Clinical and Epidemiological Characteristics of Pediatric Pertussis Cases: A Retrospective Study from Southeast Romania
Abstract
:1. Introduction
2. Results
2.1. Socio-Demographic and Baseline Data of the Pediatric Patients
2.2. Associated Pathogens and Clinical Manifestations
2.3. Clinical Laboratory and Radiological Investigations
2.4. Treatment and Evolution
2.5. Correlations of Socio-Demographic and Baseline Factors and Clinical Findings
3. Materials and Methods
3.1. Data Collection
- Age range: Hospitalized pediatric patients aged less than 1 year to 13 years;
- Diagnosis of pertussis: All patients included in the study had a confirmed diagnosis of pertussis, which was determined through clinical evaluation and positive molecular testing for Bordetella pertussis (PCR);
- Inpatient admission: Only patients hospitalized in the Pediatric Departments during the specified period were included. Outpatients or those admitted for other respiratory diagnoses were excluded;
- Complete medical records: Patients whose medical records were complete, including laboratory results, clinical notes, and follow-up data, were considered eligible for inclusion.
3.2. Molecular Diagnostics
3.3. Serological Diagnostics
3.4. Imaging and Laboratory Tests
3.5. Statistical Analysis
4. Discussion
4.1. Clinical Insights
4.2. Epidemiological Insights
- Seeing a doctor when symptoms suggestive of the disease appear: intense and prolonged coughing fits, vomiting after coughing fits, difficulty breathing in infants, and noisy inhales (“whooping cough”);
- Timely vaccination of infants and recovery of arrears;
- Vaccination of pregnant women to ensure the newborn’s and mother’s protection;
- Adults’ vaccination, with a booster every 10 years;
- Promotion of “cocooning” vaccination in the infant’s entourage (in a family expecting a newborn, the parents, grandparents, and siblings of the infant should be vaccinated according to the national vaccination calendar or recommendations for adults).
4.3. Limitations
- As a retrospective analysis, the study relies on previously recorded medical data, which may introduce biases such as incomplete documentation, variability in clinical assessments, and potential misclassification of diagnoses.
- The qPCR is a powerful tool for diagnosing respiratory infections, but it has limitations. It detects both viable and non-viable pathogens, which can lead to overdiagnosis and misinterpretation of clinical significance. It does not provide information on pathogen load, viability, or the host immune response, making it insufficient for determining disease severity or guiding treatment. Additionally, qPCR cannot detect emerging pathogens or strains not included in specific panels, and false positives or contamination can occur. For a more accurate diagnosis, qPCR results should be interpreted alongside clinical symptoms, patient history, and additional diagnostic tests.
- The study included only 38 pediatric patients, which may not represent the broader population of children affected by Bordetella pertussis infection. The small sample size may limit the generalizability of the findings and reduce statistical power for specific associations.
- The data were collected from a single hospital (Constanta County Clinical Emergency Hospital St. Apostle Andrew), which may not fully capture regional or national variations in pertussis infection patterns, co-infections, and clinical management strategies. Future studies should incorporate a prospective, multicenter design with a larger cohort, include long-term follow-up of patients, and evaluate the impact of vaccination status and socioeconomic factors on disease outcomes.
4.4. Essential Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caulfield, A.D.; Harvill, E.T. Bordetella Pertussis. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1463–1478. [Google Scholar]
- Decker, M.D.; Edwards, K.M. Pertussis (Whooping Cough). J. Infect. Dis. 2021, 224, S310–S320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhuo, Y.; Chen, Y.; Fan, F.; Wang, C.; Zhou, W.; Xiao, G.; Chen, F. Clinical Features of Pertussis in 248 Hospitalized Children and Risk Factors of Severe Pertussis. Chin. J. Appl. Clin. Pediatr. 2023, 38, 275–280. [Google Scholar] [CrossRef]
- Fry, N.K.; Campbell, H.; Amirthalingam, G. JMM Profile: Bordetella Pertussis and Whooping Cough (Pertussis): Still a Significant Cause of Infant Morbidity and Mortality, but Vaccine-Preventable. J. Med. Microbiol. 2021, 70, 001442. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, W.; Zhu, Y.; Luo, S.; Liao, Q.; Wan, C. Invasive Bordetella pertussis Infection in Infants: A Case Report. Open Forum Infect. Dis. 2022, 9, ofac478. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Vyas, H. Early Infantile Pertussis; Increasingly Prevalent and Potentially Fatal. Eur. J. Pediatr. 2000, 159, 898–900. [Google Scholar] [CrossRef]
- Rothstein, E.; Edwards, K. Health Burden of Pertussis in Adolescents and Adults. Pediatr. Infect. Dis. J. 2005, 24, S44–S47. [Google Scholar] [CrossRef]
- Cherry, J.D.; Wendorf, K.; Bregman, B.; Lehman, D.; Nieves, D.; Bradley, J.S.; Mason, W.H.; Sande-Lopez, L.; Lopez, M.; Federman, M.; et al. An Observational Study of Severe Pertussis in 100 Infants ≤120 Days of Age. Pediatr. Infect. Dis. J. 2018, 37, 202–205. [Google Scholar] [CrossRef]
- WHO. Pertussis Vaccines: WHO Position Paper, August 2015-Recommendations. Vaccine 2016, 34, 1423–1425. [Google Scholar] [CrossRef]
- Sobanjo-ter Meulen, A.; Duclos, P.; McIntyre, P.; Lewis, K.D.C.; Van Damme, P.; O’Brien, K.L.; Klugman, K.P. Assessing the Evidence for Maternal Pertussis Immunization: A Report from the Bill & Melinda Gates Foundation Symposium on Pertussis Infant Disease Burden in Low- and Lower-Middle-Income Countries. Clin. Infect. Dis. 2016, 63, S123–S133. [Google Scholar] [CrossRef]
- Greenberg, D.P.; Von König, C.H.W.; Heininger, U. Health Burden of Pertussis in Infants and Children. Pediatr. Infect. Dis. J. 2005, 24, S39–S43. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Bettinger, J.A.; Vanderkooi, O.G.; Vaudry, W.; Halperin, S.A.; Sadarangani, M.; Bridger, N.; Morris, R.; Top, K.; Halperin, S.; et al. Burden of Children Hospitalized with Pertussis in Canada in the Acellular Pertussis Vaccine Era, 1999–2015. J. Pediatr. Infect. Dis. Soc. 2020, 9, 118–127. [Google Scholar] [CrossRef]
- Préziosi, M.; Halloran, M.E. Effects of Pertussis Vaccination on Disease: Vaccine Efficacy in Reducing Clinical Severity. Clin. Infect. Dis. 2003, 37, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, T.; Dinleyici, E.C.; Kara, A.; Kurugöl, Z.; Tezer, H.; Aksakal, N.B.; Biri, A.; Azap, A. The Present and Future Aspects of Life-Long Pertussis Prevention: Narrative Review with Regional Perspectives for Türkiye. Infect. Dis. Ther. 2023, 12, 2495–2512. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Luo, Y.; Yue, N.; Nie, D.; Ai, L.; Zhu, C.; Lv, H.; Wang, G.; Hu, D.; Wu, Y.; et al. Impact of Outdoor Air Pollution on the Incidence of Pertussis in China: A Time-Series Study. BMC Public Health 2023, 23, 2231. [Google Scholar] [CrossRef]
- Kovitwanichkanont, T. Public Health Measures for Pertussis Prevention and Control. Aust. N. Z. J. Public Health 2017, 41, 557–560. [Google Scholar] [CrossRef]
- Donzelli, A.; Bellavite, P.; Demicheli, V. Epidemiology of Pertussis and Prevention Strategies: Problems and Perspectives. Epidemiol. Prev. 2019, 43, 83–91. [Google Scholar] [CrossRef]
- Raguckas, S.E.; VandenBussche, H.L.; Jacobs, C.; Klepser, M.E. Pertussis Resurgence: Diagnosis, Treatment, Prevention, and Beyond. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2007, 27, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, M.; Iachimov2, D.; Mousseau, S.; Doyon-Plourde, P.; Brousseau, N.; Rallu, F.; Quach, C. Clinical Characteristics of Pediatric Pertussis Cases, Quebec 2015–2017. Can. Commun. Dis. Rep. 2018, 44, 190–195. [Google Scholar] [CrossRef]
- Qin, S.M.; Song, X.L.; Dong, W.Y.; Yang, D.D.; Qin, L.; Ma, X.Q.; Mo, S.Y. Epidemiologic and Clinical Characteristics of Pertussis in 139 Infants. J. Med. Pest Control 2022, 38. [Google Scholar] [CrossRef]
- Luo, K.; Yang, G.; Li, Y.; Lan, S.; Wang, Y.; He, L.; Hu, B. Croup and Pertussis Cough Sound Classification Algorithm Based on Channel Attention and Multiscale Mel-Spectrogram. Biomed. Signal Process. Control 2024, 91, 106073. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Wang, H.-M.; Yao, K.-H.; Liu, Y.; Lei, Y.-L.; Deng, J.-K.; Yang, Y.-H. Clinical Characteristics, Molecular Epidemiology and Antimicrobial Susceptibility of Pertussis among Children in Southern China. World J. Pediatr. 2020, 16, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Dan-Xia, W.; Qiang, C.; Lan, L.; Kun-Ling, S.; Kai-Hu, Y. Prevalence of Bordetella Pertussis Infection in Children with Chronic Cough and Its Clinical Features. Chin. J. Contemp. Pediatr. 2019, 21, 18–23. [Google Scholar] [CrossRef]
- Kavitha, T.K.; Samprathi, M.; Jayashree, M.; Gautam, V.; Sangal, L. Clinical Profile of Critical Pertussis in Children at a Pediatric Intensive Care Unit in Northern India. Indian Pediatr. 2020, 57, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, L.; Pan, J. Analysis of Multiple Factors Involved in Pertussis-Like Coughing. Clin. Pediatr. 2020, 59, 641–646. [Google Scholar] [CrossRef]
- Parker, D.; Picone, J.; Harati, A.; Lu, S.; Jenkyns, M.H.; Polgreen, P.M. Detecting Paroxysmal Coughing from Pertussis Cases Using Voice Recognition Technology. PLoS ONE 2013, 8, e82971. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M.; Kang, J.; Kenney, S.M.; Wong, T.Y.; Bitzer, G.J.; Kelly, C.O.; Kisamore, C.A.; Boehm, D.T.; DeJong, M.A.; Wolf, M.A.; et al. Reinvestigating the Coughing Rat Model of Pertussis to Understand Bordetella pertussis Pathogenesis. Infect. Immun. 2021, 89, e0030421. [Google Scholar] [CrossRef]
- Bakhtiar, B.; Zhiaul Muttaqin, I.; Maulana, G.; Tsurayya, G.; Safana, G. Leukocytosis as a Predictor of Clinical Worsening and Complications in Children with Pertussis: A Systematic Review of Case Study. Poltekita J. Ilmu Kesehat. 2023, 17, 203–210. [Google Scholar] [CrossRef]
- Pierce, C.; Klein, N.; Peters, M. Is Leukocytosis a Predictor of Mortality in Severe Pertussis Infection? Intensive Care Med. 2000, 26, 1512–1514. [Google Scholar] [CrossRef]
- Coquaz-Garoudet, M.; Ploin, D.; Pouyau, R.; Hoffmann, Y.; Baleine, J.-F.; Boeuf, B.; Patural, H.; Millet, A.; Labenne, M.; Vialet, R.; et al. Malignant Pertussis in Infants: Factors Associated with Mortality in a Multicenter Cohort Study. Ann. Intensive Care 2021, 11, 70. [Google Scholar] [CrossRef]
- De Berry, B.B.; Lynch, J.E.; Chung, D.H.; Zwischenberger, J.B. Pertussis with Severe Pulmonary Hypertension and Leukocytosis Treated with Extracorporeal Membrane Oxygenation. Pediatr. Surg. Int. 2005, 21, 692–694. [Google Scholar] [CrossRef]
- Carbonetti, N.H. Pertussis Leukocytosis: Mechanisms, Clinical Relevance and Treatment. Pathog. Dis. 2016, 74, ftw087. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, H.; Deng, J. Fatal Malignant Pertussis with Hyperleukocytosis in a Chinese Infant. Medicine 2018, 97, e0549. [Google Scholar] [CrossRef]
- ECDC. Increase of Pertussis Cases in the EU/EEA; ECDC: Stockholm, Sweden, 2024. [Google Scholar] [CrossRef]
- Stefanescu, A.M.; Stefanescu, A.R. The Hideouts of the Vaccination Process. J. Econ. Dev. Environ. People 2019, 8, 14–23. [Google Scholar] [CrossRef]
- Lutsar, I.; Anca, I.; Bakir, M.; Usonis, V.; Prymula, R.; Salman, N.; Grezesiowski, P.; Greenberg, M. Epidemiological Characteristics of Pertussis in Estonia, Lithuania, Romania, the Czech Republic, Poland and Turkey—1945 to 2005. Eur. J. Pediatr. 2009, 168, 407–415. [Google Scholar] [CrossRef]
- Bembea, M.M.; Jouvet, P.; Willson, D.; Thomas, N.J. Methodology of the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Cianga, C.M.; Antohe, I.; Zlei, M.; Constantinescu, D.; Cianga, P. Saliva Leukocytes Rather than Saliva Epithelial Cells Represent the Main Source of DNA. Rev. Rom. Med. Lab. 2016, 24, 31–44. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, Q.; Duan, X.; Xu, Z.; Wang, Q. L-Arginine Inhibited Apoptosis of Fish Leukocytes via Regulation of NF-ΚB-Mediated Inflammation, NO Synthesis, and Anti-Oxidant Capacity. Biochimie 2019, 158, 62–72. [Google Scholar] [CrossRef]
- Mihai, C.M.; Lupu, A.; Chisnoiu, T.; Balasa, A.L.; Baciu, G.; Lupu, V.V.; Popovici, V.; Suciu, F.; Enache, F.-D.; Cambrea, S.C.; et al. A Comprehensive Analysis of Echinococcus Granulosus Infections in Children and Adolescents: Results of a 7-Year Retrospective Study and Literature Review. Pathogens 2025, 14, 53. [Google Scholar] [CrossRef]
- Streba, L.; Popovici, V.; Mihai, A.; Mititelu, M.; Lupu, C.E.; Matei, M.; Vladu, I.M.; Iovănescu, M.L.; Cioboată, R.; Călărașu, C.; et al. Integrative Approach to Risk Factors in Simple Chronic Obstructive Airway Diseases of the Lung or Associated with Metabolic Syndrome—Analysis and Prediction. Nutrients 2024, 16, 1851. [Google Scholar] [CrossRef]
- Moroșan, E.; Dărăban, A.; Popovici, V.; Rusu, A.; Ilie, E.I.; Licu, M.; Karampelas, O.; Lupuliasa, D.; Ozon, E.A.; Maravela, V.M.; et al. Socio-Demographic Factors, Behaviors, Motivations, and Attitudes in Food Waste Management of Romanian Households. Nutrients 2024, 16, 2738. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, D.; Li, Y.; Zheng, H.; Yin, Z.; Liang, X. Challenges to Global Pertussis Prevention and Control. Chin. J. Epidemiol. 2023, 44, 491–497. [Google Scholar]
- World Health Organization. WHO Immunological Basis for Immunization Series: Modul 17: Rabies Update 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Vaccines and Immunization, Overview. Available online: https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1 (accessed on 2 March 2025).
- World Health Organization. Surveillance Standards for Vaccine-Preventable Diseases; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Rossetti, E.; Appierto, L.; Meschini, A.; Leone, G.; Lazzaro, S.; Del Principe, G.; Bianchi, R.; Picardo, S. Early Leukapheresis Depletion in an Ex-Premature with Severe Acute Respiratory Distress Syndrome Due to Bordetella pertussis and Coronavirus Infection. Blood Purif. 2020, 49, 758–760. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, P.; Xiong, G.; Yang, Z.; Wang, M.; Li, Y.; Yu, X. Coinfection of SARS-CoV-2 and Multiple Respiratory Pathogens in Children. Clin. Chem. Lab. Med. (CCLM) 2020, 58, 1160–1161. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Deng, L.; Xiao, F.; Fu, J.; Deng, J.; Wang, F.; Yang, J. Clinical Analysis of Children with Pertussis and Significance of Respiratory Virus Detection in the Combined Diagnosis. Zhonghua Er Ke Za Zhi 2017, 55, 580–585. [Google Scholar]
- Tabatabai, J.; Ihling, C.M.; Manuel, B.; Rehbein, R.M.; Schnee, S.V.; Hoos, J.; Pfeil, J.; Grulich-Henn, J.; Schnitzler, P. Viral Etiology and Clinical Characteristics of Acute Respiratory Tract Infections in Hospitalized Children in Southern Germany (2014–2018). Open Forum Infect. Dis. 2023, 10, ofad110. [Google Scholar] [CrossRef]
- Almannaei, L.; Alsaadoon, E.; AlbinAli, S.; Taha, M.; Lambert, I. A Retrospective Study Examining the Clinical Significance of Testing Respiratory Panels in Children Who Presented to a Tertiary Hospital in 2019. Access Microbiol. 2022, 4, 000332. [Google Scholar] [CrossRef] [PubMed]
- Efendiyeva, E.; Kara, T.T.; Erat, T.; Yahşi, A.; Karbuz, A.; Kocabaş, B.A.; Özdemir, H.; Karahan, Z.C.; İnce, E.; Çiftçi, E. The Incidence and Clinical Effects of Bordetella pertussis in Children Hospitalized with Acute Bronchiolitis. Turk. J. Pediatr. 2020, 62, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Giucă, M.C.; Cîlcic, C.; Mihăescu, G.; Gavrilă, A.; Dinescu, M.; Gătej, R.I. Streptococcus pneumoniae and Haemophilus influenzae Nasopharyngeal Molecular Detection in Children with Acute Respiratory Tract Infection in SANADOR Hospital, Romania. J. Med. Microbiol. 2019, 68, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Gunning, C.E.; Rohani, P.; Mwananyanda, L.; Kwenda, G.; Mupila, Z.; Gill, C.J. Young Zambian Infants with Symptomatic RSV and Pertussis Infections Are Frequently Prescribed Inappropriate Antibiotics: A Retrospective Analysis. PeerJ 2023, 11, e15175. [Google Scholar] [CrossRef]
- Yang, S.; Li, H.; Tang, Y.; Yu, F.; Ma, C.; Zhang, H.; Pang, L.; Zhao, H.; Wang, L. Multiplex Tests for Respiratory Tract Infections: The Direct Utility of the FilmArray Respiratory Panel in Emergency Department. Can. Respir. J. 2020, 2020, 6014563. [Google Scholar] [CrossRef]
- de Greeff, S.C.; van Buul, L.W.; Westerhof, A.; Wijga, A.H.; van de Kassteele, J.; Oostvogels, B.; van der Maas, N.A.T.; Mooi, F.R.; de Melker, H.E. Pertussis in Infancy and the Association with Respiratory and Cognitive Disorders at Toddler Age. Vaccine 2011, 29, 8275–8278. [Google Scholar] [CrossRef] [PubMed]
- Halasa, N.B.; Barr, F.E.; Johnson, J.E.; Edwards, K.M. Fatal Pulmonary Hypertension Associated with Pertussis in Infants: Does Extracorporeal Membrane Oxygenation Have a Role? Pediatrics 2003, 112, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, C.; Ballinger, K.; Halstead, E.S. Intrapulmonary Percussive Ventilation as an Airway Clearance Technique during Venoarterial Extracorporeal Life Support in an Infant with Pertussis. Front. Pediatr. 2017, 5, 99. [Google Scholar] [CrossRef]
- Skladal, D.; Horak, E.; Frühwirth, M.; Maurer, H.; Simma, B. Successful Treatment of Acute Respiratory Distress Syndrome and Severe Pulmonary Hypertension in a Child with Bordetella pertussis Infection. Wien. Klin. Wochenschr. 2004, 116, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S. Pediatric Acute Respiratory Distress Syndrome. Pediatr. Crit. Care Med. 2015, 16, S23–S40. [Google Scholar] [CrossRef]
- Iyer, N.; Khemani, R.; Emeriaud, G.; López-Fernández, Y.M.; Korang, S.K.; Steffen, K.M.; Barbaro, R.P.; Bembea, M.M. Methodology of the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2023, 24, S76–S86. [Google Scholar] [CrossRef]
- Esposito, S.; Stefanelli, P.; Fry, N.K.; Fedele, G.; He, Q.; Paterson, P.; Tan, T.; Knuf, M.; Rodrigo, C.; Weil Olivier, C.; et al. Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Front. Immunol. 2019, 10, 1344. [Google Scholar] [CrossRef]
- Bailly, D.K.; Reeder, R.W.; Zabrocki, L.A.; Hubbard, A.M.; Wilkes, J.; Bratton, S.L.; Thiagarajan, R.R. Development and Validation of a Score to Predict Mortality in Children Undergoing Extracorporeal Membrane Oxygenation for Respiratory Failure: Pediatric Pulmonary Rescue with Extracorporeal Membrane Oxygenation Prediction Score. Crit. Care Med. 2017, 45, e58–e66. [Google Scholar] [CrossRef]
- Fueta, P.O.; Eyituoyo, H.O.; Igbinoba, O.; Roberts, J. Cardiopulmonary Arrest and Pulmonary Hypertension in an Infant with Pertussis Case Report. Case Rep. Infect. Dis. 2021, 2021, 6686185. [Google Scholar] [CrossRef]
- Blasi, F.; Bonanni, P.; Braido, F.; Gabutti, G.; Marchetti, F.; Centanni, S. The Unmet Need for Pertussis Prevention in Patients with Chronic Obstructive Pulmonary Disease in the Italian Context. Hum. Vaccines Immunother. 2020, 16, 340–348. [Google Scholar] [CrossRef]
- Oñoro, G.; Salido, A.G.; Martínez, I.M.; Cabeza, B.; Gillén, M.; De Azagra, A.M. Leukoreduction in Patients with Severe Pertussis with Hyperleukocytosis. Pediatr. Infect. Dis. J. 2012, 31, 873–876. [Google Scholar] [CrossRef]
- Crowcroft, N.S.; Booy, R.; Harrison, T.; Spicer, L.; Britto, J.; Mok, Q.; Heath, P.; Murdoch, I.; Zambon, M.; George, R.; et al. Severe and Unrecognised: Pertussis in UK Infants. Arch. Dis. Child. 2003, 88, 802–806. [Google Scholar] [CrossRef]
- Al Hanshi, S.; Al Ghafri, M.; Al Ismaili, S. Severe Pertussis Pneumonia Managed with Exchange Transfusion. Oman Med. J. 2014, 29, e074. [Google Scholar] [CrossRef]
- Scanlon, K.; Skerry, C.; Carbonetti, N. Association of Pertussis Toxin with Severe Pertussis Disease. Toxins 2019, 11, 373. [Google Scholar] [CrossRef] [PubMed]
- Straney, L.; Schibler, A.; Ganeshalingham, A.; Alexander, J.; Festa, M.; Slater, A.; Maclaren, G.; Schlapbach, L.J. Burden and Outcomes of Severe Pertussis Infection in Critically Ill Infants. Pediatr. Crit. Care Med. 2016, 17, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Ide, Y.; Watanabe, J.; Takeuchi, Y.; Imaizumi, A. Respiratory Failure Caused by Dual Infection with Bordetella pertussis and Respiratory Syncytial Virus. Pediatr. Int. 1996, 38, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Paddock, C.D.; Sanden, G.N.; Cherry, J.D.; Gal, A.A.; Langston, C.; Tatti, K.M.; Wu, K.H.; Goldsmith, C.S.; Greer, P.W.; Montague, J.L.; et al. Pathology and Pathogenesis of Fatal Bordetella pertussis Infection in Infants. Clin. Infect. Dis. 2008, 47, 328–338. [Google Scholar] [CrossRef]
- Wang, J.; Gao, J.; Fan, H.; Guo, H.; Yin, Z.; Dong, M.; Huang, X. Multiple Rib and Vertebral Fractures Associated with Bordetella pertussis Infection: A Case Report. BMC Infect. Dis. 2023, 23, 212. [Google Scholar] [CrossRef]
- Bhavsar, A.; Aris, E.; Harrington, L.; Simeone, J.C.; Ramond, A.; Lambrelli, D.; Papi, A.; Boulet, L.P.; Meszaros, K.; Jamet, N.; et al. Burden of Pertussis in Individuals with a Diagnosis of Asthma: A Retrospective Database Study in England. J. Asthma Allergy 2022, 15, 35–51. [Google Scholar] [CrossRef]
- Chacón, G.P.; Fathima, P.; Jones, M.; Estcourt, M.J.; Gidding, H.F.; Moore, H.C.; Richmond, P.C.; Snelling, T. Association between Pertussis Vaccination in Infancy and Childhood Asthma: A Population-Based Record Linkage Cohort Study. PLoS ONE 2023, 18, e0291483. [Google Scholar] [CrossRef]
- Cimolai, N. Pharmacotherapy for Bordetella pertussis Infection. II. A Synthesis of Clinical Sciences. Int. J. Antimicrob. Agents 2021, 57, 106257. [Google Scholar] [CrossRef]
- Mi, Y.-M.; Hua, C.-Z.; Fang, C.; Liu, J.-J.; Xie, Y.-P.; Lin, L.-N.; Wang, G.-L. Effect of Macrolides and β-Lactams on Clearance of Bordetella pertussis in the Nasopharynx in Children with Whooping Cough. Pediatr. Infect. Dis. J. 2021, 40, 87–90. [Google Scholar] [CrossRef] [PubMed]
- He, W.-Q.; Kirk, M.D.; Sintchenko, V.; Hall, J.J.; Liu, B. Antibiotic Use Associated with Confirmed Influenza, Pertussis, and Nontyphoidal Salmonella Infections. Microb. Drug Resist. 2020, 26, 1482–1490. [Google Scholar] [CrossRef]
- Pertussis Guidelines Group. Guidelines for the Public Health Management of Pertussis in England; Public Health England: London, UK, 2018. [Google Scholar]
- Samuel, A.M.; Hacker, L.L.; Zebracki, J.; Bogenschutz, M.C.; Schulz, L.; Strayer, J.; Vanderloo, J.P.; Cengiz, P.; Henderson, S. Remdesivir Use in Pediatric Patients for SARS-CoV-2 Treatment: Single Academic Center Study. Pediatr. Infect. Dis. J. 2023, 42, 310–314. [Google Scholar] [CrossRef]
- Yeung, K.H.T.; Duclos, P.; Nelson, E.A.S.; Hutubessy, R.C.W. An Update of the Global Burden of Pertussis in Children Younger than 5 Years: A Modelling Study. Lancet Infect. Dis. 2017, 17, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, A.E.; Pastore Celentano, L.; Ciofi Degli Atti, M.L.; Salmaso, S. Diagnosis and Management of Pertussis. CMAJ Can. Med. Assoc. J. 2005, 172, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Heininger, U.; André, P.; Chlibek, R.; Kristufkova, Z.; Kutsar, K.; Mangarov, A.; Mészner, Z.; Nitsch-Osuch, A.; Petrović, V.; Prymula, R.; et al. Comparative Epidemiologic Characteristics of Pertussis in 10 Central and Eastern European Countries, 2000–2013. PLoS ONE 2016, 11, e0155949. [Google Scholar] [CrossRef]
- Hill, H.A.; Yankey, D.; Elam-Evans, L.D.; Mu, Y.; Chen, M.; Peacock, G.; Singleton, J.A. Decline in Vaccination Coverage by Age 24 Months and Vaccination Inequities Among Children Born in 2020 and 2021—National Immunization Survey-Child, United States, 2021–2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 844–853. [Google Scholar] [CrossRef]
- Herdea, V.; Tarciuc, P.; Ghionaru, R.; Lupusoru, M.; Tataranu, E.; Chirila, S.; Rosu, O.; Marginean, C.O.; Leibovitz, E.; Diaconescu, S. Vaccine Hesitancy Phenomenon Evolution during Pregnancy over High-Risk Epidemiological Periods—“Repetitio Est Mater Studiorum”. Vaccines 2023, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Samara, A.; Campbell, H.; Ladhani, S.N.; Amirthalingam, G. Recent Increase in Infant Pertussis Cases in Europe and the Critical Importance of Antenatal Immunizations: We Must Do Better…now. Int. J. Infect. Dis. 2024, 146, 107148. [Google Scholar] [CrossRef]
- Evans, B.; Jombart, T. Worldwide Routine Immunisation Coverage Regressed during the First Year of the COVID-19 Pandemic. Vaccine 2022, 40, 3531–3535. [Google Scholar] [CrossRef]
- Glanz, J.M.; McClure, D.L.; Magid, D.J.; Daley, M.F.; France, E.K.; Salmon, D.A.; Hambidge, S.J. Parental Refusal of Pertussis Vaccination Is Associated with an Increased Risk of Pertussis Infection in Children. Pediatrics 2009, 123, 1446–1451. [Google Scholar] [CrossRef]
- Stein-Zamir, C.; Shoob, H.; Abramson, N.; Brown, E.H.; Zimmermann, Y. Pertussis Outbreak Mainly in Unvaccinated Young Children in Ultra-Orthodox Jewish Groups, Jerusalem, Israel 2023. Epidemiol. Infect. 2023, 151, e166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, N.; Wang, Q.; Yang, L.; Cui, T.; Jin, H. The Association between Vaccine Hesitancy and Pertussis: A Systematic Review and Meta-Analysis. Ital. J. Pediatr. 2023, 49, 81. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Botia, I.; Riera-Bosch, M.T.; Rodríguez-Losada, O.; Soler-Palacín, P.; Melendo, S.; Moraga-Llop, F.; Balcells-Ramírez, J.; Otero-Romero, S.; Armadans-Gil, L. Impact of Vaccinating Pregnant Women against Pertussis on Hospitalizations of Children under One Year of Age in a Tertiary Hospital in Catalonia. Enfermedades Infecc. Microbiol. Clin. (Engl. Ed.) 2022, 40, 473–478. [Google Scholar] [CrossRef]
- Edelstein, M.; Müller, M.; Ladhani, S.; Yarwood, J.; Salathé, M.; Ramsay, M. Keep Calm and Carry on Vaccinating: Is Anti-Vaccination Sentiment Contributing to Declining Vaccine Coverage in England? Vaccine 2020, 38, 5297–5304. [Google Scholar] [CrossRef]
- Aslan, S.; Ozkara, A.; Kasım, I.; Aksoy, H. Why Turkish Parents Refuse Childhood Vaccination? A Qualitative Study. Arch. Iran. Med. 2023, 26, 267–274. [Google Scholar] [CrossRef]
- Demir Karabulut, S.; Zengin, H.Y. Parents’ and Healthcare Professionals’ Views and Attitudes towards Anti-Vaccination. Gulhane Med. J. 2021, 63, 260–266. [Google Scholar] [CrossRef]
- Cottone, D.M.; McCabe, P.C. Increases in Preventable Diseases Due to Antivaccination Beliefs: Implications for Schools. Sch. Psychol. 2022, 37, 319–329. [Google Scholar] [CrossRef]
- Łoś-Rycharska, E.; Popielarz, M.; Wolska, J.; Sobieska-Poszwa, A.; Dziembowska, I.; Krogulska, A. The Antivaccination Movement and the Perspectives of Polish Parents. Pediatr. Pol. 2022, 97, 183–192. [Google Scholar] [CrossRef]
- Slivesteri, S. Striking Observation of the Discrepancies between the Rural and Urban Healthcare Services Delivery: The Need to Bridge the Gap between Urban and Rural Areas of Uganda. Biomed. J. Sci. Tech. Res. 2023, 53, 44404–44406. [Google Scholar] [CrossRef]
- Gutierrez, J.P.; Johri, M. Socioeconomic and Geographic Inequities in Vaccination among Children 12 to 59 Months in Mexico, 2012 to 2021. Rev. Panam. Salud Pública 2023, 47, e35. [Google Scholar] [CrossRef]
- Kassam, S.; Serrano-Lomelin, J.; Hicks, A.; Crawford, S.; Bakal, J.A.; Ospina, M.B. Geography as a Determinant of Health: Health Services Utilization of Pediatric Respiratory Illness in a Canadian Province. Int. J. Environ. Res. Public Health 2021, 18, 8347. [Google Scholar] [CrossRef] [PubMed]
- Alghounaim, M.; Alsaffar, Z.; Alfraij, A.; Bin-Hasan, S.; Hussain, E. Whole-Cell and Acellular Pertussis Vaccine: Reflections on Efficacy. Med. Princ. Pract. 2022, 31, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Szwejser-Zawislak, E.; Wilk, M.M.; Piszczek, P.; Krawczyk, J.; Wilczyńska, D.; Hozbor, D. Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines 2022, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Versteegen, P.; Barkoff, A.M.; Valente Pinto, M.; van de Kasteele, J.; Knuutila, A.; Bibi, S.; de Rond, L.; Teräsjärvi, J.; Sanders, K.; de Zeeuw-Brouwer, M.-l.; et al. Memory B Cell Activation Induced by Pertussis Booster Vaccination in Four Age Groups of Three Countries. Front. Immunol. 2022, 13, 864674. [Google Scholar] [CrossRef]
- Versteegen, P.; Bonačić Marinović, A.A.; van Gageldonk, P.G.M.; van der Lee, S.; Hendrikx, L.H.; Sanders, E.A.M.; Berbers, G.A.M.; Buisman, A.M. Long-Term Immunogenicity upon Pertussis Booster Vaccination in Young Adults and Children in Relation to Priming Vaccinations in Infancy. Vaccines 2022, 10, 693. [Google Scholar] [CrossRef]
- Perez Chacon, G.; Ramsay, J.; Brennan-Jones, C.G.; Estcourt, M.J.; Richmond, P.; Holt, P.; Snelling, T. Whole-Cell Pertussis Vaccine in Early Infancy for the Prevention of Allergy in Children. Cochrane Database Syst. Rev. 2021, 2021, CD013682. [Google Scholar] [CrossRef]
- Witt, M.A.; Arias, L.; Katz, P.H.; Truong, E.T.; Witt, D.J. Reduced Risk of Pertussis Among Persons Ever Vaccinated with Whole Cell Pertussis Vaccine Compared to Recipients of Acellular Pertussis Vaccines in a Large US Cohort. Clin. Infect. Dis. 2013, 56, 1248–1254. [Google Scholar] [CrossRef]
- Caulfield, A.D.; Callender, M.; Harvill, E.T. Generating Enhanced Mucosal Immunity against Bordetella pertussis: Current Challenges and New Directions. Front. Immunol. 2023, 14, 1126107. [Google Scholar] [CrossRef]
- Gao, J.; Huang, L.; Luo, S.; Qiao, R.; Liu, F.; Li, X. A Novel Vaccine Formulation Candidate Based on Lipooligosaccharides and Pertussis Toxin against Bordetella pertussis. Front. Immunol. 2023, 14, 1124695. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.A.; Boehm, D.T.; DeJong, M.A.; Wong, T.Y.; Sen-Kilic, E.; Hall, J.M.; Blackwood, C.B.; Weaver, K.L.; Kelly, C.O.; Kisamore, C.A.; et al. Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infect. Immun. 2021, 89, e00607-20. [Google Scholar] [CrossRef]
- Ward, J.I.; Cherry, J.D.; Chang, S.-J.; Partridge, S.; Lee, H.; Treanor, J.; Greenberg, D.P.; Keitel, W.; Barenkamp, S.; Bernstein, D.I.; et al. Efficacy of an Acellular Pertussis Vaccine among Adolescents and Adults. N. Engl. J. Med. 2005, 353, 1555–1563. [Google Scholar] [CrossRef]
- Klein, N.P.; Bartlett, J.; Rowhani-Rahbar, A.; Fireman, B.; Baxter, R. Waning Protection after Fifth Dose of Acellular Pertussis Vaccine in Children. N. Engl. J. Med. 2012, 367, 1012–1019. [Google Scholar] [CrossRef]
- Sheridan, S.; McIntyre, P.; Liu, B.; Fathima, P.; Snelling, T.; Blyth, C.; de Klerk, N.; Moore, H.; Gidding, H. Pertussis Burden and Acellular Pertussis Vaccine Effectiveness in High Risk Children. Vaccine 2022, 40, 1376–1382. [Google Scholar] [CrossRef]
- Knuutila, A.; Dalby, T.; Ahvenainen, N.; Barkoff, A.M.; Jørgensen, C.S.; Fuursted, K.; Mertsola, J.; He, Q. Antibody Avidity to Pertussis Toxin after Acellular Pertussis Vaccination and Infection. Emerg. Microbes Infect. 2023, 12, e2174782. [Google Scholar] [CrossRef]
- Gregg, K.A.; Merkel, T.J. Pertussis Toxin: A Key Component in Pertussis Vaccines? Toxins 2019, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, P.; Borkner, L.; Jazayeri, S.D.; McCarthy, K.N.; Mills, K.H. Nasal Vaccines for Pertussis. Curr. Opin. Immunol. 2023, 84, 102355. [Google Scholar] [CrossRef] [PubMed]
- Dewan, K.K.; Linz, B.; DeRocco, S.E.; Harvill, E.T. Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines 2020, 8, 217. [Google Scholar] [CrossRef]
- Munoz, F.M. Safer Pertussis Vaccines for Children: Trading Efficacy for Safety. Pediatrics 2018, 142, e20181036. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Guay, M.; Kokaua, J.; Lévesque, I.; Castillo, E.; Poliquin, V. Pertussis Vaccination in Canadian Pregnant Women, 2018–2019. J. Obstet. Gynaecol. Can. 2022, 44, 762–768. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Sahoo, G.; Kar, B.; Kar, D.; Bhuyan, R. Public Health Measures for Pertussis Immunization in Pregnancy—A Rationalized Study. Int. J. Curr. Res. Rev. 2021, 13, 157–161. [Google Scholar] [CrossRef]
- Vygen-Bonnet, S.; Hellenbrand, W.; Garbe, E.; von Kries, R.; Bogdan, C.; Heininger, U.; Röbl-Mathieu, M.; Harder, T. Safety and Effectiveness of Acellular Pertussis Vaccination during Pregnancy: A Systematic Review. BMC Infect. Dis. 2020, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.X.; Chen, Q.; Yao, K.H.; Li, L.; Shi, W.; Ke, J.W.; Wu, A.M.; Huang, P.; Shen, K.L. Pertussis Detection in Children with Cough of Any Duration. BMC Pediatr. 2019, 19, 236. [Google Scholar] [CrossRef]
- Viswanathan, R.; Bafna, S.; Choudhary, M.L.; Reddy, M.; Katendra, S.; Maheshwari, S.; Jadhav, S. Looking beyond Pertussis in Prolonged Cough Illness of Young Children. Vaccines 2022, 10, 1191. [Google Scholar] [CrossRef]
- Skirda, T.A.; Borisova, O.Y.; Borisova, A.B.; Kombarova, S.Y.; Pimenova, A.S.; Gadua, N.T.; Chagina, I.A.; Petrova, M.S.; Kafarskaya, L.I. Determination of Anti-Pertussis Antibodies in Schoolchildren with Long-Term Cough. J. Infektologii 2023, 15, 93–100. [Google Scholar] [CrossRef]
- Duterme, S.; Vanhoof, R.; Vanderpas, J.; Pierard, D.; Huygen, K. Serodiagnosis of Whooping Cough in Belgium: Results of the National Reference Centre for Bordetella pertussis Anno 2013. Acta Clin. Belg. 2016, 71, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.M.; Simon, A.; Thomas, S.; Tunali, A.; Satola, S.; Jain, S.; Farley, M.M.; Tondella, M.L.; Skoff, T.H. Evaluation of Asymptomatic Bordetella Carriage in a Convenience Sample of Children and Adolescents in Atlanta, Georgia, United States. J. Pediatr. Infect. Dis. Soc. 2024, 13, 105–109. [Google Scholar] [CrossRef]
- Cherry, J.D. The Prevention of Severe Pertussis and Pertussis Deaths in Young Infants. Expert. Rev. Vaccines 2019, 18, 205–208. [Google Scholar] [CrossRef]
- Shi, T.; Wang, L.; Du, S.; Fan, H.; Yu, M.; Ding, T.; Xu, X.; Zhang, D.; Huang, L.; Lu, G. Mortality Risk Factors among Hospitalized Children with Severe Pertussis. BMC Infect. Dis. 2021, 21, 1057. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Cheng, Y.; Xu, H.; Xu, F. Risk Factors Associated with Death in Infants <120 Days Old with Severe Pertussis: A Case-Control Study. BMC Infect. Dis. 2020, 20, 852. [Google Scholar] [CrossRef] [PubMed]
- Althouse, B.M.; Scarpino, S.V. Asymptomatic Transmission and the Resurgence of Bordetella pertussis. BMC Med. 2015, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Van Rie, A.; Salmaso, S.; Englund, J.A. Duration of Immunity Against Pertussis After Natural Infection or Vaccination. Pediatr. Infect. Dis. J. 2005, 24, S58–S61. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.B.; Kim, S.-Y.; Toscano, C.; Cosgriff, B.; Minamisava, R.; Lucia Andrade, A.; Sanderson, C.; Sinha, A. Comparison of Static and Dynamic Models of Maternal Immunization to Prevent Infant Pertussis in Brazil. Vaccine 2021, 39, 158–166. [Google Scholar] [CrossRef]
- Tessier, E.; Newport, D.; Tran, A.; Nash, S.G.; Mensah, A.A.; Yun Wang, T.; Shantikumar, S.; Campbell, H.; Amirthalingam, G.; Todkill, D. Pertussis Immunisation Strategies to Optimise Infant Pertussis Control: A Narrative Systematic Review. Vaccine 2023, 41, 5957–5964. [Google Scholar] [CrossRef]
- Cheuvart, B.; Callegaro, A.; Rosillon, D.; Meyer, N.; Guignard, A. Effectiveness of Maternal Immunisation with a Three-Component Acellular Pertussis Vaccine at Preventing Pertussis in Infants in the United States: Post-Hoc Analysis of a Case-Control Study Using Bayesian Dynamic Borrowing. Vaccine 2023, 41, 5805–5812. [Google Scholar] [CrossRef]
- Dubois, V.; Locht, C. Mucosal Immunization Against Pertussis: Lessons from the Past and Perspectives. Front. Immunol. 2021, 12, 701285. [Google Scholar] [CrossRef]
Aspect | Total | F | M | p-Value | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
Total | 38 | 100 | 19 | 50 | 19 | 50 | ||
Age (years) | <1 year | 17 | 44.74 | 6 | 31.58 | 11 | 57.89 | <0.05 <0.05 |
1–3 years | 14 | 36.84 | 8 | 42.11 | 6 | 31.58 | <0.05 | |
4–8 years | 4 | 10.53 | 4 | 21.05 | 0 | 0.00 | <0.05 | |
9–13 years | 3 | 7.89 | 1 | 5.26 | 2 | 10.53 | <0.05 | |
Residence | Rural | 17 | 44.74 | 7 | 36.84 | 10 | 52.63 | <0.05 |
Urban | 21 | 55.26 | 12 | 63.16 | 9 | 47.37 | <0.05 | |
B. pertussis vaccination | No | 31 | 81.58 | 16 | 84.21 | 15 | 78.95 | >0.05 |
Yes | 7 | 18.42 | 3 | 15.79 | 4 | 21.05 | <0.05 | |
B. pertussis diagnosis | ELISA | 6 | 15.79 | 4 | 21.05 | 2 | 10.53 | <0.05 |
qPCR | 32 | 84.21 | 15 | 78.95 | 17 | 89.47 | >0.05 |
Aspect | Total | Respiratory Symptoms Claimed Before Presentation in ECU (Days) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | 1–3 Days | 4–9 Days | 10–14 Days | >20 Days | ||||||||
n | % | n | % | n | % | n | % | n | % | n | % | |
Total | 38 | 100 | 2 | 5.26 | 7 | 18.42 | 12 | 31.58 | 12 | 31.58 | 5 | 13.16 |
Viruses | ||||||||||||
EV-HRV | 12 | 31.58 | 0 | 0.00 | 3 | 42.86 | 3 | 25.00 | 3 | 25.00 | 3 | 60.00 |
HPIV-3 | 2 | 5.26 | 0 | 0.00 | 1 | 14.29 | 1 | 8.33 | 0 | 0.00 | 0 | 0.00 |
SARS-CoV2 | 5 | 13.16 | 0 | 0.00 | 2 | 28.57 | 3 | 25.00 | 0 | 0.00 | 0 | 0.00 |
HAdVs | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1 | 8.33 | 0 | 0.00 | 0 | 0.00 |
MV | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | 20.00 |
RSV | 1 | 2.63 | 0 | 0.00 | 1 | 14.29 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Other Pathogens | ||||||||||||
S. pneumoniae | 7 | 18.42 | 0 | 0.00 | 1 | 14.29 | 6.00 | 50.00 | 0 | 0.00 | 0 | 0.00 |
M. pneumoniae | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1.00 | 8.33 | 0 | 0.00 | 0 | 0.00 |
P. jirovecii | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1.00 | 8.33 | 0 | 0.00 | 0 | 0.00 |
Parameter | Total | Outcome | |||||||
---|---|---|---|---|---|---|---|---|---|
Clinical Cure | Deceased | Transfer | |||||||
n | % | n | % | n | % | n | % | ||
Laboratory Analyses | |||||||||
WBC n × 103 | WBC = 20–100 | 18 | 47.37 | 9 | 37.50 | 1 | 50.00 | 8 | 66.67 |
WBC = 5–19 | 18 | 47.37 | 15 | 62.50 | 0 | 0.00 | 3 | 25.00 | |
WBC > 100 | 2 | 5.26 | 0 | 0.00 | 1 | 50.00 | 1 | 8.33 | |
Lym% | Lym < 20% | 1 | 2.63 | 0 | 0.00 | 1 | 50.00 | 0 | 0.00 |
Lym = 20–40% | 7 | 18.42 | 5 | 20.83 | 1 | 50.00 | 1 | 8.33 | |
Lym > 40% | 30 | 78.95 | 19 | 79.17 | 0 | 0.00 | 11 | 91.67 | |
Lym n × 103 | Lym = 2–8 | 14 | 36.84 | 12 | 50.00 | 1 | 50.00 | 1 | 8.33 |
Lym = 8.1–20 | 12 | 31.58 | 7 | 29.17 | 0 | 0.00 | 5 | 41.67 | |
Lym > 20 | 12 | 31.58 | 5 | 20.83 | 1 | 50.00 | 6 | 50.00 | |
PBS | No | 31 | 81.58 | 23 | 95.83 | 1 | 50.00 | 7 | 58.33 |
PBS positive | 7 | 18.42 | 1 | 4.17 | 1 | 50.00 | 5 | 41.67 | |
CRP mg/dL | <0.4 | 13 | 34.21 | 9 | 37.50 | 0 | 0.00 | 4 | 33.33 |
0.4–1.0 | 8 | 21.05 | 6 | 25.00 | 0 | 0.00 | 2 | 16.67 | |
1.1–10.0 | 11 | 28.95 | 7 | 29.17 | 0 | 0.00 | 4 | 33.33 | |
11.0–50.0 | 4 | 10.53 | 2 | 8.33 | 1 | 50.00 | 1 | 8.33 | |
51.0–100.0 | 1 | 2.63 | 0 | 0.00 | 1 | 50.00 | 0 | 0.00 | |
>100.0 | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1 | 8.33 | |
Chest X-ray | |||||||||
N/A | 4 | 10.53 | 4 | 16.67 | 0 | 0.00 | 0 | 0.00 | |
Normal | 4 | 10.53 | 3 | 12.50 | 0 | 0.00 | 1 | 8.33 | |
Positive | 30 | 78.95 | 17 | 70.83 | 2 | 100.00 | 11 | 91.67 | |
Complications | |||||||||
C-No | 34 | 89.47 | 23 | 95.83 | 0 | 0.00 | 11 | 91.67 | |
C-Yes | 4 | 10.53 | 1 | 4.17 | 2 | 100.00 | 1 | 8.33 | |
Days of Hospitalization | |||||||||
2–5 days | 4 | 10.53 | 4 | 16.66 | 0 | 0.00 | 0 | 0.00 | |
6–10 days | 16 | 42.11 | 14 | 58.33 | 2 | 100.00 | 0 | 0.00 | |
>10 days | 2 | 5.26 | 2 | 8.33 | 0 | 0.00 | 0 | 0.00 | |
No | 4 | 10.53 | 4 | 16.66 | 0 | 0.00 | 0 | 0.00 | |
Transfer after 1–8 days | 12 | 31.58 | 0 | 0.00 | 0 | 0.00 | 12 | 100.00 |
Aspect | Total | Clinical Cure | Deceased | Transfer | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | |
Total | 38 | 100 | 24 | 63.16 | 2 | 5.26 | 12 | 31.58 |
PICU | 7 | 18.42 | 5 | 20.83 | 1 | 50.00 | 1 | 8.33 |
Antimicrobial Drugs | ||||||||
Amoxicillin | 2 | 5.26 | 1 | 4.17 | 0 | 0.00 | 1 | 8.33 |
Azithromycin | 21 | 55.26 | 15 | 62.50 | 2 | 100.00 | 4 | 33.33 |
Ceftriaxone | 8 | 21.05 | 2 | 8.33 | 0 | 0.00 | 6 | 50.00 |
Clarithromycin | 5 | 13.16 | 5 | 20.83 | 0 | 0.00 | 0 | 0.00 |
Remdesivir | 2 | 5.26 | 1 | 4.17 | 0 | 0.00 | 1 | 8.33 |
Other Drugs | ||||||||
Dex | 21 | 55.26 | 17 | 70.83 | 1 | 50.00 | 3 | 25.00 |
HHC | 14 | 36.84 | 4 | 16.67 | 1 | 50.00 | 9 | 75.00 |
Neb.Adr. | 31 | 81.58 | 19 | 79.17 | 2 | 100.00 | 10 | 83.33 |
Aminophylline | 1 | 2.63 | 1 | 4.17 | 0 | 0.00 | 0 | 0.00 |
Epinephrine | 1 | 2.63 | 1 | 4.17 | 0 | 0.00 | 0 | 0.00 |
Norepinephrine | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1 | 8.33 |
Furosemide | 2 | 5.26 | 1 | 4.17 | 0 | 0.00 | 1 | 8.33 |
Mannitol | 1 | 2.63 | 1 | 4.17 | 0 | 0.00 | 0 | 0.00 |
Albumin | 1 | 2.63 | 1 | 4.17 | 0 | 0.00 | 0 | 0.00 |
Other Therapeutical Interventions | ||||||||
HFNCO2 | 4 | 10.53 | 3 | 12.50 | 0 | 0.00 | 1 | 8.33 |
LFNCO2 | 18 | 47.37 | 11 | 45.83 | 2 | 100.00 | 5 | 41.67 |
Nasogastric Intubation | 3 | 7.89 | 2 | 8.33 | 0 | 0.00 | 1 | 8.33 |
Mechanical ventilation | 2 | 5.26 | 1 | 4.17 | 0 | 0.00 | 1 | 8.33 |
Bilateral pleurotomy | 1 | 2.63 | 0 | 0.00 | 0 | 0.00 | 1 | 2.63 |
Blood transfusion | 2 | 5.26 | 0 | 0.00 | 0 | 0.00 | 2 | 16.67 |
Parameter | BPV No | BPV Yes | p-Value | ||
---|---|---|---|---|---|
n | % | n | % | ||
Total | 31 | 81.58 | 7 | 18.42 | <0.05 |
Residence | |||||
Rural | 16 | 51.61 | 1 | 14.29 | <0.05 |
Urban | 15 | 48.39 | 6 | 85.71 | <0.05 |
Age (years) | |||||
<1 year | 17 | 54.84 | 0 | 0.00 | <0.05 |
1–3 years | 11 | 35.48 | 3 | 42.86 | <0.05 |
4–8 years | 2 | 6.45 | 2 | 28.57 | <0.05 |
>9 years | 1 | 3.23 | 2 | 28.57 | <0.05 |
Clinical Manifestations | |||||
Fever | 14 | 45.16 | 2 | 28.57 | <0.05 |
LRTI | 21 | 67.74 | 2 | 28.57 | <0.05 |
Rhinorrhea | 13 | 41.94 | 1 | 14.29 | <0.05 |
O2 DS | 7 | 22.58 | 0 | 0.00 | <0.05 |
Diagnostic | |||||
C-X-ray-Normal | 3 | 9.68 | 1 | 14.29 | <0.05 |
PBS No | 24 | 77.42 | 7 | 100.00 | <0.05 |
WBC (n × 103/µL) | |||||
WBC = 20–100 | 15 | 48.39 | 3 | 42.86 | >0.05 |
WBC > 100 | 2 | 6.45 | 0 | 0.00 | <0.05 |
Lym (n × 103/µL) | |||||
Lym = 8.1–20 | 10 | 32.26 | 2 | 28.57 | >0.05 |
Lym > 20 | 11 | 35.48 | 1 | 14.29 | <0.05 |
CRP (mg/dL) | |||||
0.4–1.0 | 5 | 16.13 | 3 | 42.86 | <0.05 |
1.1–10.0 | 10 | 32.26 | 1 | 14.29 | <0.05 |
51.0–100.0 | 1 | 3.23 | 0 | 0.00 | <0.05 |
>100.0 | 1 | 3.23 | 0 | 0.00 | <0.05 |
Hospitalization | |||||
HS-Yes | 30 | 96.77 | 4 | 57.14 | <0.05 |
HD = 6–10 days | 14 | 45.16 | 2 | 28.57 | <0.05 |
Oxygen Administration | |||||
HFNCO2 | 4 | 12.90 | 0 | 0.00 | <0.05 |
LFNCO2 | 16 | 51.61 | 2 | 28.57 | <0.05 |
Outcomes | |||||
C-No | 27 | 87.10 | 0 | 100.00 | <0.05 |
PICU Yes | 7 | 22.58 | 0 | 0.00 | <0.05 |
Deceased | 2 | 6.45 | 0 | 0.00 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, C.M.; Lupu, A.; Chisnoiu, T.; Balasa, A.L.; Baciu, G.; Fotea, S.; Lupu, V.V.; Popovici, V.; Cambrea, S.C.; Grigorian, M.; et al. Clinical and Epidemiological Characteristics of Pediatric Pertussis Cases: A Retrospective Study from Southeast Romania. Antibiotics 2025, 14, 428. https://doi.org/10.3390/antibiotics14050428
Mihai CM, Lupu A, Chisnoiu T, Balasa AL, Baciu G, Fotea S, Lupu VV, Popovici V, Cambrea SC, Grigorian M, et al. Clinical and Epidemiological Characteristics of Pediatric Pertussis Cases: A Retrospective Study from Southeast Romania. Antibiotics. 2025; 14(5):428. https://doi.org/10.3390/antibiotics14050428
Chicago/Turabian StyleMihai, Cristina Maria, Ancuta Lupu, Tatiana Chisnoiu, Adriana Luminita Balasa, Ginel Baciu, Silvia Fotea, Vasile Valeriu Lupu, Violeta Popovici, Simona Claudia Cambrea, Mircea Grigorian, and et al. 2025. "Clinical and Epidemiological Characteristics of Pediatric Pertussis Cases: A Retrospective Study from Southeast Romania" Antibiotics 14, no. 5: 428. https://doi.org/10.3390/antibiotics14050428
APA StyleMihai, C. M., Lupu, A., Chisnoiu, T., Balasa, A. L., Baciu, G., Fotea, S., Lupu, V. V., Popovici, V., Cambrea, S. C., Grigorian, M., Suciu, F., Enache, F.-D., Sora, A., & Stoicescu, R. M. (2025). Clinical and Epidemiological Characteristics of Pediatric Pertussis Cases: A Retrospective Study from Southeast Romania. Antibiotics, 14(5), 428. https://doi.org/10.3390/antibiotics14050428