The Influence of Wire Type on the Properties and Characteristics of Coatings Obtained by the Arc Metallization Method
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
- Coatings produced with powder wires demonstrated higher structural repeatability, technological stability, and efficient deposition of sprayed material, particularly when using 30KhGSA steel.
- Cast wires exhibited superior adhesion to the substrate and the lowest corrosion current density (Icorr), indicating effective surface passivation-especially in the case of the 51KhFA coating.
- According to EDS analysis, the observed differences in oxide and alloying element content correlated with the porosity of the coatings, suggesting the significant influence of oxidation processes on microstructure formation.
- The 30KhGSA powder wire provided the best combination of wear resistance, microhardness, and uniform particle distribution at relatively low surface roughness, making it preferable for applications involving abrasive loads.
- The 51KhFA cast wire demonstrated the highest corrosion resistance along with acceptable mechanical properties, allowing it to be recommended for service in aggressive environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakhadilov, B.; Zhurerova, L.; Sagdoldina, Z.; Kenesbekov, A.; Bayatanova, L. Morphological Changes in the Dislocation Structure of Structural Steel 20GL after Electrolytic-Plasma Hardening of the Surface. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2021, 15, 408–413. [Google Scholar] [CrossRef]
- Skakov, M.; Bayandinova, M.; Kozhakhmetov, Y.; Tuyakbaev, B. Microstructure and Corrosion Resistance of Composite Based on Ultra-High Molecular Weight Polyethylene in Acidic Media. Coatings 2025, 15, 89. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Domantovsky, A.G.; Emelyanenko, A.M.; Emelyanenko, K.A. Synergism of Arc Spraying, Laser Processing, and Hydrophobization for Long-Lasting Corrosion Protection of MA8 Magnesium Alloy. Adv. Eng. Mater. 2025, 27, 2401708. [Google Scholar] [CrossRef]
- Gornik, M.; Jonda, E.; Latka, L.; Nowakowska, M.; Godzierz, M. Influence of Spray Distance on Mechanical and Tribological Properties of HVOF Sprayed WC-Co-Cr Coatings. Mater. Sci.-Pol. 2021, 39, 545–554. [Google Scholar] [CrossRef]
- Qiang, W.; Kang, M.; Liu, J.; Ndumia, J.N. Microstructure and Wear Performance of High-Velocity Arc Sprayed FeMnCrNiBNbAl Coating. Coatings 2024, 14, 428. [Google Scholar] [CrossRef]
- Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally Sprayed Coatings Resistant to Erosion and Corrosion for Power Plant Boilers-A Review. Surf. Coat. Technol. 2015, 268, 153–164. [Google Scholar] [CrossRef]
- Sidorov, S.A.; Mironov, D.A.; Khoroshenkov, V.K.; Khlusova, E.I. Surfacing Methods for Increasing the Service Life of Rapidly Wearing Working Tools of Agricultural Machines. Weld. Int. 2016, 30, 808–812. [Google Scholar] [CrossRef]
- Romankov, S.E.; Sagdoldina, Z.B.; Kaloshkin, S.D.; Kaevitser, E.V. Fabrication of Ti-Al Composite Coatings by the Mechanical Alloying Method. Phys. Met. Metallogr. 2008, 106, 67–75. [Google Scholar] [CrossRef]
- Tabieva, E.E.; Zhurerova, L.G.; Baizhan, D. Influence of Electrolyte-Plasma Hardening Technological Parameters on the Structure and Properties of Banding Steel. Key Eng. Mater. 2020, 839, 57–62. [Google Scholar] [CrossRef]
- Popova, N.A.; Zhurerova, L.G.; Nikonenko, E.L.; Skakov, M.K. Effect of Plasma Electrolytic Nitrocarburizing on Phase Composition of 0.3C-1Mn-1Si Steel. Inorg. Mater. Appl. Res. 2017, 8, 130–135. [Google Scholar] [CrossRef]
- Kakimzhanov, D.N.; Rakhadilov, B.K.; Tyurin, Y.N.; Kolisnichenko, O.V.; Zhurerova, L.G.; Dautbekov, M.K. Influence of Pulsed Plasma Treatment on Phase Composition and Hardness of Cr3C2-NiCr Coatings. Eurasian J. Phys. Funct. Mater. 2021, 5, 45–51. [Google Scholar] [CrossRef]
- Ramezani, M.; Mohd Ripin, Z.; Pasang, T.; Jiang, C.P. Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals 2023, 13, 1299. [Google Scholar] [CrossRef]
- Kengesbekov, A.; Rakhadilov, B.; Sagdoldina, Z.; Buitkenov, D.; Dosymov, Y.; Kylyshkanov, M. Improving the Efficiency of Air Plasma Spraying of Titanium Nitride Powder. Coatings 2022, 12, 1644. [Google Scholar] [CrossRef]
- Bauyrzhan, R.; Alexander, P.; Zhuldyz, S.; Dastan, B.; Vyacheslav, B.; Mukhamedova, A. Effect of Bilayer Thickness and Bias Potential on the Structure and Properties of (TiZr/Nb)N Multilayer Coatings as a Result of Arc-PVD Deposition. Materials 2022, 15, 7696. [Google Scholar] [CrossRef] [PubMed]
- Rakhadilov, B.K.; Baizhan, D.R.; Sagdoldina, Z.B.; Buitkenov, D.B.; Maulet, M. Phase Composition and Structure of Composite Ti/HA Coatings Synthesized by Detonation Spraying. AIP Conf. Proc. 2020, 2297, 010001. [Google Scholar] [CrossRef]
- Rakhadilov, B.K.; Kenesbekov, A.B.; Kowalevski, P.; Ocheredko, Y.A.; Sagdoldina, Z.B. Development of Air-Plasma Technology for Hardening Cutting Tools by Applying Wear-Resistant Coatings. News Natl. Acad. Sci. Repub. Kazakhstan 2020, 3, 54–62. [Google Scholar] [CrossRef]
- Yu, H.L.; Zhang, W.; Wang, H.M.; Ji, X.C.; Song, Z.Y.; Li, X.Y.; Xu, B.S. In-situ Synthesis of TiC/Ti Composite Coating by High Frequency Induction Cladding. J. Alloys Compd. 2017, 701, 244–255. [Google Scholar] [CrossRef]
- Wielage, B.; Pokhmurska, H.; Student, M.; Gvozdeckii, V.; Stupnyckyj, T.; Pokhmurskii, V. Iron-Based Coatings Arc-Sprayed with Cored Wires for Applications at Elevated Temperatures. Surf. Coat. Technol. 2013, 220, 27–35. [Google Scholar] [CrossRef]
- Lopata, A.; Lopata, V.; Kachynska, I.; Zaboykina, N. Influence of Factors of the Electric Arc Spraying Process on the Properties of Coatings. Probl. Tribol. 2024, 29, 79–86. [Google Scholar] [CrossRef]
- Hui, R.; Wang, Z.; Kesler, O.; Rose, L.; Jankovic, J.; Yick, S.; Ghosh, D. Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges. J. Power Sources 2007, 170, 308–323. [Google Scholar] [CrossRef]
- Chahal, H.K.; Matthews, S.; Jones, M.I. Fabrication of Calcium Phosphate Coatings by the Inflight Reaction of Precursor Feedstocks Using Plasma Spraying. J. Therm. Spray Technol. 2023, 32, 1465–1481. [Google Scholar] [CrossRef]
- Liao, X.J.; Zhang, L.; Sun, Y.Q.; Luo, X.T.; Li, C.X.; Yang, G.J.; Li, C.J. Effect of Inter-Splat Bonding Quality on the Wear Behavior of Plasma-Sprayed Stainless Steel Coating. J. Therm. Spray Technol. 2024, 33, 1559–1569. [Google Scholar] [CrossRef]
- Abdivakhidov, K.; Sharipov, K. Corrosion-Resistant Protective Coatings for Metals: A Review. AIP Conf. Proc. 2024, 3045, 060011. [Google Scholar] [CrossRef]
- Yao, H.H.; Zhou, Z.; Wang, Y.M.; He, D.Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying. J. Therm. Spray Technol. 2017, 26, 483–491. [Google Scholar] [CrossRef]
- Kumar, D.; Murtaza, Q.; Singh, R.C. Sliding Wear Behavior of Aluminum Alloy Coating Prepared by Two-Wire Electric Arc Spray Process. Int. J. Adv. Manuf. Technol. 2016, 85, 237–252. [Google Scholar] [CrossRef]
- Czupryński, A. Flame Spraying of Aluminum Coatings Reinforced with Carbonaceous Materials as an Alternative for Laser Cladding. Materials 2019, 12, 3467. [Google Scholar] [CrossRef]
- Liang, S.; Neisius, N.M.; Gaan, S. Recent Developments in Flame Retardant Polymeric Coatings. Prog. Org. Coat. 2013, 76, 1642–1665. [Google Scholar] [CrossRef]
- Xie, X.; Guo, H.; Gong, S.; Xu, H. Thermal Cycling Behavior and Failure Mechanism of LaTi2Al9O19/YSZ Thermal Barrier Coatings. Surf. Coat. Technol. 2011, 205, 4291–4298. [Google Scholar] [CrossRef]
- Pokhmursky, V.I.; Student, M.M.; Ryabtsev, I.A.; Sidorak, I.I.; Dzioba, Y.V.; Dovgunyk, V.M.; Formanek, B. Influence of Electric Arc Metallizing Modes and Compositions of Applied Flux-Cored Wires on Structure and Abrasive Wear Resistance of Coatings. Paton Weld. J. 2006, 7, 26. [Google Scholar]
- Degnan, C.C.; Shipway, P.H. A Comparison of the Reciprocating Sliding Wear Behaviour of Steel-Based MMCs Processed from SHS Fe–TiC and Fe–TiB2 Masteralloys. Wear 2002, 252, 832–841. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, K.N. Optimization of the Process Parameters in Generic Thermal Barrier Coatings Using the Taguchi Method and Grey Relational Analysis. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 231, 600–610. [Google Scholar] [CrossRef]
- Sun, R.; Shi, Y.; Pei, Z.; Li, Q.; Wang, R. Heat Transfer and Temperature Distribution during High-Frequency Induction Cladding of 45 Steel Plate. Appl. Therm. Eng. 2018, 139, 1–10. [Google Scholar] [CrossRef]
- Steffens, H.-D.; Babiak, Z.; Wewel, M. Recent Developments in Arc Spraying. IEEE Trans. Plasma Sci. 1990, 18, 974–979. [Google Scholar] [CrossRef]
- Abedini, A.; Pourmousa, A.; Chandra, S.; Mostaghimi, J. Effect of Substrate Temperature on the Properties of Coatings Deposited by Wire Arc Spraying. Surf. Coat. Technol. 2006, 201, 3350–3358. [Google Scholar] [CrossRef]
- Planche, M.P.; Liao, H.; Coddet, C. Relationships between In-Flight Particle Characteristics and Coating Microstructure with Twin Wire Arc Spraying. Surf. Coat. Technol. 2004, 182, 215–226. [Google Scholar] [CrossRef]
- Wagner, N. Effect of Process Parameters on Twin Wire Arc Sprayed Steel Coatings. J. Mater. Eng. Perform. 2021, 30, 6650–6655. [Google Scholar] [CrossRef]
- Mykhailo, S.; Volodymyr, G.; Oleksandra, S.; Olegas, P.; Pavlo, M.; Olena, O.; Liudmyla, T. The Effect of Increasing the Air Flow Pressure on the Properties of Coatings during Arc Spraying of Cored Wires. Stroj. Časopis-J. Mech. Eng. 2019, 69, 133–146. [Google Scholar] [CrossRef]
- Ndumia, J.N.; Kang, M.; Gbenontin, B.V.; Lin, J.; Nyambura, S.M. A Review on the Wear, Corrosion and High-Temperature Resistant Properties of Wire Arc-Sprayed Fe-Based Coatings. Nanomaterials 2021, 11, 2527. [Google Scholar] [CrossRef]
- Ndumia, J.N.; Kang, M.; Gbenontin, B.V.; Lin, J.; Liu, J.; Li, H.; Nyambura, S.M. Optimizing Parameters of Arc-Sprayed Fe-Based Coatings Using the Response Surface Methodology. J. Therm. Spray Technol. 2023, 32, 2202–2220. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Buitkenov, D.; Apsezhanova, A.; Kakimzhanov, D.; Nabioldina, A.; Magazov, N. Selection of Optimal Process Parameters for Arc Metallization. Coatings 2025, 15, 300. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Magazov, N.; Kakimzhanov, D.; Apsezhanova, A.; Molbossynov, Y.; Kengesbekov, A. Influence of Spraying Process Parameters on the Characteristics of Steel Coatings Produced by Arc Spraying Method. Coatings 2024, 14, 1145. [Google Scholar] [CrossRef]
Fe, % | C, % | Si, % | Mn, % | Ni, % | S, % | P, % | Cr, % | Cu, % |
---|---|---|---|---|---|---|---|---|
balance | 0.62–0.70 | 0.17–0.37 | 0.9–1.2 | ≤0.25 | ≤0.035 | ≤0.035 | ≤0.25 | ≤0.20 |
Wires | Type | Fe, % | C, % | Si, % | Mn, % | Cr, % | Mo, % |
---|---|---|---|---|---|---|---|
30KhGSA | cast | balance | 0.28–0.34 | 0.9–1.2 | 0.8–1.1 | 0.8–1.1 | - |
30KhGSA | powder | balance | 0.28–0.34 | 0.9–1.2 | 0.8–1.1 | 0.8–1.1 | - |
51KhFA | cast | balance | 0.47–0.55 | 0.15–0.3 | 0.3–0.6 | 0.75–1.1 | before 0.3 |
51KhFA | powder | balance | 0.47–0.55 | 0.15–0.3 | 0.3–0.6 | 0.75–1.1 | before 0.3 |
No | Sample Marking | Wire Name | Wire Type | Wire Size, mm | Manufacturing/Structure | Typical Behavior During Spraying | Effect on Coatings |
---|---|---|---|---|---|---|---|
1 | W1 | 30KhGSA | cast | 1.6 | Drawn from solid billet; dense, homogeneous | Stable melting, smooth feeding | Denser coatings, lower porosity |
2 | W2 | 30KhGSA | powder | 1.6 | Metallic sheath with alloying powder filling | Less stable melting, higher oxidation tendency | Higher hardness, but more porosity |
3 | W3 | 51KhFA | cast | 1.6 | Drawn from solid billet; dense, homogeneous | Stable melting, smooth feeding | Denser coatings, but prone to cracks |
4 | W4 | 51KhFA | powder | 1.6 | Metallic sheath with alloying powder filling | Incomplete fusion possible, oxidation | Higher hardness, more heterogeneity |
Parameter | Values |
---|---|
Arc voltage, В | 40 |
Current, А | 250 |
Wire feed speed, cm/s | 12 |
Distance from nozzle to substrate, mm | 200 |
Compressed air pressure, MPa | 0.7 |
Environment temperature, °C | 26 |
Element | 30KhGSA, wt.% | 51KhFA, wt.% |
---|---|---|
C | 8.08 ± 0.10 | 14.04 ± 0.08 |
O | – | 9.48 ± 0.04 |
Si | 0.64 ± 0.01 | 1.56 ± 0.01 |
Cr | 0.02 ± 0.01 | 0.02 ± 0.00 |
Mn | 1.58 ± 0.01 | 2.03 ± 0.01 |
Fe | 88.94 ± 0.10 | 72.87 ± 0.08 |
Ni | 0.74 ± 0.01 | – |
Total | 100% | 100% |
Sample | Thickness (μm) | Porosity (%) | Ra (μm) | HV0.025 | Adhesion (MPa) | Wear (mg) |
---|---|---|---|---|---|---|
W1 | 210 | 2.1 | 7.2 | 610 | 36 | 14.2 |
W2 | 240 | 1.6 | 6.5 | 580 | 40 | 12.8 |
W3 | 190 | 4.5 | 9.1 | 540 | 28 | 19.6 |
W4 | 225 | 3.2 | 8.3 | 560 | 33 | 16.4 |
Samples | Corrosion Current Icorr, (µA/cm2) | Free Corrosion Potential Ecorr, (mV) | Corrosion Rate, Vcorr, mm/year |
---|---|---|---|
30KhGSA Bare substrate | 0.36671 | −412 | 0.085 |
W1 | 0.23833 | −423 | 0.055 |
W2 | 0.26588 | −439 | 0.062 |
50KhFA Bare substrate | 0.39669 | −408 | 0.091 |
W3 | 0.21395 | −418 | 0.050 |
W4 | 0.24839 | −430 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apsezhanova, A.; Rakhadilov, B.; Buitkenov, D.; Magazov, N.; Kakimzhanov, D. The Influence of Wire Type on the Properties and Characteristics of Coatings Obtained by the Arc Metallization Method. Coatings 2025, 15, 1102. https://doi.org/10.3390/coatings15091102
Apsezhanova A, Rakhadilov B, Buitkenov D, Magazov N, Kakimzhanov D. The Influence of Wire Type on the Properties and Characteristics of Coatings Obtained by the Arc Metallization Method. Coatings. 2025; 15(9):1102. https://doi.org/10.3390/coatings15091102
Chicago/Turabian StyleApsezhanova, Akbota, Bauyrzhan Rakhadilov, Dastan Buitkenov, Nurtoleu Magazov, and Dauir Kakimzhanov. 2025. "The Influence of Wire Type on the Properties and Characteristics of Coatings Obtained by the Arc Metallization Method" Coatings 15, no. 9: 1102. https://doi.org/10.3390/coatings15091102
APA StyleApsezhanova, A., Rakhadilov, B., Buitkenov, D., Magazov, N., & Kakimzhanov, D. (2025). The Influence of Wire Type on the Properties and Characteristics of Coatings Obtained by the Arc Metallization Method. Coatings, 15(9), 1102. https://doi.org/10.3390/coatings15091102