrochemical Sensor
3.3. Electrochemical Responses of the Sensors to H2O2 and Glu
3.4. Application of Paper-Based Electrochemical Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, W.H.; Zhu, J.Y.; Wu, W.X.; Wang, N.X.; Wang, J.Q.; Wu, J.S.; Wu, Q.; Wang, X.W.; Yu, C.M.; Wei, G.F.; et al. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research 2021, 2021, 9757126. [Google Scholar] [CrossRef] [PubMed]
- Nyein, H.Y.Y.; Bariya, M.; Kivimäk, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.Q.; Lin, Y.J.; et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 2019, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.X.; Yin, L.; Sempionatto, J.R.; Moon, J.M.; Teymourian, H.; Wang, J. Touch-Based Stressless Cortisol Sensing. Adv. Mater. 2021, 33, 2008465. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cui, S.S.; Zhang, S.Y.; Tian, Q.J.; Liu, Y.F.; Zhang, P.; Wang, M.X.; Zhang, J.L.; Li, X.J. Cu-MOF/hemin: A bionic enzyme with excellent dispersity for the determination of hydrogen peroxide released from living cells. Analyst 2021, 19, 5951–5961. [Google Scholar] [CrossRef]
- Stone, J.R.; Yang, S.P. Hydrogen peroxide: A signaling messenger. Antioxid. Redox Signal. 2006, 8, 243–270. [Google Scholar] [CrossRef]
- Tian, H.L.; Zhang, M.Z.; Jin, G.X.; Jiang, Y.; Luan, Y. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J. Colloid. Interface Sci. 2021, 587, 358–366. [Google Scholar] [CrossRef]
- Tong, P.F.; Asif, M.; Ajmal, M.; Aziz, A.; Sun, Y.M. A multicomponent polymer-metal-enzyme system as electrochemical biosensor for H2O2 detection. Front. Chem. 2022, 10, 2296–2646. [Google Scholar] [CrossRef]
- Elias, H.; Vayssié, S. Reactive peroxo compounds generated in situ from hydrogen peroxide: Kinetics and catalytic application in oxidation processes. Peroxide Chem. 2000, 5, 128–138. [Google Scholar]
- Asif, M.; Wang, H.T.; Dong, S.; Aziz, A.; Zhang, G.A.; Xiao, F.; Liu, H.F. Metal oxide intercalated layered double hydroxide nanosphere: With enhanced electrocatalytic activity towards H2O2 for biological applications. Sens. Actuators B Chem. 2017, 239, 243–252. [Google Scholar] [CrossRef]
- Zhao, A.S.; She, J.; Xiao, C.; Xi, J.B.; Xu, Y.; Manoj, D.; Sun, Y.M.; Xiao, F. Green and controllable synthesis of multi-heteroatoms Co-doped graphene fiber as flexible and biocompatible microelectrode for in situ electrochemical detection of biological samples. Sens. Actuators B Chem. 2021, 335, 129683. [Google Scholar] [CrossRef]
- Xiao, F.; Song, J.B.; Gao, H.C.; Zan, X.L.; Xu, R.; Duan, H.W. Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: A modular approach toward high-performance flexible electrodes. ACS Nano 2012, 6, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.Y.; Lu, N.N.; Liu, H.; Xu, Z.Q.; Xu, H.X.; Zhang, Z.Q.; et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 2019, 16, 10589–10595. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S.Q. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing. Angew. Chem. Int. Ed. 2010, 49, 6554–6558. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.Y.; Chu, Z.K.; Guo, J.C.; Liu, X.; Ma, X.; Guo, J.H. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens. Bioelectron. 2023, 225, 115103. [Google Scholar] [CrossRef]
- Adnan; Suheimat, M.; Efron, N.; Edwards, K.; Pritchard, N.; Mathur, A.; Mallen, E.A.H.; Atchison, D.A. Biometry of eyes in type 1 diabetes. Biomed. Opt. Express 2015, 6, 702–715. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Sun, H.; Du, J.Z. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc. 2017, 139, 7640–7647. [Google Scholar] [CrossRef]
- Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. USA 2010, 107, 17894–17898. [Google Scholar] [CrossRef]
- Fujiwara, T.; Takeda, N. Glucose fluctuation and cardiovascular diseases. Int. Heart J. 2020, 61, 633–635. [Google Scholar] [CrossRef]
- Appleton, S.L.; Seaborn, C.J.; Visvanathan, R.; Hill, C.L.; Gill, T.K.; Taylor, A.W.; Adams, R.J.; Robert, J.; Adams, M. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: A cohort study. Diabetes Care 2013, 36, 2388–2394. [Google Scholar] [CrossRef]
- Lin, P.H.; Sheu, S.C.; Chen, C.W.; Huang, S.C.; Li, B.R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Kishnani, V.; Kumari, S.; Gupta, A. A chemometric-assisted colorimetric-based inexpensive paper biosensor for glucose detection. Biosensors 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Sun, Z.; Chen, C.B.; Zhang, L.L.; Zhu, S.H. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhang, T.F.; Kong, W.Y.; Zhang, Z.X.; Qu, H.; Chen, W.; Wang, Y.B.; Luo, L.N.; Zheng, L. ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 2018, 101, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Hou, Y.T.; Zhang, M.D.; Hou, X.C.; Xu, L.; Wang, N.N.; Wang, J.P.; Hang, W. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 2016, 8, 1806–1812. [Google Scholar] [CrossRef]
- Ji, W.H.; Tang, X.; Du, W.; Lu, Y.; Wang, N.X.; Wu, Q.; Wei, W.; Liu, J.; Yu, H.D.; Ma, B.; et al. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem. Soc. Rev. 2022, 51, 71–127. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, H.; Chen, W.W.; Ma, B.; Ju, H.X. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1–15. [Google Scholar] [CrossRef]
- Arul, P.; Gowthaman, N.S.K.; John, S.A.; Tominaga, M. Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim. Acta 2020, 354, 136673. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Yang, J.; Shan, G.Y.; Liu, Z.Y.; Cui, A.N.; Wang, A.L.; Chen, Y.W.; Liu, Y.C. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sens. Actuators B Chem. 2020, 305, 127420. [Google Scholar] [CrossRef]
- Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Asaduzzaman, M.; Kim, D.K.; Jeong, S.; Pradhan, G.B.; Shin, Y.D.; Yoon, S.H.; Sharma, S.; et al. A nanoporous carbon-MXene heterostructured nanocomposite-based epidermal patch for real-time biopotentials and sweat glucose monitoring. Adv. Funct. Mater. 2022, 32, 2208344. [Google Scholar] [CrossRef]
- Liu, T.J.; Zhang, X.Y.; Fu, K.; Zhou, N.; Xiong, J.P.; Su, Z.Q. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine. Biosensors 2021, 11, 452. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Qiao, Y.X.; Zhao, H.T.; Liang, J.; Li, T.S.; Luo, Y.L.; Lu, S.L.; Shi, X.F.; Lu, W.B.; Sun, X.P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Su, T.; Lu, Q.; Shang, Z.J.; Xu, Q.; Hu, X.Y. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU metal–organic fiber for continuous sweat glucose detection. Anal. Chem. 2021, 93, 16222–16230. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Liu, M.; Lang, F.F.; Pang, J.D.; Bu, X.H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind. Chem. Mater. 2023, 1, 9–38. [Google Scholar] [CrossRef]
- Yao, M.S.; Lv, X.J.; Fu, Z.H.; Li, W.H.; Deng, W.H.; Wu, G.D.; Xu, G. Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 2017, 56, 16510–16514. [Google Scholar] [CrossRef]
- Ko, M.; Mendecki, L.; Eagleton, A.M.; Durbin, C.G.; Stolz, R.M.; Meng, Z.; Mirica, K.A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.L.; Chen, J.Q.; Li, X.L.; Sun, J.W.; Zhu, J.W.; Wang, X.; Fu, Y.S. Recent development and applications of electrical conductive MOFs. Nanoscale 2021, 13, 485–509. [Google Scholar] [CrossRef]
- Chen, H.H.; Xiao, Y.W.; Chen, C.; Yang, J.Y.; Gao, C.; Chen, Y.S.; Wu, J.S.; Shen, Y.; Zhang, W.N.; Li, S.; et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl. Mater. Interfaces 2019, 12, 11459–11465. [Google Scholar] [CrossRef]
- Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513. [Google Scholar] [CrossRef]
- Wang, L.C.; Pan, L.Y.; Han, X.; Ha, M.N.; Li, K.R.; Yu, H.; Zhang, Q.H.; Li, Y.G.; Hou, C.Y.; Wang, H.Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J. Colloid. Interface Sci. 2022, 616, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.H.; Yu, Z.; Niu, X.H.; Shang, J.; Mao, G.Y.; Yin, T.H.; Yang, H.L.; Xue, W.H.; Dhanapal, P.; Qu, S.X.; et al. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal-based soft electrode and a metal-organic framework insulator. Adv. Electron. Mater. 2019, 5, 1800655. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, A.P.; Zhao, M.; Dong, W.J.; Zhao, T.Y.; Wang, J.J.; Tang, W.H. Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuators B Chem. 2014, 190, 707–714. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Y.J.; Zhang, L.M.; Zhang, Z.H.; Chen, S.W.; Liu, J.F.; He, X.; Tian, Y. Conductive Metal–Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain. J. Am. Chem. Soc. 2023, 4, 2118–2126. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W., III; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 2008, 80, 3699–3707. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Screen-printed electrodes: Promising paper and wearable transducers for (bio) sensing. Biosensors 2020, 10, 76. [Google Scholar] [CrossRef]
- Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C.S. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021, 413, 727–762. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Coatsworth, P.; Shi, X.W.; Zhi, J.C.; Hu, L.X.; Yan, R.; Güder, F.; Yu, H.D. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens. Diagn. 2022, 1, 312–342. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Chen, X.W.; Qin, X.F.; Zhang, G.B.; Wu, M.R.; Fang, H.X.; Lu, Y.; Yu, H.D.; Li, L.; et al. Two-component ratiometric sensor for Cu2+ detection on paper-based device. Anal. Bioanal. Chem. 2019, 411, 6165–6172. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.C.; Liu, R.; Li, J.M.; Zhang, Q.H.; Shi, G.Y.; Li, Y.G.; Hou, C.Y.; Wang, H.Z. A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens. Bioelectron. 2021, 174, 112828. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.C.; Du, C.; Zong, L.J.; Guo, X.Y.; Han, Y.F.; Zhang, X.P.; Li, L.; Zhang, C.W.; Ju, Q.; Liu, J.H.; et al. 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens. Actuators B Chem. 2020, 306, 127239. [Google Scholar] [CrossRef]
- Siraprapa, B.; Nipapan, R.; Nadnudda, R.; Orawon, C.; Vincent, T.R. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal. Chim. Acta 2019, 1083, 110–118. [Google Scholar]
- Elmira, R.; Bahram, H. Dendrite gold nanostructures electrodeposited on paper fibers: Application to electrochemical non-enzymatic determination of glucose. Sens. Actuators B Chem. 2020, 304, 127335. [Google Scholar]
- Janmee, N.; Preechakasedkit, P.; Rodthongkum, N.; Chailapakul, O.; Potiyaraj, P.; Ruecha, N. A non-enzymatic disposable electrochemical sensor based on surface-modified screen-printed electrode CuO-IL/rGO nanocomposite for a single-step determination of glucose in human urine and electrolyte drinks. Anal. Methods 2021, 13, 2796–2803. [Google Scholar] [CrossRef]
- Shuang, W.; Wang, Y.; Chen, F.Y.; Wu, Y.J.; Bai, Z.Y.; Yang, L. Engineering the modulation of the active sites and pores of pristine metal–organic frameworks for high-performance sodium-ion storage. Inorg. Chem. Front. 2023, 10, 396–405. [Google Scholar] [CrossRef]
- Li, H.; Guo, C.Y.; Xu, C.L. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures. Biosens. Bioelectron. 2015, 63, 339–346. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.R.; Li, R.R.; Ye, C.; Zhao, G.Y.; Wang, Y. Ni-based metal–organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 2017, 5, 5549–5555. [Google Scholar] [CrossRef]
- Tong, S.F.; Xu, Y.H.; Zhang, Z.X.; Song, W.B. Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. C 2010, 114, 20925–20931. [Google Scholar] [CrossRef]
- Fumanal, M.; Ortega-Guerrero, A.; Jablonka, K.M.; Smit, B.; Tavernelli, I. Charge separation and charge carrier mobility in photocatalytic metal–organic frameworks. Adv. Funct. Mater. 2020, 30, 2003792. [Google Scholar] [CrossRef]
- Ling, W.; Liew, G.G.; Li, Y.; Hao, Y.F.; Pan, H.Z.; Wang, H.J.; Ning, B.A.; Xu, H.; Huang, X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 2018, 30, 1800917. [Google Scholar] [CrossRef] [PubMed]
- Zeraati, M.; Alizadeh, V.; Kazemzadeh, P.; Safinejad, M.; Kazemian, H.; Sargazi, G. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J. Porous Mater. 2022, 29, 257–267. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.D.; Ye, B.X. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, M.H.; Zhang, X.Y.; Li, Q.; Liu, X.Y.; Zhang, W.J.; Qin, X.; Qu, F.L. An enzyme-free electrochemical H2O2 sensor based on a nickel metal-organic framework nanosheet array. Electroanalysis 2022, 34, 369. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Gao, P.; Yin, W.; Yin, M.; Pu, H.; Sun, Q.; Liang, X.; Fa, H.B. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@HC for the construction of a novel enzyme-free glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Lavín, Á.; Vicente, J.D.; Holgado, M.; Laguna, M.F.; Casquel, R.; Santamaría, B.; Maigler, M.V.; Hernández, A.L.; Ramírez, Y. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors 2018, 18, 2038. [Google Scholar] [CrossRef]
- Xue, Z.; Jia, L.; Zhu, Z.Z.; Du, L.; Zhao, Q.H. High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J. Electroanal. Chem. 2020, 858, 113783. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Liu, Q.; Lu, S.Y.; Chen, G.; Gao, S.Y.; Lu, W.B.; Sun, X.P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 2020, 8, 5411–5415. [Google Scholar] [CrossRef]
- Shu, Y.; Shang, Z.J.; Su, T.; Zhang, S.H.; Lu, Q.; Xu, Q.; Hu, X.Y. A highly flexible Ni–Co MOF nanosheet coated Au/PDMS film based wearable electrochemical sensor for continuous human sweat glucose monitoring. Analyst 2022, 147, 1440–1448. [Google Scholar] [CrossRef]
- Hu, S.S.; Lin, Y.X.; Teng, J.; Wong, W.L.; Qiu, B. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim. Acta 2020, 187, 670. [Google Scholar] [CrossRef]
- Yang, L.Z.; Xu, C.L.; Ye, W.C.; Liu, W.S. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens. Actuators B Chem. 2015, 215, 489–496. [Google Scholar] [CrossRef]
- Xu, Z.D.; Yang, L.Z.; Xu, C.L. Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Anal. Chem. 2015, 6, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Min, M.K.; Liu, Y.; Tang, J.; Tang, W.H. Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sens. Actuators B Chem. 2018, 260, 408–417. [Google Scholar] [CrossRef]
- Ertas, N.A.; Kavak, E.; Salman, F.; Kazici, H.C.; Kivrak, H.; Kivrak, A. Synthesis of ferrocene based naphthoquinones and its application as novel non-enzymatic hydrogen peroxide. Electroanalysis 2020, 32, 1178. [Google Scholar] [CrossRef]
Count | Spiked (μM) | Detected (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 50 | 48.20 | 96.41 | 3.03 |
2 | 53.48 | 106.96 | ||
3 | 56.71 | 113.41 | ||
4 | 100 | 102.40 | 102.40 | 1.91 |
5 | 107.21 | 107.21 | ||
6 | 109.74 | 109.74 |
Count | Spiked (μM) | Detected (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 50 | 53.63 | 107.26 | 4.24 |
2 | 48.90 | 97.80 | ||
3 | 47.22 | 94.45 | ||
4 | 100 | 110.35 | 110.35 | 4.35 |
5 | 102.62 | 102.62 | ||
6 | 99.07 | 99.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Ji, W.; Yin, Y.; Wang, N.; Wu, W.; Zhang, W.; Pei, S.; Liu, T.; Tao, C.; Zheng, B.; et al. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors 2023, 13, 508. https://doi.org/10.3390/bios13050508
Yang Y, Ji W, Yin Y, Wang N, Wu W, Zhang W, Pei S, Liu T, Tao C, Zheng B, et al. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors. 2023; 13(5):508. https://doi.org/10.3390/bios13050508
Chicago/Turabian StyleYang, Ya, Wenhui Ji, Yutao Yin, Nanxiang Wang, Wanxia Wu, Wei Zhang, Siying Pei, Tianwei Liu, Chao Tao, Bing Zheng, and et al. 2023. "Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection" Biosensors 13, no. 5: 508. https://doi.org/10.3390/bios13050508
APA StyleYang, Y., Ji, W., Yin, Y., Wang, N., Wu, W., Zhang, W., Pei, S., Liu, T., Tao, C., Zheng, B., Wu, Q., & Li, L. (2023). Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors, 13(5), 508. https://doi.org/10.3390/bios13050508