Simulation of Dendrite Remelting via the Phase-Field Method
Abstract
:1. Introduction
2. Phase Field Model
2.1. Establishment of Remelting Phase Field Model
2.2. The Establishment of Geometric Model and the Determination of Boundary Conditions
3. Analysis of Dendrite-Remelting Simulation Results
3.1. Dendrite Remelting Process
3.2. Dendrite Remelting Mode in Lateral Dendrite Melting
3.3. Dendrite Remelting—The Main Dendrite Melting Mode
4. Conclusions
- Based on the phase field method, a dendrite growth model was established and solved using the finite difference method (FDM), which provided the initial conditions for the solution of the dendrite remelting model. The results show that under the influence of interfacial anisotropy, the crystal nuclei exhibit obvious main dendrite growth in both horizontal and vertical directions, showing the characteristic of a preferred orientation in the process of dendrite growth.
- Based on the solution data derived from the phase field method and dendrite growth model, a temperature-induced dendrite remelting model was established and solved. The results show that the dendrite remelting process follows a certain sequence, wherein the lateral branches melt the main dendrite first and then melt. When the lateral branches are not completely melted or the root is not broken, the main dendrite stem will shrink to a certain extent but not melt. The melting process of lateral branches consists of the contraction of lateral branches back into the main dendrites and the fracturing of the lateral branches of the main dendrites. The melting process of main dendrites takes the form of multi-stage melting due to the inhomogeneity of the crystal structure and the difference in the melting-induced fracturing of the lateral branches.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Ding, H.; Chen, R.; Guo, J.; Fu, H. Microstructural evolution and mechanical properties of a Cr-rich β-solidifying TiAl-based alloy prepared by electromagnetic cold crucible continuous casting. Mater. Sci. Eng. A 2020, 798, 140205. [Google Scholar] [CrossRef]
- Zhi, Y.; Jiang, Y.; Ke, D.; Hu, X.; Liu, X. Review on Cellular Automata for Microstructure Simulation of Metallic Materials. Materials 2024, 17, 1370. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Cheng, X.; Zhang, B.; Wu, Y.; Zhang, S.; Tian, X. Prediction of solidification microstructure of titanium aluminum intermetallic alloy by laser surface remelting. Opt. Laser Technol. 2022, 147, 107606. [Google Scholar] [CrossRef]
- Rappaz, M.; Jarry, P.; Kurtuldu, G.; Zollinger, J. Solidification of metallic alloys: Does the structure of the liquid matter? Metall. Mater. Trans. A 2020, 51, 2651–2664. [Google Scholar] [CrossRef]
- Yang, L.; Liu, L.J.; Qin, Q.Y.; Li, J.F. Role of remelting in grain refinement of undercooled single-phase alloys. Metall. Mater. Trans. A 2022, 53, 3100–3109. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Bogdan, N.; Xia, M.; Li, J. Simulation of dendritic remelting and fragmentation using coupled cellular automaton and Eulerian multiphase model. Computational. Mater. Sci. 2020, 180, 109714. [Google Scholar] [CrossRef]
- Peng, X.L.; Xiao, H.; Li, W.H.; Yi, B.; Qin, W.; He, H. Simulation of Dendritic Morphology of Ni-Cu Alloy under Convection Based on Phase Field Method. Shanghai Met. 2021, 43, 69–76. [Google Scholar]
- Rojas, R.; Sotomayor, V.; Takaki, T.; Hayashi, K.; Tomiyama, A. A phase field-finite difference lattice Boltzmann method for modeling dendritic growth solidification in the presence of melt convection. Comput. Math. Appl. 2022, 114, 180–187. [Google Scholar] [CrossRef]
- Danilov, D.; Nestler, B. Phase-field simulations of solidification in binary and ternary systems using a finite element method. J. Cryst. Growth 2005, 275, e177–e182. [Google Scholar] [CrossRef]
- Cha, P.R.; Yeon, D.H.; Yoon, J.K. A phase field model for isothermal solidification of multicomponent alloys. Acta Mater. 2001, 49, 3295–3307. [Google Scholar] [CrossRef]
- Gonzalez-Cinca, R.; Folch, R.; Benitez, R.; Ramirez-Piscina, L.; Casademunt, J.; Hernandez-Machado, A. Phase-field models in interfacial pattern formation out of equilibrium. arXiv 2003. [Google Scholar] [CrossRef]
- Galfré, A.; Huang, X.; Couenne, F.; Cogné, C. The phase field method—From fundamentals to practical applications in crystal growth. J. Cryst. Growth 2023, 620, 127334. [Google Scholar] [CrossRef]
- Plapp, M. Phase-field models. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 631–668. [Google Scholar] [CrossRef]
- Zhu, C.; Jia, J.; Feng, L.; Xiao, R.; Dong, R. Research of three-dimensional dendritic growth using phase-field method based on GPU. Comput. Mater. Sci. 2014, 91, 146–152. [Google Scholar] [CrossRef]
- Kavousi, S.; Gates, A.; Jin, L.; Zaeem, M.A. A temperature-dependent atomistic-informed phase-field model to study dendritic growth. J. Cryst. Growth 2022, 579, 126461. [Google Scholar] [CrossRef]
- Liszka, T.; Orkisz, J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 1980, 11, 83–95. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, H.; Xue, H.; Pan, S.; Rettenmayr, M.; Zhu, M. Interaction of local solidification and remelting during dendrite coarsening-modeling and comparison with experiments. Sci. Rep. 2017, 7, 17809. [Google Scholar] [CrossRef]
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 1993, 63, 410–423. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Warren, J.A.; Beckermann, C.; Karma, A. Phase-field simulation of solidification. Annu. Rev. Mater. Res. 2002, 32, 163–194. [Google Scholar] [CrossRef]
- Zaeem, M.A.; Yin, H.; Felicelli, S.D. Modeling dendritic solidification of Al–3% Cu using cellular automaton and phase-field methods. Appl. Math. Model. 2013, 37, 3495–3503. [Google Scholar] [CrossRef]
- Suzuki, T.; Ode, M.; Kim, S.G.; Kim, W.T. Phase-field model of dendritic growth. J. Cryst. Growth 2002, 237, 125–131. [Google Scholar] [CrossRef]
- Acharya, R.; Sharon, J.A.; Staroselsky, A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017, 124, 360–371. [Google Scholar] [CrossRef]
- Tong, X.; Beckermann, C.; Karma, A.; Li, Q. Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 2001, 63, 061601. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, R. Phase field simulation of dendrite growth with boundary heat flux. Integr. Mater. Manuf. Innov. 2014, 3, 225–239. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Y.; Yu, H.; Han, Q. A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection. Int. J. Heat Mass Transf. 2018, 123, 213–226. [Google Scholar] [CrossRef]
- Chen, W.; Hou, H.; Zhang, Y.; Liu, W.; Zhao, Y. Thermal and solute diffusion in α-Mg dendrite growth of Mg-5wt.% Zn alloy: A phase-field study. J. Mater. Res. Technol. 2023, 24, 8401–8413. [Google Scholar] [CrossRef]
- Kumar, V.; Karagadde, S.; Meena, K. Real-Time Strengthening of Natural Convection and Dendrite Fragmentation During Binary Mixture Freezing. In Conference on Fluid Mechanics and Fluid Power; Springer Nature: Singapore, 2022; pp. 691–700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Li, C.; Zhan, H.; Li, S.; Liu, J.; Kong, F.; Wang, X. Simulation of Dendrite Remelting via the Phase-Field Method. Coatings 2024, 14, 1364. https://doi.org/10.3390/coatings14111364
Han X, Li C, Zhan H, Li S, Liu J, Kong F, Wang X. Simulation of Dendrite Remelting via the Phase-Field Method. Coatings. 2024; 14(11):1364. https://doi.org/10.3390/coatings14111364
Chicago/Turabian StyleHan, Xing, Chang Li, Hao Zhan, Shuchao Li, Jiabo Liu, Fanhong Kong, and Xuan Wang. 2024. "Simulation of Dendrite Remelting via the Phase-Field Method" Coatings 14, no. 11: 1364. https://doi.org/10.3390/coatings14111364
APA StyleHan, X., Li, C., Zhan, H., Li, S., Liu, J., Kong, F., & Wang, X. (2024). Simulation of Dendrite Remelting via the Phase-Field Method. Coatings, 14(11), 1364. https://doi.org/10.3390/coatings14111364