Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples and RNA Extraction
2.2. SARS-CoV-2/IC LAMP-Microscanner (LAMP-MS) Assay
2.3. SARS-CoV-2 RT-qPCR and SARS-CoV-2/IC RT-LAMP Assay
Primer Mix | Target Gene | Name | Sequence (5′-3′) | µM |
---|---|---|---|---|
SARS-CoV-2 RT-LAMP primer mix | RdRP | RdRP F3 | CCG ATA AGT ATG TCC GCA AT | 4 |
RdRP B3 | GCT TCA GAC ATA AAA ACA TTG T | 4 | ||
RdRP FIP | ATG CGT AAA ACT CAT TCA CAA AGT CCA ACA CAG ACT TTA TGA GTG TC | 32 | ||
RdRP BIP | TGA TAC TCT CTG ACG ATG CTG TTT AAA GTT CTT TAT GCT AGC CAC | 32 | ||
RdRP LF | TGT GTC AAC ATC TCT ATT TCT ATA G | 10 | ||
RdRP LB | TCA ATA GCA CTT ATG CAT CTC AAG G | 4 * | ||
Internal Control (IC) RT-LAMP primer mix | Actin beta | IC F3 | AGT ACC CCA TCG AGC ACG | 4 |
IC B3 | AGC CTG GAT AGC AAC GTA CA | 4 | ||
IC FIP | GAG CCA CAC GCA GCT CAT TGT ATC ACC AAC TGG GAC GAC A | 32 | ||
IC BIP | CTG AAC CCC AAG GCC AAC CGG CTG GGG TGT TGA AGG TC | 32 | ||
IC LF | TGT GGT GCC AGA TTT TCT CCA | 10 | ||
IC LB | CGA GAA GAT GAC CCA GAT CAT GT | 4 * | ||
SARS-CoV-2/IC LAMP probe/quencher mix | RdRP | RdRP probe | [HEX]-CGGGCCCGTACAAAGGGAACACCCACACTCCGTCA ATA GCA CTT ATG CAT CTC AAG G | 6 |
Actin beta | IC probe | [FAM]-CGGGCCCGTACAAAGGGAACACCCACACTCCG CGA GAA GAT GAC CCA GAT CAT GT | 6 | |
Quancher | CGGGCCCGTACAAAGGGAACACCCACACTCCG-[BHQ1] | 18 | ||
SARS-CoV-2 RT-qPCR primer mix | RdRP | F primer | CCCTGTGGGTTTTACACTTAA | 10 |
R primer | ACGATTGTGCATCAGCTGA | 10 | ||
Probe | [Cy5]-CCGTCTGCGGTATGTGGAAAGGTTATGG-[BHQ2] | 5 |
2.4. Optical Microscope and Field-Emission Scanning Electron Microscope
2.5. FTIR Analysis of LAMP Amplification Byproducts
2.6. Limit of Detection (LOD) Tests of the SARS-CoV-2/IC RT-LAMP-MS Assay
2.7. Reproducibility Tests of the SARS-CoV-2/IC RT-LAMP-MS Assay
3. Results
3.1. Microscopic Observation of SARS-CoV-2 LAMP Amplification Products
3.2. FE-SEM of SARS-CoV-2 RT-LAMP Amplification Product
3.3. FT-IR Analysis to Identify Magnesium Pyrophosphate in LAMP Amplification Products
3.4. Limit of Detection (LOD) of the SARS-CoV-2/IC LAMP-MS Assay
3.5. Reproducibility Test of the SARS-CoV-2/IC LAMP-MS Assay
3.6. Comparison of Clinical Performance between the SARS-CoV-2/IC LAMP-MS Assay and SARS-CoV-2/IC RT-LAMP Assay Using Clinical Samples
3.7. Cross-Reactivity Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Meaning |
AdV | Adenovirus |
B3 | Backward Outer Primer |
BIP | Backward Internal Primer |
Ct | Cycle threshold |
F3 | Forward Outer Primer |
FE-SEM | Field Emission Scanning Electron Microscope |
FIP | Forward Internal Primer |
FT-IR | Fourier transform infrared spectroscopy |
HboV | Human bocavirus |
HEV | Human enterovirus |
HRV | Human rhinovirus |
IC | Internal control |
KDCA | Korea Disease Control and Prevention Agency |
KHIDI | Korea Health Industry Development Institute |
LAMP | Loop-mediated isothermal amplification |
LAMP-MS | LAMP-microscanner |
LB | Loop Backward |
LF | Loop Forward |
LOD | Limit of detection |
Mg2P2O7 | Magnesium pyrophosphate |
MPV | Metapneumovirus |
MS | Microscanning |
NP | Nasopharyngeal swab |
NRF | National Research Foundation of Korea |
P/N | Positive/Negative |
PIV | Parainfluenza virus |
RSV A | Respiratory Syncytial Virus A |
RSV B | Respiratory Syncytial Virus B |
RT-LAMP | Reverse transcription loop-mediated isothermal amplification |
RT-PCR | Reverse transcription polymerase chain reaction |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SD | Standard deviation |
References
- Kashir, J.; Yaqinuddin, A. Loop Mediated Isothermal Amplification (LAMP) Assays as a Rapid Diagnostic for COVID-19. Med. Hypotheses 2020, 141, 109786. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Allam, M.; Cai, S.; Ganesh, S.; Venkatesan, M.; Doodhwala, S.; Song, Z.; Hu, T.; Kumar, A.; Heit, J.; COVID-Nineteen Study Group; et al. COVID-19 Diagnostics, Tools, and Prevention. Diagnostics 2020, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low Performance of Rapid Antigen Detection Test as Frontline Testing for COVID-19 Diagnosis. J. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef] [PubMed]
- Zayed, B.A.; Ali, A.N.; Elgebaly, A.A.; Talaia, N.M.; Hamed, M.; Mansour, F.R. Smartphone-Based Point-of-Care Testing of the SARS-CoV-2: A Systematic Review. Sci. Afr. 2023, 21, e01757. [Google Scholar] [CrossRef] [PubMed]
- Pourakbari, R.; Gholami, M.; Shakerimoghaddam, A.; Khiavi, F.M.; Mohammadimehr, M.; Khomartash, M.S. Comparison of RT-LAMP and RT-QPCR Assays for Detecting SARS-CoV-2 in the Extracted RNA and Direct Swab Samples. J. Virol. Methods 2024, 324, 114871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, H.; Zhu, Z.; Liu, J.; Li, B. Integrating CRISPR/Cas within Isothermal Amplification for Point-of-Care Assay of Nucleic Acid. Talanta 2022, 243, 123388. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Yashas; Vyas, R. A Role of Integrated Microheaters in a Microfluidics Based Point-of-Care-Testing and beyond for Healthcare Applications. Appl. Mater. Today 2024, 38, 102225. [Google Scholar] [CrossRef]
- Jeon, M.J.; Kim, S.-K.; Hwang, S.-H.; Lee, J.U.; Sim, S.J. Lateral Flow Immunoassay Based on Surface-Enhanced Raman Scattering Using PH-Induced Phage-Templated Hierarchical Plasmonic Assembly for Point-of-Care Diagnosis of Infectious Disease. Biosens. Bioelectron. 2024, 250, 116061. [Google Scholar] [CrossRef]
- Gan, Y.; Zhang, H.; Liu, J.; He, F.; Li, F.; Li, A.; Xing, M.; Zhou, D.; Fung, S.-Y.; Yang, H. Gold Nanoparticle-Based Colorimetric and Fluorescent Dual-Mode Lateral Flow Immunoassay for SARS-CoV-2 Detection. J. Funct. Biomater. 2024, 15, 58. [Google Scholar] [CrossRef]
- Dehbashi, R.; Plakhotnik, T.; Nieminen, T.A. Far-Field Subwavelength Straight-Line Projection/Imaging by Means of a Novel Double-Near-Zero Index-Based Two-Layer Metamaterial. Materials 2021, 14, 5484. [Google Scholar] [CrossRef]
- Lozano-Chamizo, L.; Márquez, C.; Marciello, M.; Galdon, J.C.; de la Fuente-Zapico, E.; Martinez-Mazón, P.; Gonzalez-Rumayor, V.; Filice, M.; Gamiz, F. High Enhancement of Sensitivity and Reproducibility in Label-Free SARS-CoV-2 Detection with Graphene Field-Effect Transistor Sensors through Precise Surface Biofunctionalization Control. Biosens. Bioelectron. 2024, 250, 116040. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef]
- Wong, Y.-P.; Othman, S.; Lau, Y.-L.; Radu, S.; Chee, H.-Y. Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-Organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef]
- Njiru, Z.K.; Mikosza, A.S.J.; Armstrong, T.; Enyaru, J.C.; Ndung’u, J.M.; Thompson, A.R.C. Loop-Mediated Isothermal Amplification (LAMP) Method for Rapid Detection of Trypanosoma Brucei Rhodesiense. PLoS Negl. Trop. Dis. 2008, 2, e147. [Google Scholar] [CrossRef]
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Rev. Mol. Diagn. 2021, 21, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Padzil, F.; Mariatulqabtiah, A.R.; Tan, W.S.; Ho, K.L.; Isa, N.M.; Lau, H.Y.; Abu, J.; Chuang, K.-P. Loop-Mediated Isothermal Amplification (LAMP) as a Promising Point-of-Care Diagnostic Strategy in Avian Virus Research. Animals 2021, 12, 76. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, E.; Caputi, M.; Asghar, W. RT-LAMP-Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing. Biosensors 2022, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, D.; Tobler, K.; Fraefel, C.; Maley, M.; Bachofen, C. Rapid and Simple Colorimetric Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Bovine Alphaherpesvirus 1. J. Virol. Methods 2021, 289, 114041. [Google Scholar] [CrossRef]
- Aoki, M.N.; de Oliveira Coelho, B.; Góes, L.G.B.; Minoprio, P.; Durigon, E.L.; Morello, L.G.; Marchini, F.K.; Riediger, I.N.; do Carmo Debur, M.; Nakaya, H.I.; et al. Colorimetric RT-LAMP SARS-CoV-2 Diagnostic Sensitivity Relies on Color Interpretation and Viral Load. Sci. Rep. 2021, 11, 9026. [Google Scholar] [CrossRef]
- Tanner, N.A.; Zhang, Y.; Evans, T.C. Visual Detection of Isothermal Nucleic Acid Amplification Using PH-Sensitive Dyes. Biotechniques 2015, 58, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Zeng, Y.; Zhang, C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics 2023, 13, 1530. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Chou, P.-H.; Wu, C.-T.; Song, J.-D.; Tsai, K.-N.; Chiou, C.-C. Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection. Biosensors 2024, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-Mediated Isothermal Amplification (LAMP)—Review and Classification of Methods for Sequence-Specific Detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Ding, S.; Chen, G.; Wei, Y.; Dong, J.; Du, F.; Cui, X.; Huang, X.; Tang, Z. Sequence-Specific and Multiplex Detection of COVID-19 Virus (SARS-CoV-2) Using Proofreading Enzyme-Mediated Probe Cleavage Coupled with Isothermal Amplification. Biosens. Bioelectron. 2021, 178, 113041. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochem Biophys Res Commun 2001, 289, 150–154. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, K.; He, Z.; Luo, X.; Qin, Z.; Tan, Y.; Zheng, X.; Wu, Z.; Deng, Y.; Chen, H.; et al. Development and Evaluation of a Thermostatic Nucleic Acid Testing Device Based on Magnesium Pyrophosphate Precipitation for Detecting Enterocytozoon Hepatopenaei. Chin. Chem. Lett. 2022, 33, 4053–4056. [Google Scholar] [CrossRef]
- Njiru, Z.K. Loop-Mediated Isothermal Amplification Technology: Towards Point of Care Diagnostics. PLoS Negl. Trop. Dis. 2012, 6, e1572. [Google Scholar] [CrossRef]
- Sappat, A.; Jaroenram, W.; Puthawibool, T.; Lomas, T.; Tuantranont, A.; Kiatpathomchai, W. Detection of Shrimp Taura Syndrome Virus by Loop-Mediated Isothermal Amplification Using a Designed Portable Multi-Channel Turbidimeter. J. Virol. Methods 2011, 175, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.-I. Colorimetric Detection of Loop-Mediated Isothermal Amplification Reaction by Using Hydroxy Naphthol Blue. Biotechniques 2009, 46, 167–172. [Google Scholar] [CrossRef]
- Qin, A.; Fu, L.T.; Wong, J.K.F.; Chau, L.Y.; Yip, S.P.; Lee, T.M.H. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification. ACS Appl. Mater. Interfaces 2017, 9, 10472–10480. [Google Scholar] [CrossRef] [PubMed]
- Jee, H.; Park, S.; Lee, J.; Lim, C.S.; Jang, W.S. Comparative Clinical Evaluation of a Novel FluA/FluB/SARS-CoV-2 Multiplex LAMP and Commercial FluA/FluB/SARS-CoV-2/RSV RT-QPCR Assays. Diagnostics 2023, 13, 1432. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Chen, S.; Zhang, L.; He, X.; Ma, Y.; Wu, H.; Zou, B.; Zhou, G. Multiplex Detection of Blood-Borne Pathogens on a Self-Driven Microfluidic Chip Using Loop-Mediated Isothermal Amplification. Anal. Bioanal. Chem. 2021, 413, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Kim, J.-M.; Baek, J.-S.; Park, J.; Kim, W.-I.; Ku, B.K.; Jeoung, H.-Y.; Lee, K.-K.; Park, C.-K. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses 2023, 15, 2204. [Google Scholar] [CrossRef] [PubMed]
- Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat, P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T.; et al. Clinical Validation of a Cas13-Based Assay for the Detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, K.; Meleke, H.; Kamdolozi, M.; Chaima, D.; Samikwa, L.; Paynter, M.; Nyirenda Nyang’Wa, M.; Cloutman-Green, E.; Nastouli, E.; Klein, N.; et al. A Fast Extraction-Free Isothermal LAMP Assay for Detection of SARS-CoV-2 with Potential Use in Resource-Limited Settings. Virol. J. 2022, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.M.; Newman, C.M.; Weiler, A.M.; Ramuta, M.D.; Shortreed, C.G.; Heffron, A.S.; Accola, M.A.; Rehrauer, W.M.; Friedrich, T.C.; O’Connor, D.H. Optimizing Direct RT-LAMP to Detect Transmissible SARS-CoV-2 from Primary Nasopharyngeal Swab Samples. PLoS ONE 2020, 15, e0244882. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Nowak, C.; Liu, Y.; Li, Y.; Zhang, T.; Bleris, L.; Qin, Z. Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARS-CoV-2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids. Small 2022, 18, e2107832. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, J.; He, D.; Miao, W.; Liu, W.; Li, Y.; Lu, G.; Wu, F.; Wang, S. GANDA: A Deep Generative Adversarial Network Conditionally Generates Intratumoral Nanoparticles Distribution Pixels-to-Pixels. J. Control Release 2021, 336, 336–343. [Google Scholar] [CrossRef]
- Ghebrehiwet, I.; Zaki, N.; Damseh, R.; Mohamad, M.S. Revolutionizing Personalized Medicine with Generative AI: A Systematic Review. Artif. Intell. Rev. 2024, 57, 128. [Google Scholar] [CrossRef]
- Moon, S.; Lee, Y.; Hwang, J.; Kim, C.G.; Kim, J.W.; Yoon, W.T.; Kim, J.H. Prediction of Anti-Vascular Endothelial Growth Factor Agent-Specific Treatment Outcomes in Neovascular Age-Related Macular Degeneration Using a Generative Adversarial Network. Sci. Rep. 2023, 13, 5639. [Google Scholar] [CrossRef] [PubMed]
- Rafael-Palou, X.; Aubanell, A.; Ceresa, M.; Ribas, V.; Piella, G.; Ballester, M.A.G. Prediction of Lung Nodule Progression with an Uncertainty-Aware Hierarchical Probabilistic Network. Diagnostics 2022, 12, 2639. [Google Scholar] [CrossRef] [PubMed]
Virus | PFU/mL | SARS-CoV-2/IC RT-LAMP | SARS-CoV-2/IC LAMP-MS | ||
---|---|---|---|---|---|
P/N | Ct (SD) | P/N | Result | ||
SARS-CoV-2 | 20/0 | 15.63 ± 0.75 | 20/0 | P | |
20/0 | 18.73 ± 0.85 | 20/0 | P | ||
20/0 | 26.49 ± 0.65 | 20/0 | P | ||
9/20 | N/A | 8/20 | N | ||
0/20 | N/A | 0/20 | N | ||
0/20 | N/A | 0/20 | N | ||
0/20 | N/A | 0/20 | N |
Concentration Level | Experimenters | Repetitions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Test 9 | Test 10 | ||
High (1 × 103 PFU/mL) | 1 | + | + | + | + | + | + | + | + | + | + |
2 | + | + | + | + | + | + | + | + | + | + | |
Medium (1 × 102 PFU/mL) | 1 | + | + | + | + | + | + | + | + | + | + |
2 | + | + | + | + | + | + | + | + | + | + | |
Low (1 × 101 PFU/mL) | 1 | + | + | + | + | + | + | + | + | + | + |
2 | + | + | + | + | + | + | + | + | + | + | |
Negative | 1 | − | − | − | − | − | − | − | − | − | − |
2 | − | − | − | − | − | − | − | − | − | − |
Clinical Samples | SARS-CoV-2/IC RT-LAMP Assay | SARS-CoV-2/IC LAMP-MS Assay | |||
---|---|---|---|---|---|
SARS-CoV-2 | IC | SARS-CoV-2 | IC | ||
SARS-CoV-2 (n = 100) | P/N | 99/1 | 100/0 | 99/1 | 100/0 |
Sensitivity | 99.0% | 100.0% | 99.0% | 100.0% | |
Specificity | - | - | - | - | |
Non-Infected (n = 101) | P/N | 0/101 | 101/0 | 0/101 | 101/0 |
Sensitivity | - | 100.0% | - | 100.0% | |
Specificity | 100.0% | - | 100.0% | - |
Virus | SARS-CoV-2/IC RT-LAMP Assay | SARS-CoV-2/IC LAMP-MS Assay | ||
---|---|---|---|---|
SARS-CoV-2 | IC | SARS-CoV-2 | IC | |
Ct | P/N | |||
CoV HKU1 | N/A | 20.47 | N | P |
CoV NL63 | N/A | 22.79 | N | P |
CoV 229E | N/A | 14.24 | N | P |
Inf A H1 | N/A | 15.17 | N | P |
Inf A H1N1 | N/A | 26.35 | N | P |
Inf A H3 | N/A | 23.12 | N | P |
Inf B | N/A | 16.24 | N | P |
RSV A | N/A | 15.81 | N | P |
RSV B | N/A | 24.20 | N | P |
AdV | N/A | 13.31 | N | P |
PIV 1 | N/A | 18.88 | N | P |
PIV 2 | N/A | 18.84 | N | P |
PIV 3 | N/A | 29.17 | N | P |
PIV 4 | N/A | 16.96 | N | P |
HboV | N/A | 27.77 | N | P |
HEV | N/A | 16.49 | N | P |
HRV | N/A | 21.74 | N | P |
MPV | N/A | 14.52 | N | P |
Study | LOD | Sensitivity | Reproducibility | Application | Source |
---|---|---|---|---|---|
Cas13-based Assay for SARS-CoV-2 | 42 copies/reaction | 96.3% sensitivity, 100% specificity | - | Clinical validation | [35] |
One-tube Colorimetric RT-LAMP | 10–100 copies/µL | 86.7% sensitivity, 98.4% specificity | - | Simple, rapid visual detection in resource-limited settings | [36] |
Direct RT-LAMP for SARS-CoV-2 | 652 copies/µL | 95% sensitivity, 100% specificity | - | Point-of-need testing with minimal equipment | [37] |
Plasmonic LAMP | 101 copies/reaction | - | - | Enhanced detection specificity and sensitivity | [38] |
RT-LAMP-MS | 101 PFU/mL | 99% sensitivity, 100% specificity | 100% | Point-of-care in resource-limited settings | In this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Lee, E.; Park, S.; Lim, C.-S.; Jang, W.-S. Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning. Biosensors 2024, 14, 348. https://doi.org/10.3390/bios14070348
Choi M, Lee E, Park S, Lim C-S, Jang W-S. Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning. Biosensors. 2024; 14(7):348. https://doi.org/10.3390/bios14070348
Chicago/Turabian StyleChoi, Minkyeong, Eunji Lee, Seoyeon Park, Chae-Seung Lim, and Woong-Sik Jang. 2024. "Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning" Biosensors 14, no. 7: 348. https://doi.org/10.3390/bios14070348
APA StyleChoi, M., Lee, E., Park, S., Lim, C. -S., & Jang, W. -S. (2024). Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning. Biosensors, 14(7), 348. https://doi.org/10.3390/bios14070348