The Impact of Bonding Agents and Bone Defects on the Fracture Resistance of Reattached Vertically Root-Fractured Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Fracture Resistance Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Association of Endodontists. ENDODONTICS: Colleagues for Excellence—American Assoc of Endodontists [Internet]. American Association of Endodontists. 2023. Available online: https://www.aae.org/specialty/publications-research/endodontics-colleagues-excellence/ (accessed on 19 May 2024).
- Chan, C.-P.; Lin, C.-P.; Tseng, S.-C.; Jeng, J.-H. Vertical root fracture in endodontically versus nonendodontically treated teethA survey of 315 cases in Chinese patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1999, 87, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-P.; Tseng, S.-C.; Lin, C.-P.; Huang, C.-C.; Tsai, T.-P.; Chen, C.C. Vertical root fracture in nonendontically treated teeth—A clinical report of 64 cases in chinese patients. J. Endod. 1998, 24, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Rivera, E.M.; Walton, R.E. Longitudinal tooth fractures: Findings that contribute to complex endodontic diagnoses. Endod. Top. 2007, 16, 82–111. [Google Scholar] [CrossRef]
- Da Silva, E.J.; Dos Santos, G.R.; Krebs, R.L.; de Souza Coutinho-Filho, T. Surgical alternative for treatment of vertical root fracture: A case report. Iran. Endod. J. 2012, 7, 40. [Google Scholar]
- Morfis, A.S. Vertical root fractures. Oral Surg. Oral Med. Oral Pathol. 1990, 69, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Touré, B.; Faye, B.; Kane, A.W.; Lo, C.M.; Niang, B.; Boucher, Y. Analysis of reasons for extraction of endodontically treated teeth: A prospective study. J. Endod. 2011, 37, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.M.; Wölner-Hanssen, A.B.; Sendi, P.; Von Arx, T. Comparison of intraoral radiography and limited cone beam computed tomography for the assessment of root-fractured permanent teeth. Dent. Traumatol. 2009, 25, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Howard, J. Dental injuries in adults. Br. Dent. J. 2023, 234, e167. [Google Scholar] [CrossRef]
- Walton, R.E.; Michelich, R.J.; Smith, G.N. The histopathogenesis of vertical root fractures. J. Endod. 1984, 10, 48–56. [Google Scholar] [CrossRef]
- See, W.-K.; Ho, J.-C.; Huang, C.-F.; Hung, W.-C.; Chang, C.-W. The association between clinical diagnostic factors and the prevalence of vertical root fracture in endodontic surgery. J. Formos. Med. Assoc. 2019, 118, 713–720. [Google Scholar] [CrossRef]
- Pitts, D.L.; Natkin, E. Diagnosis and treatment of vertical root fractures. J. Endod. 1983, 9, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Tamse, A. Vertical root fractures in endodontically treated teeth: Diagnostic signs and clinical management. Endod. Top. 2006, 13, 84–94. [Google Scholar] [CrossRef]
- Moule, A.J.; Kahler, B. Diagnosis and management of teeth with vertical root fractures. Aust. Dent. J. 1999, 44, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Floratos, S.G.; Kratchman, S.I. Surgical management of vertical root fractures for posterior teeth: Report of four cases. J. Endod. 2012, 38, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.S.; Kapoor, S.; Shah, N.C. An innovative approach for treating vertically fractured mandibular molar-hemisection with socket preservation. J. Interdiscip. Dent. 2012, 2, 141–143. [Google Scholar] [CrossRef]
- Dederich, D.N. CO2 laser fusion of a vertical root fracture. J. Am. Dent. Assoc. 1999, 130, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Fidel, S.R.; Sassone, L.; Álvares, G.R.; Guimarães, R.P.; Fidel, R.A. Use of glass fiber post and composite resin in restoration of a vertical fractured tooth. Dent. Traumatol. 2006, 22, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, J.V.; Jurado, C.A.; Sayed, M.E.; Cortes, J.O.G.; Kaleinikova, Z.; Hernandez, A.; Alshabib, A.; Tsujimoto, A. Conservative approach for management of fractured maxillary central incisors in young adults. Clin. Case Rep. 2020, 8, 2692–2700. [Google Scholar] [CrossRef]
- Unver, S.; Onay, E.O.; Ungor, M. Intentional re-plantation of a vertically fractured tooth repaired with an adhesive resin. Int. Endod. J. 2011, 44, 1069–1078. [Google Scholar] [CrossRef]
- Hadrossek, P.H.; Dammaschke, T. New treatment option for an incomplete vertical root fracture–a preliminary case report. Head Face Med. 2014, 10, 9. [Google Scholar] [CrossRef]
- Torabinejad, M.; Chivian, N. Clinical applications of mineral trioxide aggregate. J. Endod. 1999, 25, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Oliet, S. Treating vertical root fractures. J. Endod. 1984, 10, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Barkhordar, R.A. Treatment of vertical root fracture: A case report. Quintessence Int. 1991, 22, 707–709. [Google Scholar] [PubMed]
- Öztürk, M.; Çelik Ünal, G. A successful treatment of vertical root fracture: A case report and 4-year follow-up. Dent. Traumatol. 2008, 24, e56–e60. [Google Scholar] [CrossRef] [PubMed]
- Özer, S.Y.; Ünlü, G.; Değer, Y. Diagnosis and treatment of endodontically treated teeth with vertical root fracture: Three case reports with two-year follow-up. J. Endod. 2011, 37, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Ona, M.; Wakabayashi, N. Influence of alveolar support on stress in periodontal structures. J. Dent. Res. 2006, 85, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Tavano, K.T.A.; Botelho, A.M.; Douglas-De-Oliveira, D.W.; Avila, A.F.; Huebner, R. Resistance to fracture of intraradicular posts made of biological materials. BMC Oral Health 2020, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Z.; Li, X.; Sun, C.; Gao, E.; Li, H. A comparison of the fracture resistances of endodontically treated mandibular premolars restored with endocrowns and glass fiber post-core retained conventional crowns. J. Adv. Prosthodont. 2016, 8, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Tian, K.V.; Nagy, P.M.; Chass, G.A.; Fejerdy, P.; Nicholson, J.W.; Csizmadia, I.G.; Dobó-Nagy, C. Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. J. Mater. Sci. Mater. Med. 2012, 23, 677–685. [Google Scholar] [CrossRef]
- Carvalho, A.O.; Bruzi, G.; Anderson, R.E.; Maia, H.P.; Giannini, M.; Magne, P. Influence of adhesive core buildup designs on the resistance of endodontically treated molars restored with lithium disilicate CAD/CAM crowns. Oper. Dent. 2016, 41, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Atalay, C.; Yazici, A.; Horuztepe, A.; Nagas, E.; Ertan, A.; Ozgunaltay, G. Fracture resistance of endodontically treated teeth restored with bulk fill, bulk fill flowable, fiber-reinforced, and conventional resin composite. Oper. Dent. 2016, 41, E131–E140. [Google Scholar] [CrossRef]
- Al-Ibraheemi, Z.A.; Abdullah, H.A.; Jawad, N.A.; Haider, J. Assessing fracture resistance of restored premolars with novel composite materials: An in vitro study. Int. J. Dent. 2021, 2021, 5512708. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, S.; Grover, R.; Sadana, G.; Gupta, T.; Mehra, M. Comparative evaluation of fracture resistance of endodontically treated teeth restored with different core build-up materials: An in vitro study. Int. J. Clin. Pediatr. Dent. 2021, 14, 51. [Google Scholar] [PubMed]
- De Santis, R.; Prisco, D.; Apicella, A.; Ambrosio, L.; Rengo, S.; Nicolais, L. Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth. J. Mater. Sci. Mater. Med. 2000, 11, 201–206. [Google Scholar] [CrossRef]
- Mastrogianni, A.; Lioliou, E.-A.; Tortopidis, D.; Gogos, C.; Kontonasaki, E.; Koidis, P. Fracture strength of endodontically treated premolars restored with different post systems and metal-ceramic or monolithic zirconia crowns. Dent. Mater. J. 2021, 40, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Eskitascioglu, G.; Belli, S.; Kalkan, M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J. Endod. 2002, 28, 629–633. [Google Scholar] [CrossRef]
- Lin, F.; Ordinola-Zapata, R.; Ye, N.; Xu, H.; Fok, A.S.L. Fatigue analysis of restored teeth longitudinally cracked under cyclic loading. Dent. Mater. 2021, 38, 204–213. [Google Scholar] [CrossRef]
- Teshigawara, D.; Ino, T.; Otsuka, H.; Isogai, T.; Fujisawa, M. Influence of elastic modulus mismatch between dentin and post-and-core on sequential bonding failure. J. Prosthodont. Res. 2019, 63, 227–231. [Google Scholar] [CrossRef]
- Maravić, T.; Comba, A.; Mazzitelli, C.; Bartoletti, L.; Balla, I.; di Pietro, E.; Josić, U.; Generali, L.; Vasiljević, D.; Blažić, L.; et al. Finite element and in vitro study on biomechanical behavior of endodontically treated premolars restored with direct or indirect composite restorations. Sci. Rep. 2022, 12, 12671. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.D.; Farmakis, E.T.; Eliades, G.C. Effect of load cycling on the fracture strength/mode of teeth restored with FRC posts or a FRC liner and a resin composite. BioMed Res. Int. 2018, 2018, 9054301. [Google Scholar] [CrossRef]
- Jainaen, A.; Palamara, J.E.; Messer, H.H. Effect of dentinal tubules and resin-based endodontic sealers on fracture properties of root dentin. Dent. Mater. 2009, 25, e73–e81. [Google Scholar] [CrossRef]
- Khadar, S.; Sapkale, K.; Patil, P.G.; Abrar, S.; Ramugade, M.; Huda, F. Fracture resistance and stress distribution pattern of different posts-core systems in immature teeth: An in vitro study and 3D finite element analysis. Int. J. Dent. 2022, 2022, 2610812. [Google Scholar] [CrossRef]
- Reis, K.R.; Spyrides, G.M.; de Oliveira, J.A.; Jnoub, A.A.; Dias, K.R.H.C.; Bonfantes, G. Effect of cement type and water storage time on the push-out bond strength of a glass fiber post. Braz. Dent. J. 2011, 22, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Yap, A.U.; Ngo, H.C. Effect of early water exposure on the strength of glass ionomer restoratives. Oper. Dent. 2006, 31, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Marchi, G.M.; Paulillo, L.A.M.S.; Pimenta, L.A.F.; De Lima, F.A.P. Effect of different filling materials in combination with intraradicular posts on the resistance to fracture of weakened roots. J. Oral Rehabil. 2003, 30, 623–629. [Google Scholar] [CrossRef]
- Phillips, P.W. Skinner’s Science of Dental Materials, 9th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1991; pp. 29–59. [Google Scholar]
- Sidhu, S.K.; Watson, T.F. Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am. J. Dent. 1995, 8, 59–67. [Google Scholar]
- Saskalauskaite, E.; Tam, L.E.; McComb, D. Flexural strength, elastic modulus, and pH profile of self-etch resin luting cements. J. Prosthodont. 2008, 17, 262–268. [Google Scholar] [CrossRef]
- Abo-Hamar, S.E.; Hiller, K.-A.; Jung, H.; Federlin, M.; Friedl, K.-H.; Schmalz, G. Bond strength of a new universal self-adhesive resin luting cement to dentin and enamel. Clin. Oral. Investig. 2005, 9, 161–167. [Google Scholar] [CrossRef]
- Mizuhashi, F.; Ogura, I.; Sugawara, Y.; Oohashi, M.; Sekiguchi, H.; Saegusa, H. Effect of root length over alveolar bone on fracture resistance: Detection by cone-beam computed tomography. J. Oral Maxillofac. Radiol. 2019, 7, 55. [Google Scholar] [CrossRef]
- Reinhardt, R.A.; Krejci, R.F.; Pao, Y.C.; Stannard, J.G. Dentin stresses in post-reconstructed teeth with diminishing bone support. J. Dent. Res. 1983, 62, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Rosentritt, M.; Preuss, A.; Dietrich, T. The effect of alveolar bone loss on the load capability of restored endodontically treated teeth: A comparative in vitro study. J. Dent. 2006, 34, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Kishen, A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod. Top. 2006, 13, 57–83. [Google Scholar] [CrossRef]
- Diana, H.H.; Oliveira, J.S.; Ferro, M.C.; Silva-Sousa, Y.T.; Gomes, É.A. Stress distribution in roots restored with fiber posts and an experimental dentin post: 3D-FEA. Braz. Dent. J. 2016, 27, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kyogoku, K.; Someya, T.; Kasahara, M.; Hasegawa, K.; Takemoto, S.; Hattori, M. Effect of bone defect width and a ferrule on the fracture characteristics of vertically fractured teeth reattached with adhesive resin cement: An in vitro study. Dent. Mater. J. 2022, 41, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Mobilio, N.; Borelli, B.; Sorrentino, R.; Catapano, S. Effect of fiber post length and bone level on the fracture resistance of endodontically treated teeth. Dent. Mater. J. 2013, 32, 816–821. [Google Scholar] [CrossRef]
- Komada, W.; Miura, H.; Okada, D.; Yoshida, K. Study on the fracture strength of root reconstructed with post and core: Alveolar bone resorbed case. Dent. Mater. J. 2006, 25, 177–182. [Google Scholar] [CrossRef]
- Ni, C.W.; Chang, C.H.; Chen, T.Y.; Chuang, S.F. A multiparametric evaluation of post-restored teeth with simulated bone loss. J. Mech. Behav. Biomed. Mater. 2011, 4, 322–330. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Sound premolar tooth | Dental caries |
Single root canal | Crown or root fractures |
Previous endodontic treatment | |
Internal resorption involving either pulp chamber, dentin cementum, or root | |
External root resorption | |
Dental anomalies |
Bone Defect Pattern | Control | RMGI | DCRC | Cyanoacrylate | p |
---|---|---|---|---|---|
Angular | 1203.66 ± 54.06 | 1018.43 ± 112.32 | 629.52 ± 52.43 | 511.94 ± 39.24 | <0.001 |
Step shape | 916.82 ± 111.61 | 567.70 ± 45.29 | 484.52 ± 32.33 | <0.001 | |
V shape | 663.40 ± 47.50 | 633.58 ± 37.15 | 592.53 ± 34.15 | <0.001 |
Resource | SS | Df | MS | F | p |
---|---|---|---|---|---|
Bonding agents | 1,852,804.642 | 2 | 926,402.321 | 223.742 | 0.000 * |
Bone defect patterns | 128,725.209 | 2 | 64,362.605 | 15.545 | 0.000 * |
Bonding agents × bone defect patterns | 630,216.917 | 4 | 157,554.229 | 38.052 | 0.000 * |
Independent Variable | I Group | J Group | ||
---|---|---|---|---|
RMGI | DCRC | Cyanoacrylate | ||
Bonding agent | RMGI | - | 0.000 * | 0.000 * |
DCRC | 0.000 * | - | 0.000 * | |
Cyanoacrylate | 0.000 * | 0.000 * | - |
Independent Variable | I Group | J Group | ||
---|---|---|---|---|
Angular | Step Shape | ‘V’ Shape | ||
Bone loss pattern | Angular | - | 0.000 * | 0.000 * |
Step shape | 0.000 * | - | 0.114 | |
‘V’ shape | 0.000 * | 0.114 | - |
Failure Modes | Control | RMGI | DCRC | Cyanoacrylate | ||||
---|---|---|---|---|---|---|---|---|
F | UF | F | UF | F | UF | F | UF | |
Angular | 8 | 2 | 6 | 4 | 3 | 7 | 0 | 10 |
Step shape | 5 | 5 | 2 | 8 | 0 | 10 | ||
V shape | 3 | 7 | 3 | 7 | 1 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haralur, S.B.; Alshahrani, N.M.; Alafra, S.H.; Hakami, M.A.; AbuMesmar, O.A.; Al-Qarni, M.A.; AlQahtani, S.M.; Alqahtani, N.M. The Impact of Bonding Agents and Bone Defects on the Fracture Resistance of Reattached Vertically Root-Fractured Teeth. Coatings 2024, 14, 661. https://doi.org/10.3390/coatings14060661
Haralur SB, Alshahrani NM, Alafra SH, Hakami MA, AbuMesmar OA, Al-Qarni MA, AlQahtani SM, Alqahtani NM. The Impact of Bonding Agents and Bone Defects on the Fracture Resistance of Reattached Vertically Root-Fractured Teeth. Coatings. 2024; 14(6):661. https://doi.org/10.3390/coatings14060661
Chicago/Turabian StyleHaralur, Satheesh B., Nasser Mohammed Alshahrani, Saeed Hadi Alafra, Muath Ali Hakami, Omar Abdulaziz AbuMesmar, Mohammed A. Al-Qarni, Saeed M. AlQahtani, and Nasser M. Alqahtani. 2024. "The Impact of Bonding Agents and Bone Defects on the Fracture Resistance of Reattached Vertically Root-Fractured Teeth" Coatings 14, no. 6: 661. https://doi.org/10.3390/coatings14060661
APA StyleHaralur, S. B., Alshahrani, N. M., Alafra, S. H., Hakami, M. A., AbuMesmar, O. A., Al-Qarni, M. A., AlQahtani, S. M., & Alqahtani, N. M. (2024). The Impact of Bonding Agents and Bone Defects on the Fracture Resistance of Reattached Vertically Root-Fractured Teeth. Coatings, 14(6), 661. https://doi.org/10.3390/coatings14060661