Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy
Abstract
:1. Introduction
2. Prevalence and Disease Burden of Pseudomonas aeruginosa in CF Lungs
3. Prevalence and Disease Burden of Pseudomonas aeruginosa in Non-CF Chronic Suppurative Lung Disease
4. Mechanisms and Factors Driving Antibiotic Resistance in Pseudomonas aeruginosa
5. Bacteriophage Therapy as a Promising Approach to Overcome Difficult-to-Treat P. aeruginosa Infections in CSLD
6. Bacteriophage Therapy for Chronic Respiratory Infections: Advancements and Clinical Outcomes
Study | Sponsor | Type of Study | Key Criteria | Intervention | Status | Major Outcomes |
---|---|---|---|---|---|---|
Bacteriophage Therapy of Difficult-to-treat Infections (BT100) NCT05498363 | Queen Astrid Military Hospital 2008 | Retrospective, based on compassionate access | Patients with difficult-to-treat infections, including LRTIs. | Suitable bacteriophages were selected from a repository of 25 individual bacteriophages and six bacteriophage cocktails with routes determined by investigators. | Completed with results published [96] | 29/114 (25%) of patients within the study treated for LRTI, % of P. aeruginosa and condition leading to LRTI unclear. Clinical improvement of at least one symptom associated with the original bacterial infection or presence of an adverse reaction, as assessed by the treating physician, was observed in 77.2% (overall), and microbial eradication was observed in 61.3% (overall). |
Phase 1/2 Study Evaluating Safety and Tolerability of Inhaled AP-PA02 in Subjects With Chronic Pseudomonas aeruginosa Lung Infections and Cystic Fibrosis (SWARM-Pa) NCT04596319 |
Armata Pharmaceuticals (Los Angeles, CA, USA)
2020 | Phase 1b/2a, double-blind, randomised, placebo-controlled, single and multiple ascending dose study | Cystic fibrosis patients aged 18 years or older with chronic P. aeruginosa infection with FEV1% > 40% | Nebulised AP-PAO2 | Completed with results published in clinicaltrials.gov accessed on 1 January 2025 | 29 study participants (21 treatment arm vs. eight placebo arm). Adverse events reported in patients within the treatment arm included small bowel obstruction (n = 1), nausea (n = 1), chill (n = 2), chest discomfort (n = 1), fatigue (n = 1), pain (n = 1), pyrexia (n = 1), infective exacerbation of CF (n = 1), sialadenitis (n = 1), vulvovaginal candidiasis (n = 1), injury or procedural complications (n = 2), hypoglycemia (n = 1). Headache (n = 1), trigeminal neuralgia (n = 1) |
CYstic Fibrosis bacterioPHage Study at Yale (CYPHY) NCT04684641 | Yale University 2021 | Randomised, placebo-controlled, double-blinded to evaluate the efficacy and safety of YPT-01 | Cystic fibrosis patients aged 18 years or older with at least one occasion of P. aeruginosa within the past 2 years and at the screening visit, an FEV1% ≥ 40%, clinically stable lung disease. | Nebulised YPT-01 3 mL daily for 7 days | Completed with results published in clinicaltrials.gov and early data presented at a conference [104] | Eight study participants (four in the treatment arm vs. four in the placebo arm) A reduction in P. aeruginosa CFU/mL of −0.59 CFU/mL in the treatment arm vs. −0.89 in the placebo arm, infective exacerbation of CF (n = 1) was observed in the treatment arm. |
Bacteriophage Therapy for Difficult-to-treat Infections: the Implementation of a Multidisciplinary Phage Task Force (PHAGEFORCE), NCT06368388 |
Universitaire Ziekenhuizen KU Leuven
2021 | Observational based on compassionate access | Participants must be diagnosed with a musculoskeletal infection, chronic rhinosinusitis, sepsis, lung infection (such as cystic fibrosis or bronchiectasis), or hidradenitis suppurativa, and must have failed all previous treatments, including surgical and antibiotic interventions, or have no other available treatment options. | Nebulised or as determined by the task force | Recruiting | N/A |
Standardised Treatment and Monitoring Protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study) ACTRN12621001526864 |
Westmead Institute for Medical Research
2021 | Observational based on compassionate access | Patients for whom at least two suitably qualified clinical specialists have agreed phage therapy should be used in difficult-to-treat infections, including lung infections | Route determined as per the investigators | Recruiting | N/A |
A Phase 1b/2 Trial of the Safety and Microbiological Activity of Bacteriophage Therapy in Cystic Fibrosis Subjects Colonized With Pseudomonas aeruginosa, NCT05453578 | National Institute of Allergy and Infectious Diseases (NIAID) 2022 | Phase 1b/2, multi-centred, randomized, double-blind, placebo-controlled trial | Cystic fibrosis patients aged 18 years or older with at least one occasion of P. aeruginosa within the past 12 months | Intravenous administration with ascending doses arms | Recruiting | N/A |
A Single-Arm, Open-Labelled, Safety and Tolerability of Intra-bronchial and Nebulised Bacteriophage Treatment in Children with Pseudomonas aeruginosa (CHIP-CF) ACTRN12622000767707 | The Children’s Hospital at Westmead, Sydney Children’s Hospital Network 2022 | Single-Arm, Open-Labelled, Safety and Tolerability Study | Children and adolescents from 6 to 18 years with chronic suppurative lung disease, chronic P. aeruginosa infection (>50% of airway samples over 12 months) | Bronchoscopic (Day 1) and nebulised bacteriophage for (Day 2 to 7), 108 PFU/4 mL of suitable bacteriophage determined by investigators | Recruiting with early data published [105]. | Two patients were treated with good tolerability and safety (absence of temporal fever, bronchospasm) and eradication of P. aeruginosa in 1 patient. |
Study to Evaluate the Safety, Phage Kinetics, and Efficacy of Inhaled AP-PA02 in Subjects with Non-Cystic Fibrosis Bronchiectasis and Chronic Pulmonary Pseudomonas aeruginosa Infection (Tailwind) NCT05616221 |
Armata Pharmaceuticals, Inc., (Los Angeles, CA, USA)
2023 | Phase 2, multi-centre, double-blind, randomized, placebo-controlled study to evaluate the safety, phage kinetics, and efficacy of inhaled AP-PA02 | Patients over 18 years with evidence of bronchiectasis on CT and chronic P. aeruginosa infection | Nebulised AP-PAO2 | Completed | N/A |
PHAGEinLYON Clinic Cohort Study: A Descriptive Study of Severe Infections Treated with Phage Therapy at the Hospices Civils de Lyon NCT06185920 | Hospices Civils de Lyon 2023 | Non-interventional retrospective and prospective study based on compassionate access | Patients with severe infections potentially including lung infections treated with bacteriophage in the Hospices Civils de Lyon | N/A | Recruiting | N/A |
Author | Subject | Route and Dosage | Frequency of Administration | Major Outcome Reported |
---|---|---|---|---|
N. Law 2019 [106] | 26-year-old female with pulmonary exacerbation of CF | IV cocktail of four lytic bacteriophages AB-PA01 4 × 109 PFU/mL in 5 mL with concomitant IV antibiotics | Six hourly over eight weeks | Improvement in oxygen requirement, fever profile, reduced sputum production and improvement in mobility. Improvement in white blood cell count and resolution of acute kidney injury. No pulmonary exacerbation of CF within 100 days following bacteriophage therapy No regrowth of P. aeruginosa within the sputum sample collected |
T. Köhler 2023 [107] | 41-year-old male with Kartagener syndrome and traumatic spinal injury with tetraplegia with severe lower lobe consolidations | Nebulised single-strain bacteriophage vFB297 5 × 109 PFU/mL with concomitant IV antibiotics | Daily for five days, followed by two additional doses two days later | Progressive clearance of left lower lobe consolidation A reduction of CFU of P. aeruginosa was observed |
A. Hahn 2023 [108] | 6 and 26-year-olds with pulmonary exacerbation of CF | Nebulised single-strain bacteriophage INF 1 × 1010 PFU/mL with concomitant IV antibiotics | 6-year-old: twice a day for seven days. 26-year-old: twice a day for 2 days of bacteriophage INF followed by once a day for seven days | Both patients demonstrated improvement in terms of oxygen requirement, reduced sputum production and improvement in energy levels In the 6-year-old, P. aeruginosa was temporarily not isolated from the sputum culture during treatment. Subsequent P. aeruginosa from both patients demonstrated improved susceptibility against antibiotics. |
L. Li 2023 [109] | 40-year-old man with interstitial lung disease and acute on chronic pulmonary exacerbation | Nebulised single-strain bacteriophage phiYY 108 PFU/mL | Twice at a 4-hourly interval, repeated four days later. | A reduction in sputum production occurred during therapy. P. aeruginosa was transiently not isolated from sputum culture during the first course of treatment. Subsequent P. aeruginosa isolates demonstrated improved susceptibility against antibiotics |
7. From Compassionate Access to Routine Care: The Next Steps for Bacteriophage Therapy
8. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Vidaillac, C.; Chotirmall, S.H. Pseudomonas aeruginosa in bronchiectasis: Infection, inflammation, and therapies. Expert Rev. Respir. Med. 2021, 15, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Chaïbi, K.; Jaureguy, F.; Do Rego, H.; Ruiz, P.; Mory, C.; El Helali, N.; Mrabet, S.; Mizrahi, A.; Zahar, J.-R.; Pilmis, B. What to Do with the New Antibiotics? Antibiotics 2023, 12, 654. [Google Scholar] [CrossRef]
- Brüssow, H. The antibiotic resistance crisis and the development of new antibiotics. Microb. Biotechnol. 2024, 17, e14510. [Google Scholar] [CrossRef]
- Ong, T.; Ramsey, B.W.J.J. Cystic fibrosis: A review. JAMA 2023, 329, 1859–1871. [Google Scholar] [CrossRef]
- Guo, J.; Garratt, A.; Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 2022, 21, 456–462. [Google Scholar] [CrossRef]
- Kerem, E.; Orenti, A.; Adamoli, A.; Hatziagorou, E.; Naehrlich, L.; Sermet-Gaudelus, I. Cystic fibrosis in Europe: Improved lung function and longevity—Reasons for cautious optimism, but challenges remain. Eur. Respir. J. 2024, 63, 2301241. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; LiPuma, J.J.; Konstan, M.W. Longitudinal bacterial prevalence in cystic fibrosis airways: Fact and artifact. J. Cyst. Fibros. 2024, 23, 58–64. [Google Scholar] [CrossRef]
- Singh, J.; Hunt, S.; Simonds, S.; Boyton, C.; Middleton, A.; Elias, M.; Towns, S.; Pandit, C.; Robinson, P.; Fitzgerald, D.A.; et al. The changing epidemiology of pulmonary infection in children and adolescents with cystic fibrosis: An 18-year experience. Sci. Rep. 2024, 14, 9056. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.J.; Planet, P.J. A birth cohort approach to understanding cystic fibrosis lung infections. J. Cyst. Fibros. 2024, 23, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Mésinèle, J.; Ruffin, M.; Kemgang, A.; Guillot, L.; Boëlle, P.-Y.; Corvol, H. Risk factors for Pseudomonas aeruginosa airway infection and lung function decline in children with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 45–51. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Khan, U.; Beckett, V.; Baines, A.; Emerson, J.; Sanders, D.B.; Gibson, R.L.; Morgan, W.; Rosenfeld, M. Longitudinal development of initial, chronic and mucoid Pseudomonas aeruginosa infection in young children with cystic fibrosis. J. Cyst. Fibros. 2018, 17, 341–347. [Google Scholar] [CrossRef]
- Jackson, L.; Waters, V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2021, 20, 8–16. [Google Scholar] [CrossRef]
- Parkins, M.D.; Rendall, J.C.; Elborn, J.S. Incidence and Risk Factors for Pulmonary Exacerbation Treatment Failures in Patients with Cystic Fibrosis Chronically Infected with Pseudomonas aeruginosa. Chest 2012, 141, 485–493. [Google Scholar] [CrossRef]
- Sanders, D.B.; Hoffman, L.R.; Emerson, J.; Gibson, R.L.; Rosenfeld, M.; Redding, G.J.; Goss, C.H. Return of FEV1 after pulmonary exacerbation in children with cystic fibrosis. Pediatr. Pulmonol. 2010, 45, 127–134. [Google Scholar] [CrossRef]
- Singh, J.; Robinson, P.; Pandit, C.; Kennedy, B.; Weldon, B.; Bailey, B.; John, M.; Fitzgerald, D.; Selvadurai, H. Factors influencing treatment response of pulmonary exacerbation in children with cystic fibrosis. Minerva Pediatr. 2024, 76, 245–252. [Google Scholar] [CrossRef]
- Bonyadi, P.; Saleh, N.T.; Dehghani, M.; Yamini, M.; Amini, K. Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: A systematic review and meta-analysis. Microb. Pathog. 2022, 165, 105461. [Google Scholar] [CrossRef]
- Chang, A.B.; Marchant, J.M. Protracted bacterial bronchitis is a precursor for bronchiectasis in children: Myth or maxim? Breathe 2019, 15, 167–170. [Google Scholar] [CrossRef]
- Chang, A.B.; Bell, S.C.; Byrnes, C.A.; Dawkins, P.; Holland, A.E.; Kennedy, E.; King, P.T.; Laird, P.; Mooney, S.; Morgan, L. Thoracic Society of Australia and New Zealand (TSANZ) position statement on chronic suppurative lung disease and bronchiectasis in children, adolescents and adults in Australia and New Zealand. Respirology 2023, 28, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Quint, J.K.; Millett, E.R.; Joshi, M.; Navaratnam, V.; Thomas, S.L.; Hurst, J.R.; Smeeth, L.; Smeeth, L.; Brown, J.S. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: A population-based cohort study. Eur. Respir. J. 2015, 47, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Telfar Barnard, L.; Zhang, J. The Impact of Respiratory Disease in New Zealand: 2020 Update; Asthma and Respiratory Foundation NZ: Wellington, New Zealand, 2021. [Google Scholar]
- Weycker, D.; Hansen, G.L.; Seifer, F.D. Prevalence and incidence of noncystic fibrosis bronchiectasis among US adults in 2013. Chronic Respir. Dis. 2017, 14, 377–384. [Google Scholar] [CrossRef] [PubMed]
- McCallum, G.B.; Binks, M.J. The Epidemiology of Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adolescents. Front. Pediatr. 2017, 5, 27. [Google Scholar] [CrossRef]
- de Vries, J.J.V.; Chang, A.B.; Marchant, J.M. Comparison of bronchoscopy and bronchoalveolar lavage findings in three types of suppurative lung disease. Pediatr. Pulmonol. 2018, 53, 467–474. [Google Scholar] [CrossRef]
- Gao, Y.-H.; Guan, W.-J.; Zhu, Y.-N.; Chen, R.-C.; Zhang, G.-J. Antibiotic-resistant Pseudomonas aeruginosa infection in patients with bronchiectasis: Prevalence, risk factors and prognostic implications. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 237–246. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; Soler-Cataluña, J.-J.; Perpiñá-Tordera, M.; Román-Sánchez, P.; Soriano, J. Factors Associated With Lung Function Decline in Adult Patients With Stable Non-Cystic Fibrosis Bronchiectasis. Chest 2007, 132, 1565–1572. [Google Scholar] [CrossRef]
- Wang, L.-L.; Lu, H.-W.; Li, L.-L.; Gao, Y.-H.; Xu, Y.-H.; Li, H.-X.; Xi, Y.-Z.; Jiang, F.-S.; Ling, X.-F.; Wei, W.; et al. Pseudomonas aeruginosa isolation is an important predictor for recurrent hemoptysis after bronchial artery embolization in patients with idiopathic bronchiectasis: A multicenter cohort study. Respir. Res. 2023, 24, 84. [Google Scholar] [CrossRef]
- Alcaraz-Serrano, V.; Fernández-Barat, L.; Scioscia, G.; Llorens-Llacuna, J.; Gimeno-Santos, E.; Herrero-Cortina, B.; Vàzquez, N.; Puig de la Bellacasa, J.; Gabarrús, A.; Amaro-Rodriguez, R.; et al. Mucoid Pseudomonas aeruginosa alters sputum viscoelasticity in patients with non-cystic fibrosis bronchiectasis. Respir. Med. 2019, 154, 40–46. [Google Scholar] [CrossRef]
- Conceição, M.; Shteinberg, M.; Goeminne, P.; Altenburg, J.; Chalmers, J.D. Eradication treatment for Pseudomonas aeruginosa infection in adults with bronchiectasis: A systematic review and meta-analysis. Eur. Respir. Rev. 2024, 33, 230178. [Google Scholar] [CrossRef]
- Martínez-García, M.; Faner, R.; Oscullo, G.; de la Rosa-Carrillo, D.; Soler-Cataluña, J.J.; Ballester, M.; Muriel, A.; Agusti, A. Risk Factors and Relation with Mortality of a New Acquisition and Persistence of Pseudomonas aeruginosa in COPD Patients. COPD J. Chronic Obstr. Pulm. Dis. 2021, 18, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Almagro, P.; Salvadó, M.; Garcia-Vidal, C.; Rodríguez-Carballeira, M.; Cuchi, E.; Torres, J.; Heredia, J.L. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012, 84, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Eklöf, J.; Sørensen, R.; Ingebrigtsen, T.S.; Sivapalan, P.; Achir, I.; Boel, J.B.; Bangsborg, J.; Ostergaard, C.; Dessau, R.B.; Jensen, U.S.; et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: An observational cohort study of 22 053 patients. Clin. Microbiol. Infect. 2020, 26, 227–234. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Ochs-Balcom, H.M.; Noyes, K.; Zhao, J.; Leung, W.Y.; Pu, C.Y.; Murphy, T.F.; Sethi, S. Impact of Pseudomonas aeruginosa Isolation on Mortality and Outcomes in an Outpatient Chronic Obstructive Pulmonary Disease Cohort. Open Forum Infect. Dis. 2020, 7, ofz546. [Google Scholar] [CrossRef] [PubMed]
- Giovagnorio, F.; De Vito, A.; Madeddu, G.; Parisi, S.G.; Geremia, N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics 2023, 12, 1621. [Google Scholar] [CrossRef]
- Sindeldecker, D.; Stoodley, P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm 2021, 3, 100056. [Google Scholar] [CrossRef]
- Moussouni, M.; Berry, L.; Sipka, T.; Nguyen-Chi, M.; Blanc-Potard, A.-B. Pseudomonas aeruginosa OprF plays a role in resistance to macrophage clearance during acute infection. Sci. Rep. 2021, 11, 359. [Google Scholar] [CrossRef]
- Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015, 6, 660. [Google Scholar] [CrossRef]
- Laborda, P.; Lolle, S.; Hernando-Amado, S.; Alcalde-Rico, M.; Aanæs, K.; Martínez, J.L.; Molin, S.; Johansen, H.K. Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Nat. Commun. 2024, 15, 2584. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa—An emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. In Virulence Mechanisms of Bacterial Pathogens; ASM Press: Washington, DC, USA, 2016; pp. 481–511. [Google Scholar]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef]
- Camus, L.; Vandenesch, F.; Moreau, K. From genotype to phenotype: Adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb. Genom. 2021, 7, 000513. [Google Scholar] [CrossRef]
- Oliver, A.; Cantón, R.; Campo, P.; Baquero, F.; Blázquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000, 288, 1251–1253. [Google Scholar] [CrossRef]
- Colque, C.A.; Orio, A.G.A.; Feliziani, S.; Marvig, R.L.; Tobares, A.R.; Johansen, H.K.; Molin, S.; Smania, A.M. Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways to Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob. Agents Chemother. 2020, 64, 10–128. [Google Scholar] [CrossRef]
- Marvig, R.L.; Sommer, L.M.; Molin, S.; Johansen, H.K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 2015, 47, 57–64. [Google Scholar] [CrossRef]
- Rees, V.E.; Lucas, D.S.D.; López-Causapé, C.; Huang, Y.; Kotsimbos, T.; Bulitta, J.B.; Rees, M.C.; Barugahare, A.; Peleg, A.Y.; Nation, R.L.; et al. Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Sandoval-Motta, S.; Aldana, M. Adaptive resistance to antibiotics in bacteria: A systems biology perspective. Syst. Biol. Med. 2016, 8, 253–267. [Google Scholar]
- Guillaume, O.; Butnarasu, C.; Visentin, S.; Reimhult, E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022, 4, 100089. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M.H. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, e0126922. [Google Scholar] [CrossRef]
- Balaban, N.Q.; Gerdes, K.; Lewis, K.; McKinney, J.D. A problem of persistence: Still more questions than answers? Nat. Rev. Microbiol. 2013, 11, 587–591. [Google Scholar] [CrossRef]
- Patel, H.; Buchad, H.; Gajjar, D. Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Sci. Rep. 2022, 12, 16151. [Google Scholar] [CrossRef]
- Maisonneuve, E.; Gerdes, K.J.C. Molecular mechanisms underlying bacterial persisters. Cell 2014, 157, 539–548. [Google Scholar] [CrossRef]
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, F.L.G.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Li, F.; Hou, C.-F.D.; Lokareddy, R.K.; Yang, R.; Forti, F.; Briani, F.; Cingolani, G. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217. Nat. Commun. 2023, 14, 4052. [Google Scholar] [CrossRef]
- Fokine, A.; Rossmann, M.G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 2014, 4, e28281. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Peters, D.L.; Dennis, J.J. Identification and Characterization of Type IV Pili as the Cellular Receptor of Broad Host Range Stenotrophomonas maltophilia Bacteriophages DLP1 and DLP2. Viruses 2018, 10, 338. [Google Scholar] [CrossRef]
- Bae, H.; Cho, Y. Complete genome sequence of Pseudomonas aeruginosa podophage MPK7, which requires type IV pili for infection. Genome Announc. 2013, 1, e00744-13. [Google Scholar] [CrossRef]
- Fernandes, S.; São-José, C. Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers. Viruses 2018, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.R.; Donovan, D.M.J.B. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 2015, 5, e1062590. [Google Scholar] [CrossRef] [PubMed]
- Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Drab, M.; Strus, M.; Gamian, A. Identification and characterization of phage protein and its activity against two strains of multidrug-resistant Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 13487. [Google Scholar] [CrossRef]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef]
- Valentová, L.; Füzik, T.; Nováček, J.; Hlavenková, Z.; Pospíšil, J.; Plevka, P. Structure and replication of Pseudomonas aeruginosa phage JBD30. EMBO J. 2024, 43, 4384–4405. [Google Scholar] [CrossRef]
- Venturini, C.; Petrovic Fabijan, A.; Fajardo Lubian, A.; Barbirz, S.; Iredell, J. Biological foundations of successful bacteriophage therapy. EMBO Mol. Med. 2022, 14, e12435. [Google Scholar] [CrossRef]
- Hyman, P.; Abedon, S.T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef]
- Barber, O.W.; Miramontes, I.M.; Jain, M.; Ozer, E.A.; Hartmann, E.M. The Future of Bacteriophage Therapy Will Promote Antimicrobial Susceptibility. mSystems 2021, 6, e0021821. [Google Scholar] [CrossRef] [PubMed]
- Mangalea, M.R.; Duerkop, B.A. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ji, H.; Wang, L.; Li, X.; Hu, D.; Zhao, J.; Wang, S.; Tao, P.; Li, X.; Qian, P. Fitness Trade-Offs in Phage Cocktail-Resistant Salmonella enterica Serovar Enteritidis Results in Increased Antibiotic Susceptibility and Reduced Virulence. Microbiol. Spectr. 2022, 10, e02914-22. [Google Scholar] [CrossRef] [PubMed]
- Egido, J.E.; Costa, A.R.; Aparicio-Maldonado, C.; Haas, P.-J.; Brouns, S.J.J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 2021, 46, fuab048. [Google Scholar] [CrossRef]
- Kysela, D.T.; Turner, P.E. Optimal bacteriophage mutation rates for phage therapy. J. Theor. Biol. 2007, 249, 411–421. [Google Scholar] [CrossRef]
- Nazarov, P.A. MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics 2022, 11, 734. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef]
- Schurek, K.N.; Breidenstein, E.B.; Hancock, R.E. Pseudomonas aeruginosa: A persistent pathogen in cystic fibrosis and hospital-associated infections. In Antibiotic Discovery and Development; Springer: Berlin/Heidelberg, Germany, 2011; pp. 679–715. [Google Scholar]
- Amankwah, S.; Abdella, K.; Kassa, T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol. Sci. Appl. 2021, 14, 161–177. [Google Scholar] [CrossRef]
- Ferriol-González, C.; Domingo-Calap, P. Phages for Biofilm Removal. Antibiotics 2020, 9, 268. [Google Scholar] [CrossRef]
- Maffei, E.; Woischnig, A.-K.; Burkolter, M.R.; Heyer, Y.; Humolli, D.; Thürkauf, N.; Bock, T.; Schmidt, A.; Manfredi, P.; Egli, A.; et al. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat. Commun. 2024, 15, 175. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Liang, Y.; Du, X.; Yang, C.; Yang, L.; Xie, J.; Zhao, R.; Tong, Y.; Qiu, S.; et al. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics 2020, 10, 6310–6321. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Franzon, B.; Vasse, M.; Hochberg, M.E. Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol. Appl. 2016, 9, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jo, Y.; Hwang, Y.J.; Hong, H.W.; Hong, S.S.; Park, K.; Myung, H. Phage-Antibiotic Synergy via Delayed Lysis. Appl. Environ. Microbiol. 2018, 84, e02085-18. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.-A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712. [Google Scholar] [CrossRef]
- Shariati, A.; Noei, M.; Chegini, Z. Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection. J. Clin. Lab. Anal. 2023, 37, e24932. [Google Scholar] [CrossRef]
- Soir, S.D.; Parée, H.; Kamarudin, N.H.N.; Wagemans, J.; Lavigne, R.; Braem, A.; Merabishvili, M.; Vos, D.D.; Pirnay, J.-P.; Bambeke, F.V. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol. Spectr. 2024, 12, e03219–e03223. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Kim, S.; Rahman, M.; Kim, J. Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J. Microbiol. 2011, 49, 994–999. [Google Scholar] [CrossRef]
- Roach, D.R.; Leung, C.Y.; Henry, M.; Morello, E.; Singh, D.; Di Santo, J.P.; Weitz, J.S.; Debarbieux, L. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host Microbe 2017, 22, 38–47.e34. [Google Scholar] [CrossRef]
- Hibstu, Z.; Belew, H.; Akelew, Y.; Mengist, H.M. Phage Therapy: A Different Approach to Fight Bacterial Infections. Biol. Targets Ther. 2022, 16, 173–186. [Google Scholar] [CrossRef]
- Krut, O.; Bekeredjian-Ding, I. Contribution of the immune response to phage therapy. J. Immunol. 2018, 200, 3037–3044. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: A multicentre, multinational, retrospective observational study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef] [PubMed]
- Khatami, A.; Foley, D.A.; Warner, M.S.; Barnes, E.H.; Peleg, A.Y.; Li, J.; Stick, S.; Burke, N.; Lin, R.C.Y.; Warning, J.; et al. Standardised treatment and monitoring protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study): Protocol for an open-label, single-arm trial. BMJ Open 2022, 12, e065401. [Google Scholar] [CrossRef] [PubMed]
- Onallah, H.; Hazan, R.; Nir-Paz, R. Compassionate Use of Bacteriophages for Failed Persistent Infections During the First 5 Years of the Israeli Phage Therapy Center. Open Forum Infect. Dis. 2023, 10, ofad221. [Google Scholar] [CrossRef] [PubMed]
- Koff, J. Cystic Fibrosis Phage Study at YALE (CYPHY). Available online: https://cdn.clinicaltrials.gov/large-docs/41/NCT04684641/Prot_SAP_000.pdf (accessed on 1 January 2025).
- Jagdev, S.; Dominic, A.F.; Adam, J.; Sharon, H.; Jeremy, J.B.; Jonathan, I.; Hiran, S. Single-arm, open-labelled, safety and tolerability of intrabronchial and nebulised bacteriophage treatment in children with cystic fibrosis and Pseudomonas aeruginosa. BMJ Open Respir. Res. 2023, 10, e001360. [Google Scholar] [CrossRef]
- Górski, A.; Międzybrodzki, R.; Łobocka, M.; Głowacka-Rutkowska, A.; Bednarek, A.; Borysowski, J.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Bagińska, N.; et al. Phage Therapy: What Have We Learned? Viruses 2018, 10, 288. [Google Scholar] [CrossRef]
- Luong, T.; Salabarria, A.-C.; Roach, D.R. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin. Ther. 2020, 42, 1659–1680. [Google Scholar] [CrossRef]
- Stanley, G.L.; Cochrane, C.; Chan, B.; Kortright, K.; Rahman, B.; Lee, A.; Vill, A.; Sun, Y.; Stewart, J.; Britto-Leon, C.J.; et al. Cystic Fibrosis Bacteriophage Study at Yale (CYPHY). Am. J. Respir. Crit. Care Med. 2024, 209, A6808. [Google Scholar]
- Singh, J.; Lynch, S.; Iredell, J.; Selvadurai, H. Safety and tolerability of bronchoscopic and nebulised administration of bacteriophage. Virus Res. 2024, 348, 199442. [Google Scholar] [CrossRef]
- Law, N.; Logan, C.; Yung, G.; Furr, C.-L.L.; Lehman, S.M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef]
- Köhler, T.; Luscher, A.; Falconnet, L.; Resch, G.; McBride, R.; Mai, Q.-A.; Simonin, J.L.; Chanson, M.; Maco, B.; Galiotto, R. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat. Commun. 2023, 14, 3629. [Google Scholar] [CrossRef]
- Hahn, A.; Sami, I.; Chaney, H.; Koumbourlis, A.C.; Del Valle Mojica, C.; Cochrane, C.; Chan, B.K.; Koff, J.L. Bacteriophage therapy for pan-drug-resistant Pseudomonas aeruginosa in two persons with cystic fibrosis. J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231188243. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhong, Q.; Zhao, Y.; Bao, J.; Liu, B.; Zhong, Z.; Wang, J.; Yang, L.; Zhang, T.; Cheng, M. First-in-human application of double-stranded RNA bacteriophage in the treatment of pulmonary Pseudomonas aeruginosa infection. Microb. Biotechnol. 2023, 16, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; Danis-Wlodarczyk, K.M.; Wozniak, D.J. Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth. Pharmaceuticals 2021, 14, 1019. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Kim, M.K.; Suh, G.A.; Cullen, G.D.; Rodriguez, S.P.; Dharmaraj, T.; Chang, T.H.W.; Li, Z.; Chen, Q.; Green, S.I.; Lavigne, R.; et al. Bacteriophage therapy for multidrug-resistant infections: Current technologies and therapeutic approaches. J. Clin. Investig. 2025, 135, e187996. [Google Scholar] [CrossRef]
- Daubie, V.; Chalhoub, H.; Blasdel, B.; Dahma, H.; Merabishvili, M.; Glonti, T.; De Vos, N.; Quintens, J.; Pirnay, J.P.; Hallin, M.; et al. Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective. Front. Cell. Infect. Microbiol. 2022, 12, 1000721. [Google Scholar] [CrossRef]
- García, R.; Latz, S.; Romero, J.; Higuera, G.; García, K.; Bastías, R. Bacteriophage production models: An overview. Front. Microbiol. 2019, 10, 1187. [Google Scholar] [CrossRef]
- João, J.; Lampreia, J.; Prazeres, D.M.F.; Azevedo, A.M. Manufacturing of bacteriophages for therapeutic applications. Biotechnol. Adv. 2021, 49, 107758. [Google Scholar] [CrossRef]
- Pirnay, J.-P.; Merabishvili, M.; Van Raemdonck, H.; De Vos, D.; Verbeken, G. Bacteriophage production in compliance with regulatory requirements. In Bacteriophage Therapy: From Lab to Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 233–252. [Google Scholar]
- Edwards, S.J.L.; Tao, Y.; Elias, R.; Schooley, R. Considerations for prioritising clinical research using bacteriophage. Essays Biochem. 2024, 68, 679–686. [Google Scholar] [CrossRef]
- McCallin, S.; Brüssow, H. Clinical Trials of Bacteriophage Therapeutics. In Bacteriophages: Biology, Technology, Therapy; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1099–1127. [Google Scholar]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.-L.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M.; et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. 2019, 19, 2631–2639. [Google Scholar]
- Zalewska-Piątek, B. Phage Therapy—Challenges, Opportunities and Future Prospects. Am. J. Transplant. 2023, 16, 1638. [Google Scholar] [CrossRef]
- Jones, J.D.; Trippett, C.; Suleman, M.; Clokie, M.R.; Clark, J.R. The future of clinical phage therapy in the United Kingdom. Viruses 2023, 15, 721. [Google Scholar] [CrossRef] [PubMed]
- Suh, G.A.; Lodise, T.P.; Tamma, P.D.; Knisely, J.M.; Alexander, J.; Aslam, S.; Barton, K.D.; Bizzell, E.; Totten, K.M.; Campbell, J.L.; et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 2022, 66, e0207121. [Google Scholar] [CrossRef] [PubMed]
- Bernabéu-Gimeno, M.; Pardo-Freire, M.; Chan, B.K.; Turner, P.E.; Gil-Brusola, A.; Pérez-Tarazona, S.; Carrasco-Hernández, L.; Quintana-Gallego, E.; Domingo-Calap, P. Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients. Med 2024, 5, 1096–1111.e6. [Google Scholar] [CrossRef]
- Berkson, J.D.; Wate, C.E.; Allen, G.B.; Schubert, A.M.; Dunbar, K.E.; Coryell, M.P.; Sava, R.L.; Gao, Y.; Hastie, J.L.; Smith, E.M.; et al. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model. Nat. Commun. 2024, 15, 2993. [Google Scholar] [CrossRef]
- Kulshrestha, M.; Tiwari, M.; Tiwari, V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb. Pathog. 2024, 186, 106467. [Google Scholar] [CrossRef]
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, W.N.; Concepcion-Acevedo, J.; Park, T.; Andleeb, S.; Bull, J.J.; Levin, B.R. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE 2017, 12, e0168615. [Google Scholar] [CrossRef]
Aspect | Antibiotic Therapy | Bacteriophage Therapy |
---|---|---|
Clinical Evidence | Supported by large-scale, late-phase clinical trials and decades of post-marketing surveillance. | Growing evidence from preclinical studies, early-phase clinical trials, and compassionate access programmes. |
Effectiveness | Standard of care for many decades to treat infections. | Emerging evidence demonstrates effectiveness against multidrug-resistant organisms. |
Route and Dosing | Standardised dosing with established routes of administration and well-defined regimens for most infections. | Optimal dosing and route of administration remain unclear and may depend on the specific bacteriophage used and the clinical context. |
Safety | Both short- and long-term safety profiles are well documented, including the potential for allergic reactions, gastrointestinal disturbances, and end-organ toxicity. | Recent studies suggest that bacteriophages are generally well-tolerated. However, the long-term safety profile remains under investigation. |
Complications | It may cause antibiotic-associated diarrhoea, secondary infections, or end-organ damage. Drug interactions may complicate use. | It may induce immune or inflammatory responses, failure to identify a suitable bacteriophage, or insufficient potency against the target strain. |
Impact on Microbiome | Broad-spectrum antibiotics disrupt gut and respiratory microbiota, leading to secondary infections or long-term alterations. | Typically, more specific, with less disruption to the microbiome, although long-term effects are not yet fully understood. |
Development of Resistance | The overuse or misuse of antibiotics can lead to a high potential for resistance development, a major global health concern. | There is a lower risk of resistance due to high specificity, although resistance to bacteriophages can still occur. |
Efficacy in the Paediatric Population | Extensive data support the use of antibiotics in children. | There is very limited data in children, particularly those with chronic respiratory diseases outside of CF. |
Regulatory Hurdles | Well-regulated with established pipelines for approval, distribution, and clinical use. | Regulatory frameworks are less developed, vary between countries, and can be complex, limiting broader implementation. |
Cost | Generally, low production and distribution costs, though development can be expensive. | High costs due to individualised production, testing, and regulatory hurdles. Economies of scale are currently limited. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Solomon, M.; Iredell, J.; Selvadurai, H. Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy. Antibiotics 2025, 14, 427. https://doi.org/10.3390/antibiotics14050427
Singh J, Solomon M, Iredell J, Selvadurai H. Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy. Antibiotics. 2025; 14(5):427. https://doi.org/10.3390/antibiotics14050427
Chicago/Turabian StyleSingh, Jagdev, Melinda Solomon, Jonathan Iredell, and Hiran Selvadurai. 2025. "Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy" Antibiotics 14, no. 5: 427. https://doi.org/10.3390/antibiotics14050427
APA StyleSingh, J., Solomon, M., Iredell, J., & Selvadurai, H. (2025). Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy. Antibiotics, 14(5), 427. https://doi.org/10.3390/antibiotics14050427