Next Issue
Volume 8, February
Previous Issue
Volume 7, December
 
 

Coatings, Volume 8, Issue 1 (January 2018) – 45 articles

Cover Story (view full-size image): The increasing demand for a superior performance of orthopaedic metallic prostheses requires novel coating strategies leading to bio-responsive surfaces. In this study, electrophoretic deposition (EPD) was chosen as a versatile and cost-effective method to develop bioactive coatings on model stainless steel substrates. The coatings are based on the natural polymer zein combined with bioactive glass (BG) particles. The investigation was carried out with two different BG compositions, one Cu-doped to enable antibacterial effects in the developed system. The study demonstrated the bioactivity of all the coatings by the formation of hydroxyapatite (HA) on immersion in simulated body fluid (SBF) for 7 days. The HA layer is known to enhance the bonding of the coating to bone tissue. The coating morphology, degradation of zein films and ion release profiles were characterised in detail. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 8178 KiB  
Article
Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on Tool Life of Metal Cutting Tools at Various Cutting Speeds
by Alexey Vereschaka, Elena Kataeva, Nikolay Sitnikov, Anatoliy Aksenenko, Gaik Oganyan and Catherine Sotova
Coatings 2018, 8(1), 44; https://doi.org/10.3390/coatings8010044 - 23 Jan 2018
Cited by 14 | Viewed by 5327
Abstract
This paper considers the influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on tool life of metal cutting tools at various cutting speeds (vc = 250, 300, 350 and 400 m·min−1). The paper investigates the basic mechanical [...] Read more.
This paper considers the influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on tool life of metal cutting tools at various cutting speeds (vc = 250, 300, 350 and 400 m·min−1). The paper investigates the basic mechanical parameters of coatings and the mechanism of coating failure in scratch testing depending on thickness of coating. Cutting tests were conducted in longitudinal turning of steel C45 with tools with the coatings under study of various thicknesses (3, 5, and 7 µm), with an uncoated tool and with a tool with a “reference” coating of TiAlN. The relationship of “cutting speed vc—tool life T” was built and investigated; and the mechanisms were found to determine the selection of the optimum coating thickness at various cutting speeds. Advantages of cutting tools with these coatings are especially obvious at high cutting speeds (in particular, vc = 400 m·min−1). If at lower cutting speeds, the longest tool life is shown by tools with thicker coatings (of about 7 μm), then with an increase in cutting speed (especially at vc = 400 m·min−1) the longest tool life is shown by tools with thinner coating (of about 3 μm). Full article
(This article belongs to the Special Issue Manufacturing and Surface Engineering)
Show Figures

Figure 1

18 pages, 4782 KiB  
Article
Performance Investigation of an Exhaust Thermoelectric Generator for Military SUV Application
by Rui Quan, Guangyin Liu, Chengji Wang, Wei Zhou, Liang Huang and Yadong Deng
Coatings 2018, 8(1), 45; https://doi.org/10.3390/coatings8010045 - 22 Jan 2018
Cited by 45 | Viewed by 6210
Abstract
To analyze the thermoelectric power generation for sports utility vehicle (SUV) application, a novel thermoelectric generator (TEG) based on low-temperature Bi2Te3 thermoelectric modules (TEMs) and a chaos-shaped brass heat exchanger is constructed. The temperature distribution of the TEG is analyzed [...] Read more.
To analyze the thermoelectric power generation for sports utility vehicle (SUV) application, a novel thermoelectric generator (TEG) based on low-temperature Bi2Te3 thermoelectric modules (TEMs) and a chaos-shaped brass heat exchanger is constructed. The temperature distribution of the TEG is analyzed based on an experimental setup, and the temperature uniformity optimization method is performed by chipping peak off and filling valley is taken to validate the improved output power. An automobile exhaust thermoelectric generator (AETEG) using four TEGs connected thermally in parallel and electrically in series is assembled into a prototype military SUV, its temperature distribution, output voltage, output power, system efficiency, inner resistance, and backpressure is analyzed, and several important influencing factors such as vehicle speed, clamping pressure, engine coolant flow rate, and ambient temperature on its output performance are tested. Experimental results demonstrate that higher vehicle speed, larger clamping pressure, faster engine coolant flow rate and lower ambient temperature can enhance the overall output performance, but the ambient temperature and coolant flow rate are less significant. The maximum output power of AETEG is 646.26 W, the corresponding conversion efficiency is 1.03%, and the increased backpressure changes from 1681 Pa to 1807 Pa when the highest vehicle speed is 125 km/h. Full article
(This article belongs to the Special Issue Novel Thin Film Materials for Thermoelectric Applications)
Show Figures

Figure 1

13 pages, 3072 KiB  
Article
Nonpolar Surface Modification Using Fatty Acids and Its Effect on Calcite from Mineral Carbonation of Desulfurized Gypsum
by Chi Wan Jeon, Sangwon Park, Jun-Hwan Bang, Soochun Chae, Kyungsun Song and Seung-Woo Lee
Coatings 2018, 8(1), 43; https://doi.org/10.3390/coatings8010043 - 22 Jan 2018
Cited by 28 | Viewed by 5810
Abstract
CaCO3 is often used as an additive in many industries. However, additional functions are required to expand its applicability. This entails modification of its physicochemical properties. Accordingly, in this study, a particle surface modification treatment was performed on CaCO3 produced from [...] Read more.
CaCO3 is often used as an additive in many industries. However, additional functions are required to expand its applicability. This entails modification of its physicochemical properties. Accordingly, in this study, a particle surface modification treatment was performed on CaCO3 produced from desulfurized gypsum for a range of industrial applications. In the experiment, fatty acids were used to modify the CaCO3 surface, and the scale of the modification effect was based on the degree of change associated with a polar surface taking on nonpolar surface properties. In the preliminary modification experiment, stearic acid was dissolved in 2-propanol or chloroform, and the extent of the reaction and the active ratio were measured according to the stearic acid concentration. The results showed that the effective active ratio, considering the activity to unit adsorption, was higher in 2-propanol than in chloroform. Consequently, the modification solvent used in the experiment changed the CaCO3 surface from a hydrophilic, polarized form to a hydrophobic, nonpolarized form. These results will also allow the CaCO3 produced to be used as a filler in a range of chemical industries. Full article
Show Figures

Figure 1

11 pages, 5274 KiB  
Article
Oxidation Characteristics and Electrical Properties of Doped Mn-Co Spinel Reaction Layer for Solid Oxide Fuel Cell Metal Interconnects
by Pingyi Guo, Yongbiao Lai, Yong Shao, Yu Zhang, Hang Sun and Yuxin Wang
Coatings 2018, 8(1), 42; https://doi.org/10.3390/coatings8010042 - 22 Jan 2018
Cited by 16 | Viewed by 4875
Abstract
To prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cell (SOFC) operation, Cu or La doped Co-Mn coatings on a metallic interconnect is deposited and followed by oxidation at 750 °C. Microstructure and composition of coatings [...] Read more.
To prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cell (SOFC) operation, Cu or La doped Co-Mn coatings on a metallic interconnect is deposited and followed by oxidation at 750 °C. Microstructure and composition of coatings after preparation and oxidation is analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). High energy micro arc alloying process, a low cost technique, is used to prepare Cu or La doped Co-Mn coatings with the metallurgical bond. When coatings oxidized at 750 °C in air for 20 h and 100 h, Co3O4 is the main oxide on the surface of Co-38Mn-2La and Co-40Mn coatings, and (Co,Mn)3O4 spinel continues to grow with extended oxidation time. The outmost scales of Co-33Mn-17Cu are mainly composed of cubic MnCo2O4 spinel with Mn2O3 after oxidation for 20 h and 100 h. The average thickness of oxide coatings is about 60–70 μm after oxidation for 100 h, except that Co-40Mn oxide coatings are a little thicker. Area-specific resistance of Cu/La doped Co-Mn coatings are lower than that of Co-40Mn coating. (Mn,Co)3O4/MnCo2O4 spinel layer is efficient at blocking the outward diffusion of chromium and iron. Full article
Show Figures

Figure 1

11 pages, 3471 KiB  
Article
Antimicrobial Double-Layer Coating Prepared from Pure or Doped-Titanium Dioxide and Binders
by Ran Li, Tony Z. Jin, Zengshe Liu and LinShu Liu
Coatings 2018, 8(1), 41; https://doi.org/10.3390/coatings8010041 - 20 Jan 2018
Cited by 10 | Viewed by 6107
Abstract
Fruit and vegetable containers with microbe-free surfaces can be made by coating with titanium dioxide (TiO2) particles or nonmetal (C, N, B, F) doped-TiO2 particles, using wear resistant polymers, such as zein, and paint, as the binders and to form [...] Read more.
Fruit and vegetable containers with microbe-free surfaces can be made by coating with titanium dioxide (TiO2) particles or nonmetal (C, N, B, F) doped-TiO2 particles, using wear resistant polymers, such as zein, and paint, as the binders and to form a continuous binding phase. The doped-TiO2 powders absorb visible light radiation, and thus possess a higher antibacterial effect than non-modified TiO2 particles in environmental conditions. The study also presents a double-layer coating to use less TiO2 particles in coating, while achieving higher antimicrobial activity. Containers with microbe-free surfaces can stop cross-contamination from infected workers or spoiled/decayed/contaminated fruits or vegetables, and thus are expected to be able to reduce the risk from microbiological contamination of fruits and vegetables during harvest in fields, and postharvest storage or transportation. Full article
Show Figures

Figure 1

16 pages, 5701 KiB  
Review
Thermal Growth of Graphene: A Review
by Hai Tan, Deguo Wang and Yanbao Guo
Coatings 2018, 8(1), 40; https://doi.org/10.3390/coatings8010040 - 19 Jan 2018
Cited by 53 | Viewed by 10134
Abstract
A common belief proposed by Peierls and Landau that two-dimensional material cannot exist freely in a three-dimensional world has been proved false when graphene was first synthesized in 2004. Graphene, which is the base structure of other carbon materials, has drawn much attention [...] Read more.
A common belief proposed by Peierls and Landau that two-dimensional material cannot exist freely in a three-dimensional world has been proved false when graphene was first synthesized in 2004. Graphene, which is the base structure of other carbon materials, has drawn much attention of scholars and researchers due to its extraordinary electrical, mechanical and thermal properties. Moreover, methods for its synthesis have developed greatly in recent years. This review focuses on the mechanism of the thermal growth method and the different synthesis methods, where epitaxial growth, chemical vapor deposition, plasma-enhanced chemical vapor deposition and combustion are discussed in detail based on this mechanism. Meanwhile, to improve the quality and control the number of graphene layers, the latest research progress in optimizing growth parameters and developmental technologies has been summarized. The strategies for synthesizing high-quality and large-scale graphene are proposed and an outlook on the future synthesis direction is also provided. Full article
Show Figures

Figure 1

9 pages, 8101 KiB  
Article
Improved Corrosion Resistance of 5XXX Aluminum Alloy by Homogenization Heat Treatment
by In-Kyu Choi, Soo-Ho Cho, Sung-Joon Kim, Yoo-Shin Jo and Sang-Ho Kim
Coatings 2018, 8(1), 39; https://doi.org/10.3390/coatings8010039 - 18 Jan 2018
Cited by 17 | Viewed by 8518
Abstract
The corrosion resistance of homogenized Al-Mg (6.5%) alloy—adding Si, Zn, Mn, and Fe (0.2%) to improve various properties—was observed. Differential scanning calorimetry (DSC) and a JMatPro simulation revealed that the optimal homogenization temperature was 450 °C. The homogenization was carried out at 450 [...] Read more.
The corrosion resistance of homogenized Al-Mg (6.5%) alloy—adding Si, Zn, Mn, and Fe (0.2%) to improve various properties—was observed. Differential scanning calorimetry (DSC) and a JMatPro simulation revealed that the optimal homogenization temperature was 450 °C. The homogenization was carried out at 450 °C for 3, 6, 12, 18, 24, and 30 h in order to view the corrosion resistance change. Corrosion resistance was analyzed by a polarization test in 3.5 wt % NaCl solution. The corrosion resistance improved with increasing homogenization time up to 24 h, but there was no change with longer time periods. To observe the reason for the change in corrosion resistance, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDS) analyses were performed. Precipitates containing Mg, such as Al3Mg2 and Mg32(Al, Zn)49, decreased at the grain boundary. After homogenization, the amount of Mg measured by SEM-EDS at the grain boundary decreased from 36% to 8%, while Si increased. Generally, the potential difference between the grain boundary and the grains leads to intergranular corrosion. Reduction of Mg, whose standard electrode potential is lower than that of Al, and an increase of Si, which is present in higher concentration than Al at the grain boundaries, improved the corrosion resistance of 5XXX Al alloy by reducing the intergranular corrosion. Full article
(This article belongs to the Special Issue Hybrid Surface Coatings & Process (Selected Papers from HyMaP 2017))
Show Figures

Figure 1

12 pages, 30713 KiB  
Article
Cutting Performance of Low Stress Thick TiAlN PVD Coatings during Machining of Compacted Graphite Cast Iron (CGI)
by Kenji Yamamoto, Majid Abdoos, Jose Mario Paiva, Pietro Stolf, Ben Beake, Sushant Rawal, German Fox-Rabinovich and Stephen Veldhuis
Coatings 2018, 8(1), 38; https://doi.org/10.3390/coatings8010038 - 18 Jan 2018
Cited by 23 | Viewed by 7767
Abstract
A new family of physical vapor deposited (PVD) coatings is presented in this paper. These coatings are deposited by a superfine cathode (SFC) using the arc method. They combine a smooth surface, high hardness, and low residual stresses. This allows the production of [...] Read more.
A new family of physical vapor deposited (PVD) coatings is presented in this paper. These coatings are deposited by a superfine cathode (SFC) using the arc method. They combine a smooth surface, high hardness, and low residual stresses. This allows the production of PVD coatings as thick as 15 µm. In some applications, in particular for machining of such hard to cut material as compacted graphite iron (CGI), such coatings have shown better tool life compared to the conventional PVD coatings that have a lower thickness in the range of up to 5 μm. Finite element modeling of the temperature/stress profiles was done for the SFC coatings to present the temperature/stress profiles during cutting. Comprehensive characterization of the coatings was performed using XRD, TEM, SEM/EDS studies, nano-hardness, nano-impact measurements, and residual stress measurements. Application of the coating with this set of characteristics reduces the intensity of buildup edge formation during turning of CGI, leading to longer tool life. Optimization of the TiAlN-based coatings composition (Ti/Al ratio), architecture (mono vs. multilayer), and thickness were performed. Application of the optimized coating resulted in a 40–60% improvement in the cutting tool life under finishing turning of CGI. Full article
(This article belongs to the Special Issue Coatings for Cutting Tools)
Show Figures

Figure 1

13 pages, 4490 KiB  
Article
Synthesis, Characterization, and Application of Novel Ni-P-Carbon Nitride Nanocomposites
by Eman M. Fayyad, Aboubakr M. Abdullah, Mohammad K. Hassan, Adel M. Mohamed, Chuhong Wang, George Jarjoura and Zoheir Farhat
Coatings 2018, 8(1), 37; https://doi.org/10.3390/coatings8010037 - 17 Jan 2018
Cited by 34 | Viewed by 5946
Abstract
Dispersion of 2D carbon nitride (C3N4) nanosheets into a nickel phosphorous (NiP) matrix was successfully achieved by ultrasonication during the electroless plating of NiP from an acidic bath. The morphology and thickness, elemental analysis, phases, roughness, and wettability for [...] Read more.
Dispersion of 2D carbon nitride (C3N4) nanosheets into a nickel phosphorous (NiP) matrix was successfully achieved by ultrasonication during the electroless plating of NiP from an acidic bath. The morphology and thickness, elemental analysis, phases, roughness, and wettability for as-plated and heat-treated nanocomposite were determined by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurements, respectively. C3N4 showed a homogeneous distribution morphology in the nanocomposite that changed from amorphous in case of the NiP to a mixed crystalline-amorphous structure in the NiP-C3N4 nanocomposite. The microhardness and corrosion resistance of the as-plated nanocomposite and the heat-treated nanocomposite coating were significantly enhanced compared to the Ni-P. The nanocomposite showed a superior corrosion protection efficiency of ~95%, as observed from the electrochemical impedance spectroscopy (EIS) measurements. On the other hand, the microhardness of the nanocomposite was significantly increased from 780 to reach 1175 HV200 for NiP and NiP-C3N4, respectively. Full article
Show Figures

Graphical abstract

11 pages, 3378 KiB  
Article
Effect of Al-B2O3-TiO2 Exothermic System on Performances of Fly Ash Glass/Ceramic Composite Coating
by Yajun An, Weiqiang Li, Li Zhu, Jingjing Lu and Xianyang Liu
Coatings 2018, 8(1), 36; https://doi.org/10.3390/coatings8010036 - 16 Jan 2018
Cited by 2 | Viewed by 5196
Abstract
Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B [...] Read more.
Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B2O3 exothermic system, the morphology, phase, thermal shock resistance, and corrosion resistance of the coating were tested, and the influence of exothermic system on the structure and properties of the composite coating was studied. The experimental results show that the addition of exothermic system can promote the formation of NaB15, TiB2, Na2B4O7, Ca2Al2SiO7, and other new phases by thermo-chemical reaction; when compared to the composite coating without addition of exothermic system, combined with a good interface, higher compactness, and lower porosity. The highest micro hardness can be reached 725HV0.1. The number of thermal shock from 700 °C to room temperature can reach more than 50 times; acid, salt, oil immersion corrosion test, composite coating with exothermic system relative to the matrix increased by 27.40 times, 3.97 times, and 1.88 times, respectively. The overall performance is better than that of the composite coating without exothermic system. Full article
Show Figures

Figure 1

9 pages, 3191 KiB  
Article
Surface Coatings of TiO2 Nanoparticles onto the Designed Fabrics for Enhanced Self-Cleaning Properties
by Mudassar Abbas, Hina Iftikhar, Mumtaz Hasan Malik and Ahsan Nazir
Coatings 2018, 8(1), 35; https://doi.org/10.3390/coatings8010035 - 15 Jan 2018
Cited by 46 | Viewed by 10417
Abstract
Herein, the hydrophobic and self-cleaning properties of three different fabric surfaces have been evaluated after applying titanium dioxide (TiO2) nanofinishes. The nanoparticles were prepared by sol-gel techniques and were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and dynamic [...] Read more.
Herein, the hydrophobic and self-cleaning properties of three different fabric surfaces have been evaluated after applying titanium dioxide (TiO2) nanofinishes. The nanoparticles were prepared by sol-gel techniques and were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and dynamic light scattering (DLS) methods. The ultra-refined particles were applied over three different fabric substrates having similar weave of Z-twill (3/1). The yarns of 100% polyester, blend of viscose with mod-acrylic and high performance polyethylene containing 16 yarn count (Ne) and 31.496 and 15.748 ends/cm and picks/cm, respectively, were used for required fabric preparation. The different fabric structures were applied with self-cleaning finish of TiO2 nanoparticles prepared in our laboratory and the results were compared with commercially available finish Rucoguard AFR. The static contact angles, UV-protection factor, air permeability and hydrophobic activity of nanofinished fabric helped in evaluating their breathability and self-cleaning properties. Full article
Show Figures

Figure 1

12 pages, 3019 KiB  
Article
Corrosion Inhibition Properties of Waterborne Polyurethane/Cerium Nitrate Coatings on Mild Steel
by Mohammad Mizanur Rahman, Md. Hasan Zahir, Md. Bashirul Haq, Dhafer A. Al Shehri and A. Madhan Kumar
Coatings 2018, 8(1), 34; https://doi.org/10.3390/coatings8010034 - 15 Jan 2018
Cited by 25 | Viewed by 6807
Abstract
Waterborne polyurethane (WBPU)/cerium nitrate (Ce(NO3)3) dispersions were synthesized with different defined Ce(NO3)3 content. All pristine dispersions were stable with different poly(tetramethylene oxide) glycol (PTMG) number average molecular weights (Mn) of 650, 1000, and 2000. The interaction [...] Read more.
Waterborne polyurethane (WBPU)/cerium nitrate (Ce(NO3)3) dispersions were synthesized with different defined Ce(NO3)3 content. All pristine dispersions were stable with different poly(tetramethylene oxide) glycol (PTMG) number average molecular weights (Mn) of 650, 1000, and 2000. The interaction between the carboxyl acid salt group and Ce(NO3)3 was analyzed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques. Coating hydrophilicity, water swelling (%), water contact angle, leaching, and corrosion protection efficiency were all affected when using different Ce(NO3)3 content and PTMG molecular weights. The maximal corrosion protection of the WBPU coating was recorded using a higher molecular weight of PTMG with 0.016 mole Ce(NO3)3 content. Full article
Show Figures

Figure 1

23 pages, 3554 KiB  
Review
Recent Developments Concerning the Dispersion Methods and Mechanisms of Graphene
by Aoyan Liang, Xiaosong Jiang, Xin Hong, Yixin Jiang, Zhenyi Shao and Degui Zhu
Coatings 2018, 8(1), 33; https://doi.org/10.3390/coatings8010033 - 12 Jan 2018
Cited by 120 | Viewed by 11021
Abstract
Graphene, as a reinforcement for composite materials, has become a focus recently. However, the dispersion of graphene in composite materials is a problem that has been difficult to solve for a long time, which makes it difficult to produce and use graphene-reinforced composites [...] Read more.
Graphene, as a reinforcement for composite materials, has become a focus recently. However, the dispersion of graphene in composite materials is a problem that has been difficult to solve for a long time, which makes it difficult to produce and use graphene-reinforced composites on a large scale. Herein, methods to improve the dispersion of graphene and dispersion mechanisms that have been developed in recent years are reviewed, and the advantages and disadvantages of various methods are compared and analyzed. On this basis, the dispersion methods and mechanisms of graphene are prospected, which lays the foundation for graphene application and preparation. Full article
Show Figures

Figure 1

11 pages, 11580 KiB  
Article
Effect of Tip Shape of Frictional Stir Burnishing Tool on Processed Layer’s Hardness, Residual Stress and Surface Roughness
by Yoshimasa Takada and Hiroyuki Sasahara
Coatings 2018, 8(1), 32; https://doi.org/10.3390/coatings8010032 - 11 Jan 2018
Cited by 10 | Viewed by 5763
Abstract
Friction stir burnishing (FSB) is a surface-enhancement method used after machining, without the need for an additional device. The FSB process is applied on a machine that uses rotation tools (e.g., machining center or multi-tasking machine). Therefore, the FSB process can be applied [...] Read more.
Friction stir burnishing (FSB) is a surface-enhancement method used after machining, without the need for an additional device. The FSB process is applied on a machine that uses rotation tools (e.g., machining center or multi-tasking machine). Therefore, the FSB process can be applied immediately after the cutting process using the same machine tool. Here, we apply the FSB to the shaft materials of 0.45% C steel using a multi-tasking machine. In the FSB process, the burnishing tool rotates at a high-revolution speed. The thin surface layer is rubbed and stirred as the temperature is increased and decreased. With the FSB process, high hardness or compressive residual stress can be obtained on the surface layer. However, when we applied the FSB process using a 3 mm diameter sphere tip shape tool, the surface roughness increased substantially (Ra = 20 µm). We therefore used four types of tip shape tools to examine the effect of burnishing tool tip radius on surface roughness, hardness, residual stress in the FSB process. Results indicated that the surface roughness was lowest (Ra = 10 µm) when the tip radius tool diameter was large (30 mm). Full article
(This article belongs to the Special Issue Manufacturing and Surface Engineering)
Show Figures

Figure 1

10 pages, 6650 KiB  
Article
The Preparation and Properties of Fluoroacrylate-Modified Polysiloxane as a Fabric Coating Agent
by Hua Jin and Wei Xu
Coatings 2018, 8(1), 31; https://doi.org/10.3390/coatings8010031 - 11 Jan 2018
Cited by 10 | Viewed by 10323
Abstract
Polysiloxanes, which can add high softness and lubricity to treated textiles, have been proposed as softening post-finishing agents for fabric. However, the hydrophobicity of the finished fabric is not satisfactory. In this work, long-chain fluoroalkyl acrylate was used to modify the polysiloxane, aimed [...] Read more.
Polysiloxanes, which can add high softness and lubricity to treated textiles, have been proposed as softening post-finishing agents for fabric. However, the hydrophobicity of the finished fabric is not satisfactory. In this work, long-chain fluoroalkyl acrylate was used to modify the polysiloxane, aimed at improving hydrophobicity of the finished fabric and retaining its softness simultaneously. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectra (1H/13C NMR), and thermogravimetric analysis (TGA) were used to characterize the chemical structure and thermal stability of the as-prepared polymer. The modified polysiloxane was tested as a finishing agent. Its film morphologies on the fabric surface and on a silicon wafer were determined. Chemical compositions and performance properties of the finished fabric were investigated. By bonding long-chain fluoroalkyl, the modified polysiloxane presented good thermal stability. Due to the combined effect of the low surface free energy of the perfluorinated side chains and the relatively high surface roughness of the cotton fibers, the treated fabric had favorable hydrophobicity with a WCA of 144.7° on its surface. In addition, their softness was increased, but the color remained unchanged. Full article
Show Figures

Figure 1

10 pages, 9274 KiB  
Article
Formation of Phases and Porous System in the Product of Hydrothermal Treatment of χ-Al2O3
by Svetlana R. Egorova, Aliya N. Mukhamed’yarova, Oksana V. Nesterova, Yuqing Zhang, Juliya D. Skibina and Alexander A. Lamberov
Coatings 2018, 8(1), 30; https://doi.org/10.3390/coatings8010030 - 11 Jan 2018
Cited by 9 | Viewed by 5141
Abstract
The presence of χ-Al2O3 resulting from thermal decomposition gibbsite as part of alumina catalysts is unfavorable because of its acid characteristics. One of the available techniques of χ-Al2O3 removal is crystallization under hydrothermal conditions into boehmite, which [...] Read more.
The presence of χ-Al2O3 resulting from thermal decomposition gibbsite as part of alumina catalysts is unfavorable because of its acid characteristics. One of the available techniques of χ-Al2O3 removal is crystallization under hydrothermal conditions into boehmite, which is a main precursor of active γ-Al2O3. The influence of products of the hydrothermal treatment of χ-Al2O3 obtaining in result of thermal decomposition gibbsite under T = 150–200 °C, P = 0.5–1.5 MPa and pH = 4.0–9.2 were studied. The hydrothermal treatment products in these conditions are gibbsite and boehmite phases which are formed coincidently by parallel ways. In the alkaline medium at pH = 8.0–9.2 three-dimensional parallelepiped boehmite crystals with the edge length > 200 nm are formed, at pH = 4.0 two-dimensional rhombic-shaped plates with thickness 20–100 nm and with the edge length ~ 80–500 nm are formed. Crystallization of coarse boehmite particles promotes the formation of large and closed mesoporous. Full article
Show Figures

Graphical abstract

15 pages, 7991 KiB  
Article
Anti-Corrosive and Scale Inhibiting Polymer-Based Functional Coating with Internal and External Regulation of TiO2 Whiskers
by Chijia Wang, Huaiyuan Wang, Yue Hu, Zhanjian Liu, Chongjiang Lv, Yanji Zhu and Ningzhong Bao
Coatings 2018, 8(1), 29; https://doi.org/10.3390/coatings8010029 - 9 Jan 2018
Cited by 31 | Viewed by 8393
Abstract
A novel multi-functional carrier of mesoporous titanium dioxide whiskers (TiO2(w)) modified by ethylenediamine tetra (methylene phosphonic acid) (EDTMPA) and imidazoline was devised in epoxy coating to improve the anti-corrosion and scale inhibition properties of metal surface. Rigorous characterization using analytical techniques [...] Read more.
A novel multi-functional carrier of mesoporous titanium dioxide whiskers (TiO2(w)) modified by ethylenediamine tetra (methylene phosphonic acid) (EDTMPA) and imidazoline was devised in epoxy coating to improve the anti-corrosion and scale inhibition properties of metal surface. Rigorous characterization using analytical techniques showed that a mesoporous structure was developed on the TiO2(w). EDTMPA and imidazoline were successfully grafted on the outer and inner surfaces of mesoporous TiO2(w) to synthesize iETiO2(w). The results demonstrated that the corrosion resistance of the final iETiO2(w) epoxy coating is 40 times higher than that of the conventional unmodified OTiO2(w) epoxy coating. The enhanced corrosion resistance of the iETiO2(w) functional coating is due to the chelation of the scaling cations by EDTMPA and electron sharing between imidazoline and Fe. Scale formation on the iETiO2(w) coating is 35 times lower than that on the unmodified OTiO2(w) epoxy coating. In addition, EDTMPA and imidazoline act synergistically in promoting the barrier property of mesoporous TiO2(w) in epoxy coating. It is believed that this novel, simple, and inexpensive route for fabricating functional surface protective coatings on various metallic materials will have a wide range of practical applications. Full article
Show Figures

Graphical abstract

9 pages, 286 KiB  
Editorial
Acknowledgement to Reviewers of Coatings in 2017
by Coatings Editorial Office
Coatings 2018, 8(1), 28; https://doi.org/10.3390/coatings8010028 - 9 Jan 2018
Viewed by 3935
Abstract
Peer review is an essential part in the publication process, ensuring that Coatings maintains high quality standards for its published papers.[...] Full article
12 pages, 17417 KiB  
Article
Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition
by Nima Meyer, Laura Ramos Rivera, Tim Ellis, Jiahui Qi, Mary P. Ryan and Aldo R. Boccaccini
Coatings 2018, 8(1), 27; https://doi.org/10.3390/coatings8010027 - 8 Jan 2018
Cited by 33 | Viewed by 8133
Abstract
This study investigated the electrophoretic deposition (EPD) of the natural polymer zein combined with bioactive glass (BG) particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate [...] Read more.
This study investigated the electrophoretic deposition (EPD) of the natural polymer zein combined with bioactive glass (BG) particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA) in contact with simulated body fluid (SBF). Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR). The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM). The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics. Full article
(This article belongs to the Special Issue Electrophoretic Deposition)
Show Figures

Figure 1

12 pages, 3426 KiB  
Article
Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals
by Songwei Liu, Weigeng Liu, Jingxuan Heng, Wenfeng Zhou, Yanru Chen, Shiya Wen, Donghuan Qin, Lintao Hou, Dan Wang and Hui Xu
Coatings 2018, 8(1), 26; https://doi.org/10.3390/coatings8010026 - 5 Jan 2018
Cited by 27 | Viewed by 5491
Abstract
Solution-processed CdTe nanocrystals solar cells have attracted much attention due to their low cost, low material consumption, and potential for roll-to-roll production. Among all kinds of semiconductor materials, CdS exhibits the lowest lattice mismatch with CdTe, which permits high junction quality and high [...] Read more.
Solution-processed CdTe nanocrystals solar cells have attracted much attention due to their low cost, low material consumption, and potential for roll-to-roll production. Among all kinds of semiconductor materials, CdS exhibits the lowest lattice mismatch with CdTe, which permits high junction quality and high device performance. In this study, high quality CdS nanocrystals were prepared by a non-injection technique with tetraethylthiuram disufide and 2,2′-dithiobisbenzothiazole as the stabilizers. Based on the CdTe and CdS nanocrystals, devices with the architecture of ITO/ZnO/CdS/CdTe/MoOx/Au were fabricated successfully by a solution process under ambient condition. The effects of annealing conditions, film thickness, and detailed device structure on the CdTe/CdS nanocrystal solar cells were investigated and discussed in detail. We demonstrate that high junction quality can be obtained by using CdS nanocrystal thin film compared to traditional CdS film via chemical bath deposition (CBD). The best device had short circuit current density (Jsc), open circuit voltage (Voc) and fill factor (FF) of 17.26 mA/cm2, 0.56 V, and 52.84%, respectively, resulting in a power conversion efficiency (PCE) of 5.14%, which is significantly higher than that reported using CBD CdS as the window layer. This work provides important suggestions for the further improvement of efficiency in CdTe nanocrystal solar cells. Full article
Show Figures

Graphical abstract

7 pages, 4908 KiB  
Article
Flexible n-Type Tungsten Carbide/Polylactic Acid Thermoelectric Composites Fabricated by Additive Manufacturing
by Yong Du, Jiageng Chen, Xin Liu, Chun Lu, Jiayue Xu, Biplab Paul and Per Eklund
Coatings 2018, 8(1), 25; https://doi.org/10.3390/coatings8010025 - 4 Jan 2018
Cited by 34 | Viewed by 8393
Abstract
Flexible n-type tungsten carbide/polylactic acid (WC/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated. The preparation of an n-type polymer-based thermoelectric composite with good stability in air atmosphere via additive manufacturing holds promise for application in flexible thermoelectric devices. [...] Read more.
Flexible n-type tungsten carbide/polylactic acid (WC/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated. The preparation of an n-type polymer-based thermoelectric composite with good stability in air atmosphere via additive manufacturing holds promise for application in flexible thermoelectric devices. For WC/PLA volume ratios varying from ~33% to 60%, the electrical conductivity of the composites increased from 10.6 to 42.2 S/cm, while the Seebeck coefficients were in the range −11 to −12.3 μV/K. The thermal conductivities of the composites varied from ~0.2 to ~0.28 W·m−1·K−1 at ~300 K. Full article
(This article belongs to the Special Issue Novel Thin Film Materials for Thermoelectric Applications)
Show Figures

Figure 1

16 pages, 16441 KiB  
Article
Influence of Nitrogen Partial Pressure on Microstructure and Tribological Properties of Mo-Cu-V-N Composite Coatings with High Cu Content
by Haijuan Mei, Rui Wang, Xing Zhong, Wei Dai and Qimin Wang
Coatings 2018, 8(1), 24; https://doi.org/10.3390/coatings8010024 - 4 Jan 2018
Cited by 17 | Viewed by 5513
Abstract
In this study, Mo-Cu-V-N composite coatings with high Cu content of ~18 at.% were deposited on 316L stainless steel and YT14 cemented carbide substrates by high power impulse magnetron sputtering in Ar–N2 gas mixtures. The influence of N2 partial pressure was [...] Read more.
In this study, Mo-Cu-V-N composite coatings with high Cu content of ~18 at.% were deposited on 316L stainless steel and YT14 cemented carbide substrates by high power impulse magnetron sputtering in Ar–N2 gas mixtures. The influence of N2 partial pressure was investigated with respect to the microstructure and tribological properties of the coatings. The results indicated that the Mo-Cu-V-N composite coatings exhibited FCC B1-MoN phase with a strong (200) preferred orientation, and Cu phase was found to exist as metallic species. As the N2 partial pressure increased from 0.11 to 0.35 Pa, the peak intensity of (200) plane decreased gradually and simultaneous peak broadening was observed, which was typical for grain refinement. With increasing the N2 partial pressure, the columnar microstructure became much coarser, which led to the decrease of residual stress and hardness. The Mo-Cu-V-N composite coatings with high Cu content exhibited a relatively low wear rate of 10−8 mm3/N·m at 25 °C, which was believed to be attributed to the mixed lubricious oxides of MoO2, CuO and V2O5 formed during tribo-oxidation, which cannot be formed in the coatings with low Cu content. When the wear temperature was increased up to 400 °C, the wear rate increased sharply up to 10−6 mm3/N·m despite the formation of lubricious oxides of MoO3/CuMoO4 and V2O5. This could be due to the loss of nitrogen and pronounced oxidation at high temperatures, which led the wear mechanism to be transformed from mild oxidation wear to severe oxidation wear. Full article
(This article belongs to the Special Issue Hybrid Surface Coatings & Process (Selected Papers from HyMaP 2017))
Show Figures

Figure 1

11 pages, 11017 KiB  
Article
Formation of Anticorrosive Film for Suppressing Pitting Corrosion on Al-Mg-Si Alloy by Steam Coating
by Ai Serizawa, Takuhiro Oda, Kohei Watanabe, Kotaro Mori, Tetsuya Yokomizo and Takahiro Ishizaki
Coatings 2018, 8(1), 23; https://doi.org/10.3390/coatings8010023 - 4 Jan 2018
Cited by 18 | Viewed by 6999
Abstract
Al alloys offer excellent physical and mechanical properties, such as a low density, high specific strength, and good ductility. However, their low corrosion resistance has restricted their application in corrosive environments. There is a need, therefore, for a novel coating technology that is [...] Read more.
Al alloys offer excellent physical and mechanical properties, such as a low density, high specific strength, and good ductility. However, their low corrosion resistance has restricted their application in corrosive environments. There is a need, therefore, for a novel coating technology that is capable of improving the corrosion resistance of Al alloys. In the present study, we examined a steam-based method of forming a corrosion-resistant film on Al alloys. Al-Mg-Si alloy was used as the substrate. The cleaned substrates were set in an autoclave with ultrapure water as the steam source and processed using different temperatures and holding times, resulting in the formation of anticorrosive films on the alloy. FE-SEM images of the film surfaces showed that plate-like nanocrystals were densely formed over the entire surface. XRD patterns indicated that the film was composed mainly of AlOOH crystals. The potentiodynamic polarization curves revealed that the corrosion current density of the film-coated substrates significantly decreased, and that the pitting corrosion was completely suppressed, indicating that the corrosion resistance of the Al-Mg-Si alloy was improved by the film formed by means of steam coating. Full article
(This article belongs to the Special Issue Hybrid Surface Coatings & Process (Selected Papers from HyMaP 2017))
Show Figures

Figure 1

10 pages, 2062 KiB  
Article
Combination of Electrodeposition and Transfer Processes for Flexible Thin-Film Thermoelectric Generators
by Hiroki Yamamuro, Naoki Hatsuta, Makoto Wachi, Yoshihiro Takei and Masayuki Takashiri
Coatings 2018, 8(1), 22; https://doi.org/10.3390/coatings8010022 - 3 Jan 2018
Cited by 45 | Viewed by 7699
Abstract
To reduce consumption for ambient assisted living (AAL) applications, we propose the design and fabrication of flexible thin-film thermoelectric generators at a low manufacturing cost. The generators were fabricated using a combination of electrodeposition and transfer processes. N-type Bi2Te3 films [...] Read more.
To reduce consumption for ambient assisted living (AAL) applications, we propose the design and fabrication of flexible thin-film thermoelectric generators at a low manufacturing cost. The generators were fabricated using a combination of electrodeposition and transfer processes. N-type Bi2Te3 films and p-type Sb2Te3 films were formed on a stainless-steel substrate employing potentiostatic electrodeposition using a nitric acid-based bath, followed by a transfer process. Three types of flexible thin-film thermoelectric generators were fabricated. The open circuit voltage (Voc) and maximum output power (Pmax) were measured by applying a temperature difference between the ends of the generator. The thin-film generators obtained using thermoplastic sheets with epoxy resin exhibited a Voc that was tens of millivolts. In particular, the contact resistance of the thin-film generator decreased when silver paste was inserted at the junctions between the n- and p-type films. The most flexible thin-film generator fabricated in this study exhibited a Pmax of 10.4 nW at a temperature difference of 60 K. The current performance of the generators was too low, but we innovated a combination process to prepare them. It is expected to increase the performance by further decreasing the micro-cracks and contact resistance in the generators. Full article
(This article belongs to the Special Issue Advances in Flexible Films and Coatings)
Show Figures

Graphical abstract

13 pages, 22340 KiB  
Article
CuO and CuO/Graphene Nanostructured Thin Films as Counter Electrodes for Pt-Free Dye-Sensitized Solar Cells
by Chih-Hung Tsai, Po-Hsi Fei, Chia-Ming Lin and Shiao-Long Shiu
Coatings 2018, 8(1), 21; https://doi.org/10.3390/coatings8010021 - 3 Jan 2018
Cited by 39 | Viewed by 10876
Abstract
Copper oxide (CuO) and CuO/graphene nanostructured thin films were used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). CuO and CuO/graphene pastes were prepared and coated on fluorine-doped tin oxide (FTO) glass substrates using a doctor-blade coating method. The substrates were then [...] Read more.
Copper oxide (CuO) and CuO/graphene nanostructured thin films were used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). CuO and CuO/graphene pastes were prepared and coated on fluorine-doped tin oxide (FTO) glass substrates using a doctor-blade coating method. The substrates were then sintered at 350 °C for 30 min to form CuO and CuO/graphene nanostructures. The material properties of the CuO and CuO/graphene CEs were analyzed using a scanning electron microscope, transmission electron microscope, energy-dispersive spectrometer, thermogravimetric analysis instrument, X-ray diffractometer, Raman spectroscopy, X-ray photoelectron spectrometer, ultraviolet-visible spectrophotometer, and cyclic voltammetry instrument. The CuO and CuO/graphene CEs were used to fabricate DSSCs, and the device characteristics were analyzed using current density–voltage, incident photo-to-current conversion efficiency, and electrochemical impedance spectroscopy measurements. The results showed that when CuO and CuO/graphene were used as the CEs, the device conversion efficiencies were 2.73% and 3.40%, respectively. CuO is a favorable replacement for expensive platinum (Pt) because it features a simple fabrication process and is inexpensive and abundant. Furthermore, graphene, which exhibits high carrier mobility, may be added to enhance the electrical and catalytic abilities of CuO/graphene CEs. This is the first study to examine the use of CuO and CuO/graphene for developing Pt-free CEs in DSSCs. Full article
(This article belongs to the Special Issue Functional Oxide and Oxynitride Coatings)
Show Figures

Figure 1

9 pages, 7259 KiB  
Article
Damping Properties of Arc Ion Plating NiCrAlY Coating with Vacuum Annealing
by Guangyu Du, Zhen Tan, Guohao Li, Dechun Ba and Kun Liu
Coatings 2018, 8(1), 20; https://doi.org/10.3390/coatings8010020 - 3 Jan 2018
Cited by 7 | Viewed by 5087
Abstract
NiCrAlY coating was prepared on a stainless steel substrate by an arc ion plating machine and the annealing experiments were carried out at different temperatures using a tube furnace. The effects of annealing temperatures on the morphology, structure, chemical composition and phase structure [...] Read more.
NiCrAlY coating was prepared on a stainless steel substrate by an arc ion plating machine and the annealing experiments were carried out at different temperatures using a tube furnace. The effects of annealing temperatures on the morphology, structure, chemical composition and phase structure of the coating were characterized by SEM, EDS and XRD, respectively. The change of microstructure is discussed. Dynamic mechanical analyzer results determined the suitable annealing temperature for the best damping performance. The effect of annealing temperature on the microstructure and damping properties of NiCrAlY coating are also discussed. The relationship between annealing temperature and damping properties are explained by microstrcuture, grain size and phase structure. Full article
Show Figures

Figure 1

11 pages, 7213 KiB  
Article
Influence of Oxygen Contents on the Microstructure, High Temperature Oxidation and Corrosion Resistance Properties of Cr–Si–O–N Coatings
by Jinjue Liang, Shimin Chen, Changwei Zou, Canxin Tian, Zesong Wang and Shijun Liao
Coatings 2018, 8(1), 19; https://doi.org/10.3390/coatings8010019 - 3 Jan 2018
Cited by 4 | Viewed by 4813
Abstract
Cr–Si–O–N coatings with different oxygen contents were deposited by multi-arc ion plating, where various O2/(N2 + O2) reactive gas rates were adopted. The XRD and XPS results showed that the CrN crystals disappeared with the increasing of the [...] Read more.
Cr–Si–O–N coatings with different oxygen contents were deposited by multi-arc ion plating, where various O2/(N2 + O2) reactive gas rates were adopted. The XRD and XPS results showed that the CrN crystals disappeared with the increasing of the oxygen flux ratio to 10 at.%. The microhardness of all the Cr–Si–O–N coatings was approximately 2000 Hv0.05, which were dramatically plummeted compared to that of the Cr–Si–N coatings (≈3300 Hv0.05). The Cr–Si–O–N coatings were annealed under 800 °C and 1200 °C in the air atmosphere for 2 h to study the high-temperature oxidation resistance of the coatings. Meanwhile, Cr–Si–O–N coatings with different O2/(N2 + O2) rates were also used to carry out the corrosion resistance testing using the electrochemical working station in 3.5% NaCl solution under free air condition at room temperature. The results indicated that the coatings containing oxygen were more vulnerable to the high-temperature destruction and more easily corroded in the NaCl electrolyte. Full article
(This article belongs to the Special Issue Hybrid Surface Coatings & Process (Selected Papers from HyMaP 2017))
Show Figures

Figure 1

10 pages, 4579 KiB  
Article
Effect of TiN/C Microstructure Composite Layer on the Adhesion of FDLC Film onto Silicon Substrate
by Jianrong Xiao, Chenyang Gong, Meng Qi, Aihua Jiang, Zhiyong Wang, Ming Li and Jiafeng Ma
Coatings 2018, 8(1), 18; https://doi.org/10.3390/coatings8010018 - 3 Jan 2018
Cited by 11 | Viewed by 4551
Abstract
Deposition techniques of direct current and radio-frequency magnetron sputtering were used to separately prepare TiN/C microstructural composite layer and fluorinated diamond-like carbon (FDLC) film on monocrystalline silicon. The aim was to investigate the effects of microstructural composite layers on the adhesion property of [...] Read more.
Deposition techniques of direct current and radio-frequency magnetron sputtering were used to separately prepare TiN/C microstructural composite layer and fluorinated diamond-like carbon (FDLC) film on monocrystalline silicon. The aim was to investigate the effects of microstructural composite layers on the adhesion property of FDLC film. The results indicated that the TiN/C microstructural composite layer can distinguish from the substrate and the FDLC film. After adding the composite layers, the film–substrate binding force significantly increased. When the composite film were prepared at a partial pressure of 0.25, the binding force reached 30.5 N, which was greater than the value of 22.6 N for the sample without composite layers. TiN/C in the composite layers intensified the integration with silicon substrate because the C–C bond acted as a bridge linking the FDLC film to the silicon substrate. Furthermore, the bulges on the surface of the composite layers strengthened the physical bonding of the film with silicon substrates. Full article
Show Figures

Figure 1

4372 KiB  
Article
Effects of Immobilizations of rhBMP-2 and/or rhPDGF-BB on Titanium Implant Surfaces on Osseointegration and Bone Regeneration
by So-Hyoun Lee, Eun-Bin Bae, Sung-Eun Kim, Young-Pil Yun, Hak-Jun Kim, Jae-Won Choi, Jin-Ju Lee and Jung-Bo Huh
Coatings 2018, 8(1), 17; https://doi.org/10.3390/coatings8010017 - 31 Dec 2017
Cited by 18 | Viewed by 6051
Abstract
The aim of this study was to examine the effects of immobilizing rhPDGF-BB plus rhBMP-2 on heparinized-Ti implants on in vivo osseointegration and vertical bone regeneration at alveolar ridges. Successful immobilizations of rhPDGF-BB and/or rhBMP-2 onto heparinized-Ti (Hepa/Ti) were confirmed by in vitro [...] Read more.
The aim of this study was to examine the effects of immobilizing rhPDGF-BB plus rhBMP-2 on heparinized-Ti implants on in vivo osseointegration and vertical bone regeneration at alveolar ridges. Successful immobilizations of rhPDGF-BB and/or rhBMP-2 onto heparinized-Ti (Hepa/Ti) were confirmed by in vitro analysis, and both growth factors were found to be sustained release. To evaluate bone regeneration, rhPDGF-BB, and/or rhBMP-2-immobilized Hepa/Ti implants were inserted into beagle dogs; implant stability quotients (ISQ), bone mineral densities, bone volumes, osseointegration, and bone formation were assessed by micro CT and histometrically. In vivo study showed that the osseointegration and bone formation were greater in the rhPDGF-BB/rhBMP-2-immobilized Hepa/Ti group than in the rhPDGF-BB-immobilized Hepa/Ti group. The rhPDGF-BB/rhBMP-2 immobilized Hepa/Ti group also showed better implant stability and greater bone volume around defect areas and intra-thread bone density (ITBD) than the rhBMP-2-immobilized Hepa/Ti group. However, no significant differences were observed between these two groups. Through these results, we conclude rhBMP-2 immobilized, heparin-grafted implants appear to offer a suitable delivery system that enhances new bone formation in defect areas around implants. However, we failed to observe the synergetic effects for the rhBMP-2 and rhPDGF-BB combination. Full article
(This article belongs to the Special Issue Surface Engineering of Biomaterials)
Show Figures

Figure 1

1459 KiB  
Article
Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps
by Fernando Osorio, Gonzalo Valdés, Olivier Skurtys, Ricardo Andrade, Ricardo Villalobos-Carvajal, Andrea Silva-Weiss, Wladimir Silva-Vera, Begoña Giménez, Marcela Zamorano and Johana Lopez
Coatings 2018, 8(1), 16; https://doi.org/10.3390/coatings8010016 - 30 Dec 2017
Cited by 17 | Viewed by 7142
Abstract
Surface free energy is an essential physicochemical property of a solid and it greatly influences the interactions between vegetable epicarps and coating suspensions. Wettability is the property of a solid surface to reduce the surface tension of a liquid in contact with it [...] Read more.
Surface free energy is an essential physicochemical property of a solid and it greatly influences the interactions between vegetable epicarps and coating suspensions. Wettability is the property of a solid surface to reduce the surface tension of a liquid in contact with it such that it spreads over the surface and wets it, resulting from intermolecular interactions when the two are brought together. The degree of wetting (wettability) is determined by an energy balance between adhesive and cohesive work. The spreading coefficient (Scf/food) is the difference between the work of adhesion and the work of cohesion. Surface wettability is measured by the contact angle, which is formed when a droplet of a liquid is placed on a surface. The objective of this work was to determine the effect of hydroxypropyl methylcellulose (HPMC), κ-carrageenan, glycerol, and cellulose nanofiber (CNF) concentrations on the wettability of edible coatings on banana and eggplant epicarps. Coating suspension wettability on both epicarps were evaluated by contact angle measurements. For the (Scf/food) values obtained, it can be concluded that the surfaces were partially wet by the suspensions. Scf/food on banana surface was influenced mainly by κ-carrageenan concentration, HPMC-glycerol, κ-carrageenan-CNF, and glycerol-CNF interactions. Thus, increasing κ-carrageenan concentrations within the working range led to a 17.7% decrease in Scf/banana values. Furthermore, a HPMC concentration of 3 g/100 g produced a 10.4% increase of the Scf/banana values. Finally, Scf/fruit values for banana epicarps were higher (~10%) than those obtained for eggplant epicarp, indicating that suspensions wetted more the banana than the eggplant surface. Full article
(This article belongs to the Special Issue Films and Coatings for Food and Health Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop